Hits: 39260

Voda – H2O je spo­lu zo sln­kom asi naj­dô­le­ži­tej­šia pod­mien­ka živo­ta. Je to zlú­če­ni­na vodí­ka a kys­lí­ka. Ak v ché­mii povie­me roz­to­ky bez ďal­šie­ho prí­vlas­t­ku, je jas­né že ide o roz­tok vo vode. Voda sa nachá­dza v živých sústa­vách, v tka­ni­vách živo­čí­chov, ple­ti­vách rast­lín, v pro­ka­ry­o­tic­kých orga­niz­moch, v bak­té­riách, v orga­ne­lách buniek. Vo vode vzni­kol aj život, voda dáva pries­tor vzni­ku. Medzi vodí­kom a kys­lí­kom je špe­ci­fic­ká väz­ba, takz­va­ná vodí­ko­vá väz­ba, pre­to­že inak by bola voda za nor­mál­nych fyzi­kál­nych pod­mie­nok pri izbo­vej tep­lo­te plyn. Navy­še voda má tú vlast­nosť, že je „naj­ťaž­šia“ pre tep­lo­te 4°C. Vďa­ka tomu, rie­ky, jaze­rá, poto­ky v zime naza­mŕ­za­jú od dna, čo by malo fatál­ne dôsled­ky. Vodí­ko­vá väz­ba spô­so­bu­je aj ďal­šiu ano­má­liu – pev­né sku­pen­stvo vody je red­šie ako v sta­ve kva­pa­li­ny. To zaprí­či­ňu­je trha­nie fliaš, narú­ša­nie väzieb v bun­kách orga­niz­mov pri tep­lo­tách pod bodom mra­zu. Voda v prí­ro­de však nie je nikdy čis­tá. Vždy obsa­hu­je čosi v sebe. V nej sa roz­púš­ťa mno­ho látok ako som už naz­na­čil vyš­šie. More zamŕ­za pri niž­šej tep­lo­te ako slad­ká voda, pre­to­že obsa­hu­je rela­tív­ne vyš­šie per­cen­to prí­me­sí, naj­mä solí. Prie­mer­ne 3.5%. Bod mra­zu mor­skej vode je oko­lo ‑1.7 °C. Che­mic­ky čis­tá voda je voda ste­ril­ná. Sku­pen­stvá vody takis­to vie snáď kaž­dý pome­no­vať – ľad, voda, vod­ná para.

Voda sa vyzna­ču­je puf­rač­nou schop­nos­ťou v závis­los­ti od roz­pus­te­ných látok v nej. To zna­me­ná, že doká­že pomer­ne účin­ne tlmiť rôz­ne vply­vy. Pre akva­ris­tu je táto vlast­nosť tak­mer vždy výho­dou. Voda má vyš­šiu puf­rač­nú schop­nosť ak je boha­tá na mine­rá­ly. Lát­ky v prí­ro­de sa sko­ro vždy vysky­tu­jú vo for­me iónov – sú teda diso­ci­ova­né. Vo vode obzvlášť. V akej podo­be, závi­sí od veľ­ké­ho množ­stva fak­to­rov. Voda je jed­no­du­cho poklad. My ako akva­ris­ti pou­ží­va­me oby­čaj­ne vodu pit­nú z vodo­vod­nej sie­te. Táto voda je pre akva­ris­ti­ku vhod­ná, ale zďa­le­ka nie ide­ál­na. Úpra­vy, kto­ré vodu zasiah­li počas jej tran­s­por­tu k nám sú naklo­ne­né nezá­vad­nos­ti pre nás ľudí, ako zdroj základ­nej teku­ti­ny na poží­va­nie, ale nie pre život v akvá­riu. Dnes sa už v ove­ľa men­šej mie­re v čis­tič­kách pou­ží­va na dez­in­fek­ciu chlór, ale kaž­do­pád­ne čerstvá voda obsa­hu­je mno­ho ply­nov, kto­ré nie sú žia­du­ce pre naše ryby. Máme dve mož­nos­ti ako sa