Autor príspevku: Róbert Toman
Pozitívne pôsobenie kyslíka na živé organizmy je všeobecne známe. Ryby potrebujú k svojmu životu kyslík rovnako ako suchozemské stavovce, hoci spôsob ich dýchania je úplne odlišný. Keďže nemajú pľúca, kyslík musí prenikať z vody do krvi priamo cez tkanivá, ktoré sú v priamom kontakte s vodou, teda cez žiabre. Kyslík, ktorý má difundovať do krvi cez žiabre musí byť samozrejme rozpustený, pretože ryby nemajú schopnosť prijímať kyslík vo forme bubliniek. Odchyt rýb, transport a ich chov v zajatí má vážne metabolické nároky v mozgu, svaloch, srdci, žiabrach a ďalších tkanivách. Všeobecne ich nazývame stres, ale fyziologická situácia je omnoho komplikovanejšia. Stres spojený s odchytom a vypustením rýb do iného prostredia môže prispieť k úmrtnosti rýb. Pochopenie energetického metabolizmu rýb a faktorov, ktoré ho ovplyvňujú sú dôležité pre správne zaobchádzanie s rybami ich ošetrenie po odchyte. Pred zhodnotením rizík, ktoré súvisia s kyslíkom vo vode a pre ich pochopenie si priblížme aspoň v krátkosti fyziologické pochody spojené s funkciou kyslíka v organizme rýb.
Energetický metabolizmus a potreba kyslíka
Energia, ktorá sa používa na zabezpečenie všetkých bunkových funkcií sa získava z adenozíntrifosfátu (ATP). Je potrebný na kontrakcie svalov, vedenie nervových impulzov v mozgu, činnosť srdca, na príjem kyslíka žiabrami atď. Ak bunka potrebuje energiu, rozpojením väzieb v ATP sa uvoľní energia. Vedľajším produktom tejto reakcie je adenozíndifosfát (ADP) a anorganický fosfát. V bunke ADP a fosfát môžu znova reagovať cez komplikované metabolické deje a tvorí sa ATP. Väčšina sladkovodných rýb potrebuje veľké množstvo kyslíka v prostredí. Tento kyslík je potrebný hlavne ako “palivo” pre biochemické mechanizmy spojené s procesmi cyklu energie. Energetický metabolizmus, ktorý je spojený s kyslíkom je vysoko účinný a zabezpečuje trvalé dodávanie energie, ktorú potrebuje ryba na základné fyziologické funkcie. Tento metabolizmus sa označuje aeróbny metabolizmus.
Nie všetka produkcia energie vyžaduje kyslík. Bunky majú vyvinutý mechanizmus udržiavať dodávku energie počas krátkeho obdobia, keď je hladina kyslíka nízka (hypoxia). Anaeróbny alebo hypoxický energetický metabolizmus je málo účinný a nie je schopný produkovať dostatok energie pre tkanivá počas dlhého obdobia. Ryby potrebujú konštantný prísun energie. K tomu potrebujú stále a dostatočné množstvo kyslíka. Nedostatok kyslíka rýchlo zbavuje ryby energie, ktorú potrebujú k životu. Ryby sú schopné plávať nepretržite na dlhé vzdialenosti bez únavy v značnej rýchlosti. Tento typ plávania ryby využívajú pri normálnom plávaní a na dlhé vzdialenosti. Svaly, ktoré sa na tomto pohybe podieľajú, využívajú veľké množstvo kyslíka na syntézu energie. Ak majú ryby dostatok kyslíka, nikdy sa neunavia pri dlhodobom plávaní. Rýchle, prudké a vysoko intenzívne plávanie trvá normálne iba niekoľko sekúnd, prípadne minút a končí fyzickým stavom vyčerpania. Tento typ plávania využívajú ryby pri love, migrácii proti prúdu alebo pri úteku. Tento typ pohybu úplne vyčerpá energetické zásoby. Obnova môže trvať hodiny, niekedy aj dni, čo závisí na prístupnosti kyslíka, trvaní rýchleho plávania a stupni vyčerpania energetických zásob. Ak sa napríklad ryba, ktorá bola pri odchyte úplne zbavená energie, umiestni do inej nádrže, potrebuje množstvo kyslíka a pokojné miesto, kde by obnovila zásoby energie. Ak sa však umiestni do nádoby, kde je málo kyslíka, nedokáže obnoviť energiu a skôr či neskôr hynie. Nie nedostatok kyslíka zabíja rybu, ale nedostatok energie a neschopnosť obnoviť energetické zásoby. Je jasné, že to sú podmienky, ktoré extrémne stresujú ryby.
Faktory ovplyvňujúce obnovu energie
Spolu so stratou energetických zásob počas rýchleho plávania narastá v tkanivách a krvi hladina laktátu. Keďže sa jedná o kyselinu, produkuje ióny vodíka, ktoré znižujú pH tkanív a dodávanie energie do bunky. Tiež zvyšuje vyplavovanie dôležitých metabolitov z bunky, ktoré sú potrebné pri obnove energie. Vylučovanie laktátu a obnova normálnej funkcie buniek môže trvať od 4 do 12 hodín. Pri tomto procese hrá dôležitú úlohu veľkosť tela, teplota vody, tvrdosť a pH vody a dostupnosť kyslíka.
- Veľkosť tela – existuje pozitívna korelácia medzi anaeróbnym energetickým metabolizmom a potrebou energie. Väčšie ryby teda potrebujú viac energie na rýchle plávanie. To spôsobuje vyšší výdaj energie a dlhší čas obnovy
- Teplota vody – vylučovanie laktátu a iných metabolitov výrazne ovplyvňuje teplota vody. Väčšie zmeny teploty výrazne ovplyvňujú schopnosť rýb obnoviť energetické zásoby. Je preto potrebné sa vyvarovať veľkým zmenám teploty, ktoré znižujú schopnosť obnovy energie.
- Tvrdosť vody – zníženie tvrdosti vody má dôležitý účinok na metabolizmus a acidobázickú rovnováhu krvi. Väčšina prác sa zaoberala vplyvom na morské druhy a nie je úplne jasné, či sú tieto výsledky prenosné aj na sladkovodné ryby. Keď sú sladkovodné ryby stresované, voda preniká cez bunkové membrány, hlavne žiabier a krv je redšia. Toto zriedenie krvi zvyšuje nároky na udržiavanie rovnováhy solí v organizme, čiže udržiavanie osmotickej rovnováhy. Viac sa dočítate nižšie.
- pH vody – v kyslejšom prostredí sú ryby schopné obnoviť energiu rýchlejšie. Vyššie pH tento proces výrazne spomaľuje, čo je rizikové pre druhy vyžadujúce vyššie pH, ako napr. africké cichlidy jazier Malawi a Tanganika.
Regulácia osmotického tlaku – udržiavanie rovnováhy solí stresovaných rýb
Regulácia hladiny solí je základom života. Štruktúra a funkcia bunky úzko súvisí s vodou a látok v nej rozpustených. Ryba používa značnú energiu na kontrolu zloženia vnútrobunkových a mimobunkových tekutín. U rýb táto osmoregulácia spotrebuje asi 25 – 50% celkového metabolického výdaja, čo je pravdepodobne najviac spomedzi živočíchov. Mechanizmus, ktorý ryby využívajú na udržiavanie rovnováhy solí je veľmi komplikovaný a extrémne závislý na energii. Pretože účinnosť anaeróbneho energetického metabolizmu je iba na úrovni 1⁄10 energetického metabolizmu v prostredí bohatom na kyslík, energetická potreba pre osmoreguláciu tkanív nie je možná iba anaeróbnym energetickým metabolizmom. Rýchly pokles hladiny ATP v bunke spôsobuje spomalenie až zastavenie funkcie bunkových iónových púmp, ktoré regulujú pohyb solí cez bunkovú membránu. Prerušenie činnosti iónovej pumpy spôsobuje stratu rovnováhy iónov v bunke a dochádza k riziku smrti bunky a ryby.
Sladkovodné aj morské ryby trvalo čelia nutnosti iónovej a osmotickej regulácie. Sladkovodné ryby, ktorých koncentrácia iónov v tkanivách je omnoho vyššia ako vo vode, musia regulovať príjem a stratu vody cez priepustné epiteliálne tkanivá a močom. Tieto ryby produkujú veľké množstvo moču, ktorého denné množstvo tvorí 20% hmotnosti tela. Obličky rýb sú vysoko účinné v odstraňovaní vody z tela a sú takisto účinné aj v zadržiavaní solí v tele. Zatiaľ čo veľmi malé množstvo soli preniká do moču, väčšina osmoregulačných dejov sa zabezpečuje žiabrami. Sodík je hlavný ión tkanív. Transport sodíka cez bunkovú membránu je vysoko závislý na energii a umožňuje ho enzým Na/K‑ATP-áza. Tento enzým sa nachádza v bunkovej membráne a využíva energiu, ktorú dodáva ATP na prenos sodíka jedným smerom cez bunkovú membránu. Draslík sa pohybuje opačným smerom. Tento proces umožňuje svalovú kontrakciu, poskytuje elektrochemický gradient potrebný na činnosť srdca a umožňuje prenos všetkých signálov v mozgu a nervoch. Väčšina osmoregulácie u rýb sa deje v žiabrach a funguje nasledovne: Čpavok sa tvorí ako odpadový produkt metabolizmu rýb. Keď sú ryby v pohybe, tvoria väčšie množstvo čpavku a ten sa musí vylúčiť z krvi. Na rozdiel od vyšších živočíchov, ryby nevylučujú čpavok močom. Čpavok a väčšina dusíkatých odpadových látok prestupuje cez membránu žiabier (asi 80 – 90%). Čpavok sa vymieňa pri prechode cez membránu žiabier za sodík. Takto sa znižuje množstvo čpavku v krvi a zvyšuje sa jeho koncentrácia v bunkách žiabier. Naopak, sodík prechádza z buniek žiabier do krvi. Aby sa nahradil sodík v bunkách žiabier a obnovila sa rovnováha solí, bunky žiabier vylúčia čpavok do vody a vymenia ho za sodík z vody. Podobným spôsobom sa vymieňajú chloridové ióny za bikarbonát. Pri dýchaní je vedľajší produkt CO2 a voda. Bikarbonát sa tvorí, keď CO2 z bunkového dýchania reaguje s vodou v bunke. Ryby nemôžu, na rozdiel od suchozemských živočíchov, vydýchnuť CO2 a miesto toho sa zlučuje s vodou a tvorí sa bikarbonátový ión. Chloridové ióny sa dostávajú do bunky a bikarbonát von z bunky do vody. Týmto spôsobom sa zamieňa vodík za sodík, čím sa napomáha kontrole pH krvi.
Tieto dva mechanizmy výmeny iónov sa nazývajú absorpcia a sekrécia a vyskytujú sa v dvoch typoch buniek žiabier, respiračných a chloridových. Chloridové bunky vylučujú soli, sú väčšie a vyvinutejšie u morských druhov rýb. Respiračné bunky, ktoré sú potrebné pre výmenu plynov, odstraňovanie dusíkatých odpadových produktov a udržiavanie acidobázickej rovnováhy, sú vyvinutejšie u sladkovodných rýb. Sú zásobované arteriálnou krvou a zabezpečujú výmenu sodíka a chloridov za čpavok a bikarbonát. Tieto procesy sú opäť vysoko závislé na prístupnosti energie. Ak nie je dostatok energie na fungovanie iónovej pumpy, nemôže dochádzať k ich výmene a voda “zaplaví” bunky difúziou a to spôsobí smrť rýb.
Dôsledky nedostatku kyslíka v procese osmoregulácie
Len niekoľko minút nedostatku kyslíka, membrána buniek mozgu stráca schopnosť kontrolovať rovnováhu iónov a uvoľňujú sa neurotransmitery, ktoré urýchľujú vstup vápnika do bunky. Zvýšená hladina vápnika v bunkách spúšťa množstvo degeneratívnych procesov, ktoré vedú k poškodeniu nervovej sústavy a k smrti. Tieto procesy zahŕňajú poškodenie DNA, dôležitých bunkových proteínov a bunkovej membrány. Tvoria sa voľné radikály a oxid dusitý, ktoré poškodzujú bunkové organely. Podobné procesy sa dejú aj v iných orgánoch (pečeň, svaly, srdce a krvné bunky). Ak sa dostane do bunky vápnik, je potrebné veľké množstvo energie na jeho odstránenie kalciovými pumpami, ktoré vyžadujú ATP. Ďalší dôsledok hypoxie je uvoľňovanie hormónov z hypofýzy, z ktorých u rýb prevažuje prolaktín. Uvoľnenie tohto hormónu ovplyvňuje priepustnosť bunkovej membrány v žiabrach, koži, obličkách, čreve a ovplyvňuje mechanizmus transportu iónov. Jeho uvoľnenie napomáha regulácii rovnováhy vody a iónov znižovaním príjmu vody a zadržiavaním dôležitých iónov, hlavne Na+ a Cl-. Tým pomáha udržiavať rovnováhu solí v krvi a v tkanivách a bráni nabobtnaniu rýb vodou.
Najväčšia hrozba pre sladkovodné ryby je strata iónov difúziou do vody, skôr než vylučovanie nadbytku vody. Hoci regulácia rovnováhy vody môže mať význam, je sekundárna vo vzťahu k zadržiavaniu iónov. Prolaktín znižuje osmotickú priepustnosť žiabier zadržiavaním iónov a vylučovaním vody. Zvyšuje tiež vylučovanie hlienu žiabrami, čím napomáha udržiavať rovnováhu iónov a vody tým, že zabraňuje prechodu molekúl cez membránu. U rýb, ktoré boli stresované chytaním, prudkým plávaním, sa z tkanív odčerpáva energia a trvá niekoľko hodín až dní, kým sa jej zásoby obnovia. Anaeróbny energetický metabolizmus nie je schopný to zabezpečiť v plnej miere a je potrebné veľké množstvo kyslíka. Ak je ho nedostatok, vedie to k úhynu rýb. Nemusia však uhynúť hneď. Rovnováha solí sa nemôže zabezpečiť bez dostatku kyslíka.
Potreba kyslíka
Kyslík je hlavným faktorom, ktorý ovplyvňuje prežitie rýb v strese. Nie teplota vody ani hladina soli. Predsa však je teplota hlavný ukazovateľ toho, koľko kyslíka vo vode je pre ryby dostupného a ako rýchlo ho budú môcť využiť. Maximálne množstvo rozpusteného kyslíka vo vode sa označuje hladina saturácie. Táto klesá so stúpaním teploty. Napr. pri teplote 20 °C je voda nasýtená kyslíkom pri jeho koncentrácii 8,9 mg/l, pri 26 °C je to pri koncentrácii 8 mg/l a pri 32 °C len 7,3 mg/l. Pri vyšších teplotách sa zvyšuje metabolizmus rýb a rýchlejšie využívajú aj kyslík. Koncentrácia kyslíka pod 5 mg/l pri 26 °C môže byť rýchlo smrteľná.
Vzduch a kyslík vo vode – môže aj škodiť. Pri chove cichlíd sa často chovateľ snaží zabezpečiť maximálne prevzdušnenie vody veľmi silným vzduchovaním. Niektorí chovatelia využívajú možnosti prisávania vzduchu pred vyústením vývodu interného alebo externého filtra, iní používajú samostatné vzduchové kompresory, ktorými vháňajú vzduch do vody cez vzduchovacie kamene s veľmi jemnými pórmi. Oba spôsoby vzduchovania sú schopné vytvoriť obrovské množstvo mikroskopických bubliniek. Veľkosť bublín kyslíka alebo vzduchu môže významne zmeniť chémiu vody, stupeň prenosu plynov a koncentráciu rozpustených plynov. Riziko poškodenia zdravia a úhynu rýb vzniká najmä pri transporte v uzavretých nádobách, do ktorých sa vháňa vzduch alebo kyslík pod tlakom. Určité riziko však vzniká aj pri nadmernom jemnom vzduchovaní v akváriách. Mikroskopické bublinky plynu sa môžu prilepiť na žiabre, skrely, kožu a oči a spôsobovať traumu a plynovú embóliu. Poškodenie žiabier a plynová embólia negatívne ovplyvňujú zdravie rýb a prežívateľnosť, obmedzujú výmenu plynov pri dýchaní a vedú k hypoxii, zadržiavaniu CO2 a respiračnej acidóze. Čistý kyslík je účinné oxidovadlo. Mikroskopické bublinky obsahujúce čistý kyslík sa môžu prichytiť na lístky žiabier, vysušujú ich, dráždia, oxidujú a spôsobujú chemické popálenie jemného epiteliálneho tkaniva. Ak voda vyzerá mliečne zakalená s množstvom miniatúrnych bublín, ktoré sa prilepujú na skrely a žiabre alebo na vnútorné steny nádoby, je potrebné tieto podmienky považovať za potenciálne toxické a všeobecne nezdravé pre ryby. Ak je pôsobenie plynu v tomto stave dlhšie trvajúce a parciálny tlak kyslíka sa pohybuje okolo 1 atmosféry (namiesto 0,2 atm., ako je vo vzduchu), šanca prežitia pre ryby klesá. Stlačený vzduch je vhodný, ak sa dopĺňa kontinuálne v rozmedzí bezpečnej koncentrácie kyslíka, ale pôsobením stlačeného vzduchu alebo dodávaného pod vysokým parciálnym tlakom vo vode, môžu ryby prestať dýchať, čím sa zvyšuje koncentrácia CO2 v ich organizme. To môže viesť k zmenám acidobázickej rovnováhy (respiračnej acidózy) v organizme rýb a zvyšovať úhyn. Čistý stlačený kyslík obsahuje 5‑násobne vyšší obsah kyslíka ako vzduch. Preto je potreba jeho dodávania asi 1⁄5 pri čistom kyslíku oproti zásobovaniu vzduchom. Veľmi malé bubliny kyslíka sa rozpúšťajú rýchlejšie než väčšie, pretože majú väčší povrch vzhľadom k objemu, ale každá plynová bublina potrebuje na rozpustenie vo vode dostatočný priestor. Ak tento priestor chýba alebo je nedostatočný, mikrobubliny môžu zostať v suspenzii vo vode, prichytávajú sa k povrchom predmetov vo vode alebo pomaly stúpajú k hladine.
Mikroskopické bublinky plynu sa rozpúšťajú vo vode rýchlejšie a dodávajú viac plynu do roztoku než väčšie bubliny. Tieto podmienky môžu presycovať vodu kyslíkom, ak množstvo bubliniek plynu tvorí “hmlu” vo vode a zostávajú rozptýlené (v suspenzii) a kyslík s vysokým tlakom môže byť toxický kvôli tvorbe voľných radikálov. Mikroskopické vzduchové bublinky môžu tiež spôsobiť plynovú embóliu. Arteriálna plynová embólia a emfyzém tkanív môžu byť reálne a tvoria nebezpečenstvo najmä pri transporte živých rýb. Je preto potrebné sa vyhnúť suspenzii plynových bublín v transportnej vode. Problém arteriálnej plynovej embólie počas transportu vzniká aj preto, že ryby nemajú možnosť sa potopiť do väčšej hĺbky (ako to robia ryby vypustené do jazera), kde je vyšší tlak vody, ktorý by rozpustil jemné bublinky v obehovom systéme. Dva kľúčové body zlepšujú pohodu veľkého počtu odchytených a stresovaných rýb pri transporte:
- Zvýšiť parciálny tlak O2 nad nasýtenie stlačeným kyslíkom a dodanie dosť veľkých bublín, aby unikli povrchom vody. Vzduch tvorí najmä dusík a mikroskopické bublinky dusíka tiež môžu prilipnúť na žiabre. Bublinky akéhokoľvek plynu prichytené na žiabre môžu ovplyvniť dýchanie a narušiť zdravie rýb. Ak sa transportujú ryby vo vode presýtenej bublinkami, vzniká pravdepodobnosť vzniku hypoxie, hyperkarbie, respiračnej acidózy, ochorenia a smrti.
- Zvýšiť slanosť vody na 3 – 5 mg/l. Soľ (stačí aj neiodidovaná NaCl) je vhodná pri transporte rýb. V strese ryby strácajú ióny a toto môže byť pre ne viac stresujúce. Energetická potreba transportu iónov cez membrány buniek môže predstavovať významnú stratu energie vyžadujúcu ešte viac kyslíka. Transport rýb v nádobách, ktoré obsahujú hmlu mikroskopických bublín, môžu byť nebezpečná pre transportované ryby zvyšovaním možnosti oneskorenej smrti po vypustení. Ryby transportované v akoby mliečne zakalenej vode sú stresované, dochádza k ich fyzickému poškodeniu, zvyšuje sa citlivosť k infekciám, ochoreniu a úhyn po vypustení po transporte. Po vypustení rýb, ktoré prežili prvotný toxický vplyv kyslíka, po transporte môžu byť kvôli poškodeným žiabram citlivejšie na rôzne patogény a následne sa môže vyskytovať zvýšený úhyn počas niekoľkých dní až týždňov po transporte. Veľmi prevzdušnená voda neznamená prekysličená. Veľmi prevzdušnená voda je často presýtená plynným dusíkom, ktorý môže spôsobiť ochorenie. Mikroskopické bublinky obsahujúce najmä dusík, môžu spôsobiť emfyzém tkanív pri transporte, podobne, ako je tomu u potápačov.
Author of the post: Róbert Toman
The positive impact of oxygen on living organisms is generally well-known. Fish, like terrestrial vertebrates, need oxygen for their survival, although the way they breathe is entirely different. Since they lack lungs, oxygen must penetrate from the water into the blood directly through tissues that are in direct contact with the water, such as gills. Oxygen, which is supposed to diffuse into the blood through the gills, must be dissolved, as fish cannot take in oxygen in the form of bubbles. The capture, transportation, and captivity of fish have serious metabolic demands on the brain, muscles, heart, gills, and other tissues. We commonly refer to them as stress, but the physiological situation is much more complicated. Stress associated with the capture and release of fish into a different environment can contribute to fish mortality. Understanding the energy metabolism of fish and the factors that influence it is crucial for the proper handling and treatment of fish after capture. Before evaluating the risks associated with oxygen in the water and understanding them, let’s briefly outline the physiological processes related to the function of oxygen in the fish’s body.
Energy Metabolism and Oxygen Requirement
The energy used to ensure all cellular functions are performed is derived from adenosine triphosphate (ATP). It is required for muscle contractions, transmission of nerve impulses in the brain, heart activity, and oxygen intake through the gills, among other functions. When a cell needs energy, breaking the bonds in ATP releases energy. The by-products of this reaction are adenosine diphosphate (ADP) and inorganic phosphate. In the cell, ADP and phosphate can react again through complex metabolic processes to form ATP. Most freshwater fish require a significant amount of oxygen in their environment. This oxygen is needed primarily as “fuel” for biochemical mechanisms associated with energy cycle processes. The energy metabolism associated with oxygen is highly efficient and ensures a continuous supply of energy needed for the fish’s basic physiological functions. This metabolism is referred to as aerobic metabolism.
Not all energy production requires oxygen. Cells have developed a mechanism to maintain energy supply during short periods when oxygen levels are low (hypoxia). Anaerobic or hypoxic energy metabolism is less efficient and cannot produce enough energy for tissues over a long period. Fish need a constant supply of energy, requiring a continuous and sufficient amount of oxygen. Oxygen deficiency quickly deprives fish of the energy they need to live. Fish are capable of swimming continuously for long distances without fatigue at considerable speed. They use this type of swimming during normal activity and for long-distance travel. The muscles involved in this movement utilize a large amount of oxygen for energy synthesis. If fish have enough oxygen, they never tire during prolonged swimming. Rapid, intense swimming lasts normally only a few seconds or minutes and ends in a state of physical exhaustion. Fish use this type of movement during hunting, upstream migration, or escape. This type of movement completely depletes energy reserves. Recovery can take hours, sometimes even days, depending on oxygen availability, the duration of rapid swimming, and the degree of depletion of energy reserves. For example, if a fish completely depleted of energy during capture is placed in another tank, it needs a significant amount of oxygen and a calm place to replenish energy reserves. However, if placed in a container with low oxygen, it cannot restore energy and sooner or later dies. It is clear that these are conditions that extremely stress fish.
Factors Influencing Energy Recovery
Along with the depletion of energy reserves during rapid swimming, the levels of lactate in tissues and blood increase. As lactate is an acid, it produces hydrogen ions that lower the pH of tissues and impede the delivery of energy to the cell. It also increases the efflux of important metabolites from the cell, necessary for energy recovery. The elimination of lactate and the restoration of normal cell function can take from 4 to 12 hours. In this process, body size, water temperature, water hardness and pH, and oxygen availability play crucial roles.
- Body Size: There is a positive correlation between anaerobic energy metabolism and energy demand. Larger fish, therefore, require more energy for rapid swimming. This results in higher energy expenditure and a longer recovery time.
- Water Temperature: The excretion of lactate and other metabolites is significantly influenced by water temperature. Substantial changes in temperature significantly affect the fish’s ability to replenish energy reserves. It is necessary to avoid large temperature fluctuations, which reduce the ability to recover energy.
- Water Hardness: Decreasing water hardness has a significant effect on metabolism and the acid-base balance of blood. Most studies have focused on the impact on marine species, and it is not entirely clear whether these results are transferable to freshwater fish. When freshwater fish are stressed, water penetrates through cell membranes, especially gills, and the blood becomes diluted. This blood dilution increases the demands on maintaining salt balance in the body, i.e., maintaining osmotic balance. More information on this is provided below.
- Water pH: In an acidic environment, fish can recover energy more quickly. Higher pH significantly slows down this process, which poses a risk for species requiring higher pH, such as African cichlids from the Malawi and Tanganyika lakes.
Osmotic Pressure Regulation – Maintaining Salt Balance in Stressed Fish
Regulation of salt levels is fundamental to life. The structure and function of cells are closely related to the water and dissolved substances within them. Fish expend significant energy to control the composition of intracellular and extracellular fluids. In fish, osmoregulation consumes about 25 – 50% of the total metabolic expenditure, likely the highest among animals. The mechanism fish use to maintain salt balance is highly complex and extremely energy-dependent. Since the efficiency of anaerobic energy metabolism is only about 1⁄10 of the energy metabolism in an oxygen-rich environment, the energy requirement for tissue osmoregulation is not feasible through anaerobic energy metabolism alone. A rapid decrease in ATP levels in the cell slows down or stops the function of cellular ion pumps that regulate the movement of salts across the cell membrane. The interruption of ion pump activity leads to an imbalance of ions in the cell, posing a risk of cell and fish death.
Both freshwater and marine fish constantly face the need for ion and osmotic regulation. Freshwater fish, with ion concentrations in tissues much higher than in water, must regulate water intake and loss through permeable epithelial tissues and urine. These fish produce a large amount of urine, with daily amounts constituting 20% of body weight. Fish kidneys are highly efficient in removing water from the body and are also effective in retaining salts. While very little salt penetrates into the urine, most osmoregulatory processes are facilitated by the gills. Sodium is the main ion in tissues. The transport of sodium across the cell membrane is highly dependent on energy and is facilitated by the enzyme Na/K‑ATPase. This enzyme is located in the cell membrane and uses the energy supplied by ATP to transport sodium unidirectionally across the cell membrane. Potassium moves in the opposite direction. This process enables muscle contraction, provides the electrochemical gradient necessary for heart function, and allows the transmission of all signals in the brain and nerves. Most osmoregulation in fish occurs in the gills and works as follows: Ammonia is produced as a waste product of fish metabolism. When fish are in motion, a larger amount of ammonia is produced, and it must be excreted from the blood. Unlike higher animals, fish do not excrete ammonia through urine. Ammonia and most nitrogenous waste substances pass through the gill membrane (about 80 – 90%). As ammonia passes through the gill membrane, it is exchanged for sodium. This reduces the amount of ammonia in the blood and increases its concentration in gill cells. Conversely, sodium passes from gill cells to the blood. To replace sodium in gill cells and restore salt balance, gill cells excrete ammonia into the water and exchange it for sodium from the water. Similarly, chloride ions are exchanged for bicarbonate. During respiration, the byproduct is CO2 and water. Bicarbonate is formed when CO2 from cellular respiration reacts with water in the cell. Fish cannot, unlike terrestrial animals, exhale CO2 and instead combine it with water to form bicarbonate ions. Chloride ions enter the cell, and bicarbonate exits the cell into the water. This exchange of hydrogen for sodium helps control blood pH.
These two mechanisms of ion exchange are called absorption and secretion, occurring in two types of gill cells: respiratory and chloride cells. Chloride cells, responsible for excreting salts, are larger and more developed in marine fish species. Respiratory cells, crucial for gas exchange, removal of nitrogenous waste products, and maintaining acid-base balance, are more developed in freshwater fish. They are supplied by arterial blood and facilitate the exchange of sodium and chloride for ammonia and bicarbonate. These processes are again highly dependent on energy accessibility. If there is not enough energy for the ion pump to function, the exchange cannot occur, and water “floods” the cells through diffusion, leading to the death of the fish.
Consequences of Oxygen Shortage in Osmoregulation
Just a few minutes of oxygen deprivation cause the brain cell membrane to lose the ability to control ion balance, releasing neurotransmitters that accelerate calcium entry into the cell. Elevated calcium levels in cells trigger numerous degenerative processes that lead to damage to the nervous system and death. These processes include DNA damage, important cellular proteins, and the cell membrane. Free radicals and nitrogen oxide are formed, damaging cellular organelles. Similar processes occur in other organs (liver, muscles, heart, and blood cells). If calcium enters the cell, a large amount of energy is needed to remove it with calcium pumps, which require ATP. Another consequence of hypoxia is the release of hormones from the pituitary gland, with prolactin prevailing in fish. The release of this hormone affects the permeability of the cell membrane in the gills, skin, kidneys, intestines, influencing the ion transport mechanism. Its release helps regulate the balance of water and ions by reducing water intake and retaining important ions, mainly Na+ and Cl-. This helps maintain salt balance in the blood and tissues and prevents fish from swelling with water.
The biggest threat to freshwater fish is the loss of ions through diffusion into the water rather than excretion of excess water. Although water balance regulation may be important, it is secondary to ion retention. Prolactin reduces the osmotic permeability of the gills by retaining ions and excreting water. It also increases mucus secretion in the gills, helping maintain the balance of ions and water by preventing the passage of molecules through the membrane. In fish stressed by capture or vigorous swimming, energy is depleted from the tissues, and it takes several hours to days for its reserves to replenish. Anaerobic energy metabolism cannot fully provide for this, requiring a substantial amount of oxygen. A lack of oxygen leads to fish mortality. However, they may not die immediately. Salt balance cannot be maintained without an adequate supply of oxygen.
The need for oxygen is a critical factor that influences the survival of fish under stress, more so than water temperature or salinity levels. However, water temperature is a key indicator of how much oxygen is available to fish and how quickly they can utilize it. The maximum amount of dissolved oxygen in water is known as the saturation level, and it decreases as the water temperature rises. For example, at a temperature of 20 °C, water is saturated with oxygen at a concentration of 8.9 mg/l, at 26 °C, it’s saturated at 8 mg/l, and at 32 °C, it drops to only 7.3 mg/l. Higher temperatures increase the metabolism of fish, leading to a faster utilization of oxygen. A concentration of oxygen below 5 mg/l at 26 °C can be rapidly lethal.
Air and Oxygen in Water – Can Harm Too
In some cichlid breeding setups, hobbyists often aim for maximum water aeration through powerful air pumps. Some use air intake before the outlet of internal or external filters, while others employ separate air compressors to inject air into the water through air stones with very fine pores. Both aeration methods can create a vast number of microscopic bubbles. The size of oxygen or air bubbles can significantly alter water chemistry, gas exchange efficiency, and the concentration of dissolved gases. Risks to the health and survival of fish arise, especially during transportation in closed containers where air or oxygen is forced into the water under pressure. There’s also a risk with excessive and fine aeration in aquariums. Microscopic gas bubbles can adhere to gills, scales, skin, and eyes, causing trauma and gas embolism. Damaged gills and gas embolism negatively affect fish health and survivability, limiting gas exchange during breathing and leading to hypoxia, CO2 retention, and respiratory acidosis. Pure oxygen is an effective oxidizer. Microscopic bubbles containing pure oxygen can attach to gill filaments, drying them out, irritating them, causing oxidation, and resulting in chemical burns to the delicate epithelial tissue. If the water appears milky with numerous tiny bubbles sticking to scales, gills, or the tank’s inner walls, these conditions should be considered potentially toxic and generally unhealthy for fish. If the action of gas is prolonged and the partial pressure of oxygen hovers around 1 atmosphere (instead of the normal 0.2 atm. in air), the chances of fish survival decrease. Compressed air is suitable if it is continuously supplied within a safe oxygen concentration range. However, the action of compressed air or oxygen supplied under high pressure into the water can cause fish to stop breathing, increasing the concentration of CO2 in their bodies. This can lead to changes in the acid-base balance (respiratory acidosis) in fish, raising mortality. Pure compressed oxygen contains five times more oxygen than air. Therefore, the need for its supply is about 1⁄5 of that for air. Very small oxygen bubbles dissolve faster than larger ones because they have a larger surface area relative to volume. However, each gas bubble needs sufficient space to dissolve in water. If this space is lacking or insufficient, microbubbles may remain in suspension in the water, adhere to surfaces in the water, or slowly rise to the surface.
Microscopic gas bubbles dissolve in water quickly, delivering more gas into the solution than larger bubbles. These conditions can oversaturate water with oxygen if the quantity of gas bubbles creates a “mist” in the water and remains dispersed (in suspension). High-pressure oxygen can be toxic due to the formation of free radicals. Microscopic oxygen bubbles can also cause gas embolism. Arterial gas embolism and tissue emphysema can be real dangers, especially during the transport of live fish. It is necessary to avoid the suspension of gas bubbles in transport water. The problem of arterial gas embolism during transport arises because fish do not have the opportunity to submerge into deeper waters (as fish released into a lake might), where the water pressure is higher, helping to dissolve fine bubbles in the circulatory system. Two key points improve the well-being of a large number of caught and stressed fish during transport:
- Increasing the Partial Pressure of O2 Above Saturation with Compressed Oxygen and Supplying Sufficiently Large Bubbles to Escape the Water Surface. Air mainly consists of nitrogen, and microscopic nitrogen bubbles can also adhere to the gills. Bubbles of any gas attached to the gills can affect breathing and disrupt the health of fish. If fish are transported in water oversaturated with bubbles, there is a likelihood of hypoxia, hypercarbia, respiratory acidosis, diseases, and death.
- Increasing the Salinity of Water to 3 – 5 mg/l. Salt (non-iodized NaCl is sufficient) is suitable for fish transport. In stress, fish lose ions, which can be more stressful for them. The energy required for ion transport through cell membranes can represent a significant loss of energy, requiring even more oxygen. Transporting fish in containers containing a mist of microscopic bubbles can be dangerous for transported fish, increasing the likelihood of delayed mortality after release. Fish transported in water that appears milky and contains microbubbles are stressed, experience physical damage, and have increased susceptibility to infections, illnesses, and post-transport mortality.
After the release of fish that survived the initial toxic effects of oxygen during transport, they may be more sensitive to various pathogens. As a result, increased mortality may occur in the days to weeks following transport. Very aerated water does not mean oxygenated water. Highly aerated water is often oversaturated with gaseous nitrogen, which can cause illness. Microscopic bubbles containing mainly nitrogen can cause tissue emphysema during transport, similar to what happens to divers.
Autor des Beitrags: Róbert Toman
Die positive Wirkung von Sauerstoff auf lebende Organismen ist allgemein bekannt. Fische benötigen Sauerstoff zum Leben ebenso wie landlebende Wirbeltiere, obwohl ihre Atemmechanismen völlig unterschiedlich sind. Da sie keine Lungen haben, muss der Sauerstoff direkt aus dem Wasser in das Blut durch die Gewebe gelangen, die direkt mit dem Wasser in Kontakt stehen, also durch die Kiemen. Der Sauerstoff, der durch die Kiemen in das Blut diffundieren soll, muss natürlich gelöst sein, da Fische nicht in der Lage sind, Sauerstoff in Form von Blasen aufzunehmen. Das Fangen von Fischen, ihr Transport und ihre Haltung in Gefangenschaft stellen erhebliche metabolische Anforderungen an Gehirn, Muskeln, Herz, Kiemen und andere Gewebe. Diese Bedingungen bezeichnen wir allgemein als Stress, aber die physiologische Situation ist viel komplizierter. Stress im Zusammenhang mit dem Fang und dem Freilassen von Fischen in eine andere Umgebung kann zur Mortalität der Fische beitragen. Das Verständnis des Energiestoffwechsels der Fische und der Faktoren, die ihn beeinflussen, ist wichtig für den richtigen Umgang mit Fischen und ihre Pflege nach dem Fang. Vor der Bewertung der mit dem Sauerstoff im Wasser verbundenen Risiken und zum besseren Verständnis dieser Risiken wollen wir kurz die physiologischen Prozesse im Zusammenhang mit der Funktion des Sauerstoffs im Fischorganismus erläutern.
Energie- und Sauerstoffbedarf
Die Energie, die für alle zellulären Funktionen benötigt wird, wird aus Adenosintriphosphat (ATP) gewonnen. Es ist notwendig für Muskelkontraktionen, die Übertragung von Nervenimpulsen im Gehirn, die Herzfunktion, die Sauerstoffaufnahme durch die Kiemen usw. Wenn die Zelle Energie benötigt, wird durch die Spaltung der Bindungen im ATP Energie freigesetzt. Ein Nebenprodukt dieser Reaktion ist Adenosindiphosphat (ADP) und anorganisches Phosphat. In der Zelle können ADP und Phosphat durch komplizierte Stoffwechselprozesse wieder reagieren und ATP wird gebildet. Die meisten Süßwasserfische benötigen eine große Menge an Sauerstoff in ihrer Umgebung. Dieser Sauerstoff wird hauptsächlich als “Treibstoff” für die biochemischen Mechanismen benötigt, die mit den Energieprozessen verbunden sind. Der Energiestoffwechsel, der mit Sauerstoff verbunden ist, ist sehr effizient und gewährleistet eine ständige Energieversorgung, die der Fisch für grundlegende physiologische Funktionen benötigt. Dieser Stoffwechsel wird als aerober Stoffwechsel bezeichnet.
Nicht alle Energieproduktion erfordert Sauerstoff. Die Zellen haben Mechanismen entwickelt, um die Energieversorgung während kurzer Perioden mit niedrigen Sauerstoffkonzentrationen (Hypoxie) aufrechtzuerhalten. Der anaerobe oder hypoxische Energiestoffwechsel ist wenig effizient und nicht in der Lage, genügend Energie für die Gewebe über längere Zeiträume zu produzieren. Fische benötigen eine konstante Energiezufuhr, und dafür benötigen sie eine ständige und ausreichende Menge an Sauerstoff. Ein Sauerstoffmangel entzieht den Fischen schnell die Energie, die sie zum Leben brauchen. Fische sind in der Lage, über lange Strecken ohne Ermüdung in beachtlicher Geschwindigkeit zu schwimmen. Diese Art des Schwimmens nutzen die Fische beim normalen Schwimmen und über lange Strecken. Die Muskeln, die an dieser Bewegung beteiligt sind, benötigen große Mengen an Sauerstoff zur Energieproduktion. Wenn Fische genug Sauerstoff haben, werden sie bei langem Schwimmen nie müde. Schnelles, intensives Schwimmen dauert normalerweise nur wenige Sekunden oder Minuten und endet in einem Zustand körperlicher Erschöpfung. Diese Art des Schwimmens nutzen die Fische bei der Jagd, beim Aufstieg gegen die Strömung oder bei der Flucht. Dieser Bewegungsstil erschöpft die Energiespeicher vollständig. Die Erholung kann Stunden, manchmal sogar Tage dauern, abhängig von der Verfügbarkeit von Sauerstoff, der Dauer des schnellen Schwimmens und dem Grad der Erschöpfung der Energiespeicher. Wenn beispielsweise ein Fisch, der beim Fang völlig erschöpft wurde, in ein anderes Becken gesetzt wird, benötigt er viel Sauerstoff und einen ruhigen Ort, um seine Energiespeicher wieder aufzufüllen. Wenn er jedoch in einen Behälter mit wenig Sauerstoff gesetzt wird, kann er seine Energie nicht wiederherstellen und stirbt früher oder später. Es ist nicht der Sauerstoffmangel, der den Fisch tötet, sondern der Energiemangel und die Unfähigkeit, die Energiespeicher wieder aufzufüllen. Es ist klar, dass dies Bedingungen sind, die Fische extrem stressen.
Faktoren, die die Energiewiederherstellung beeinflussen
Mit dem Verlust der Energiespeicher während des schnellen Schwimmens steigt der Laktatspiegel in den Geweben und im Blut. Da es sich um eine Säure handelt, produziert sie Wasserstoffionen, die den pH-Wert der Gewebe und die Energiezufuhr zur Zelle senken. Außerdem erhöht es die Auswaschung wichtiger Metaboliten aus der Zelle, die für die Energiewiederherstellung notwendig sind. Die Ausscheidung von Laktat und die Wiederherstellung der normalen Zellfunktion kann 4 bis 12 Stunden dauern. Dabei spielen Körpergröße, Wassertemperatur, Wasserhärte und pH-Wert sowie die Verfügbarkeit von Sauerstoff eine wichtige Rolle.
Körpergröße: Es besteht eine positive Korrelation zwischen dem anaeroben Energiestoffwechsel und dem Energiebedarf. Größere Fische benötigen also mehr Energie für schnelles Schwimmen. Dies führt zu einem höheren Energieverbrauch und einer längeren Erholungszeit.
Wassertemperatur: Die Ausscheidung von Laktat und anderen Metaboliten wird stark von der Wassertemperatur beeinflusst. Größere Temperaturänderungen beeinflussen die Fähigkeit der Fische zur Wiederherstellung der Energiespeicher erheblich. Es ist daher wichtig, große Temperaturänderungen zu vermeiden, die die Energieerholungsfähigkeit verringern.
Wasserhärte: Eine Verringerung der Wasserhärte hat einen wichtigen Einfluss auf den Stoffwechsel und das Säure-Basen-Gleichgewicht des Blutes. Die meisten Studien befassen sich mit dem Einfluss auf Meeresarten, und es ist nicht vollständig geklärt, ob diese Ergebnisse auf Süßwasserfische übertragbar sind. Wenn Süßwasserfische gestresst sind, dringt Wasser durch die Zellmembranen, hauptsächlich der Kiemen, und das Blut wird dünner. Diese Blutverdünnung erhöht die Anforderungen an die Aufrechterhaltung des Salzhaushalts im Körper, d.h. die Aufrechterhaltung des osmotischen Gleichgewichts. Mehr dazu erfahren Sie unten.
pH-Wert des Wassers: In einer sauren Umgebung sind die Fische in der Lage, Energie schneller wiederherzustellen. Ein höherer pH-Wert verlangsamt diesen Prozess erheblich, was für Arten, die einen höheren pH-Wert benötigen, wie z.B. afrikanische Cichliden aus den Seen Malawi und Tanganyika, riskant ist.
Regulation des osmotischen Drucks – Aufrechterhaltung des Salzhaushalts bei gestressten Fischen
Die Regulation des Salzgehalts ist lebenswichtig. Struktur und Funktion der Zelle stehen in engem Zusammenhang mit dem Wasser und den darin gelösten Substanzen. Der Fisch verwendet beträchtliche Energie zur Kontrolle der Zusammensetzung der intrazellulären und extrazellulären Flüssigkeiten. Bei Fischen verbraucht diese Osmoregulation etwa 25 – 50% des gesamten metabolischen Aufwands, was wahrscheinlich am höchsten unter den Tieren ist. Der Mechanismus, den Fische zur Aufrechterhaltung des Salzhaushalts nutzen, ist sehr kompliziert und extrem energieabhängig. Da die Effizienz des anaeroben Energiestoffwechsels nur etwa 1⁄10 des Energiestoffwechsels in einer sauerstoffreichen Umgebung beträgt, kann der Energiebedarf für die Osmoregulation der Gewebe nicht allein durch den anaeroben Energiestoffwechsel gedeckt werden. Ein schneller Abfall des ATP-Spiegels in der Zelle verlangsamt bis hin zur Unterbrechung die Funktion der zellulären Ionenpumpen, die den Salztransport durch die Zellmembran regulieren. Die Unterbrechung der Ionenpumpenfunktion führt zu einem Ungleichgewicht der Ionen in der Zelle und birgt das Risiko des Zelltodes und des Todes des Fisches.
Süßwasser- und Meeresfische stehen ständig vor der Notwendigkeit der Ionen- und Osmoregulation. Süßwasserfische, deren Ionenkonzentration in den Geweben viel höher ist als im Wasser, müssen die Aufnahme und den Verlust von Wasser durch die durchlässigen Epithelgewebe und den Urin regulieren. Diese Fische produzieren große Mengen an Urin, der etwa 20% des Körpergewichts pro Tag ausmacht. Die Nieren der Fische sind sehr effizient bei der Entfernung von Wasser aus dem Körper und ebenso effizient bei der Zurückhaltung von Salzen im Körper. Während nur sehr kleine Mengen Salz in den Urin gelangen, erfolgt der Großteil der Osmoregulation durch die Kiemen. Natrium ist das Hauption der Gewebe. Der Transport von Natrium durch die Zellmembran ist stark energieabhängig und wird durch das Enzym Na/K‑ATPase ermöglicht. Dieses Enzym befindet sich in der Zellmembran und nutzt die von ATP bereitgestellte Energie, um Natrium in eine Richtung durch die
Membran zu transportieren und gleichzeitig Kalium in die entgegengesetzte Richtung zu pumpen. Das durch die Spaltung von ATP freigesetzte Phosphat wird direkt auf das Enzym übertragen. Das Phosphorylieren und Dephosphorylieren des Enzyms ermöglicht den Natrium- und Kaliumionen den Transport durch die Zellmembran.
Der Fang und die Haltung von Fischen in einem Behälter erschöpft die Energiespeicher des Fisches, die für die Aufrechterhaltung des Salzhaushalts erforderlich sind. Solche Fische sind anfälliger für Infektionen, da das Immunsystem bei gestressten und erschöpften Fischen ebenfalls beeinträchtigt ist. Aus diesen Gründen ist es wichtig, gefangene Fische in Becken mit ausreichender Sauerstoffversorgung und optimalen Wasserparametern zu halten, um ihre Energiereserven und ihre Gesundheit zu erhalten.
Literatúra
Cech, J.J. Jr., Castleberry, D.T., Hopkins, T.E. 1994. Temperature and CO2 effects on blood O2 equilibria in squawfish, Ptychocheilus oregonensis. In: Can. J. Fish. Aquat. Sci., 51, 1994, 13 – 19.
Cech, J.J. Jr., Castleberry, D.T., Hopkins, T.E., Petersen, J.H. 1994. Northern squawfish, Ptychocheilus oregonensis, O2 consumption and respiration model: effects of temperature and body size. In: Can. J. Fish. Aquat. Sci., 51, 1994, 8 – 12.
Crocker, C.E., Cech, J.J. Jr. 1998. Effects of hypercapnia on blood-gas and acid-base status in the white sturgeon, Acipenser transmontanus. In: J. Comp. Physiol., B168, 1998, 50 – 60.
Crocker, C.E., Cech, J.J. Jr. 1997. Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. In: Env. Biol. Fish., 50, 1997, 383 – 389.
Crocker, C.E., Farrell, A.P., Gamperl, A.K., Cech, J.J. Jr. 2000. Cardiorespiratory responses of white sturgeon to environmental hypercapnia. In: Amer. J. Physiol. Regul. Integr. Comp. Physiol., 279, 2000, 617 – 628.
Ferguson, R.A, Kieffer, J.D., Tufts, B.L. 1993. The effects of body size on the acid-base and metabolic status in the white muscle of rainbow trout before and after exhaustive exercise. In: J. Exp. Biol., 180, 1993, 195 – 207.
Hylland, P., Nilsson, G.E., Johansson, D. 1995. Anoxic brain failure in an ectothermic vertebrate: release of amino acids and K+ in rainbow trout thalamus. In: Am. J. Physiol., 269, 1995, 1077 – 1084.
Kieffer, J.D., Currie, S., Tufts, B.L. 1994. Effects of environmental temperature on the metabolic and acid-base responses on rainbow trout to exhaustive exercise. In: J. Exp. Biol., 194, 1994, 299 – 317.
Krumschnabel, G., Schwarzbaum, P.J., Lisch, J., Biasi, C., Weiser, W. 2000. Oxygen-dependent energetics of anoxia-intolerant hepatocytes. In: J. Mol. Biol., 203, 2000, 951 – 959.
Laiz-Carrion, R., Sangiao-Alvarellos, S., Guzman, J.M., Martin, M.P., Miguez, J.M., Soengas, J.L., Mancera, J.M. 2002. Energy metabolism in fish tissues relaed to osmoregulation and cortisol action: Fish growth and metabolism. Environmental, nutritional and hormonal regulation. In: Fish Physiol. Biochem., 27, 2002, 179 – 188.
MacCormack, T.J., Driedzic, W.R. 2002. Mitochondrial ATP-sensitive K+ channels influence force development and anoxic contractility in a flatfish, yellowtail flounder Limanda ferruginea, but not Atlantic cod Gadus morhua heart. In: J. Exp. Biol., 205, 2002, 1411 – 1418.
Manzon, L.A. 2002. The role of prolactin in fish osmoregulation: a review. In: : Gen. Compar. Endocrin., 125, 2002, 291 – 310.
Milligan, C.L. 1996. Metabolic recovery from exhaustive exercise in rainbow trout: Review. In: Comp. Biochem. Physiol.,113A, 1996, 51 – 60.
Morgan, J.D., Iwama, G.K. 1999. Energy cost of NaCl transport in isolated gills of cutthroat trout. In: Am. J. Physiol., 277, 1999, 631 – 639.
Nilsson, G.E., Perez-Pinzon, M., Dimberg, K., Winberg, S. 1993. Brain sensitivity to anoxia in fish as reflected by changes in extracellular potassium-ion activity. In: Am. J. Physiol., 264, 1993, 250 – 253.
Use Facebook to Comment on this Post
- Vodné rastliny (31.7%)
- Vzduchovanie a kyslík vo vode (27.6%)
- Úprava vody (27.2%)
- Malawi Bloat – choroba afrických cichlíd (24.5%)
- Chemické procesy v akváriu (24.1%)
- Výživa rýb (23.9%)
- Rozmnožovanie rýb a vodných rastlín (23.8%)
- Fyziológia rýb a rastlín (23.4%)
- Choroby rýb a ich liečenie (22.8%)
- Biológia rýb a rastlín (22.4%)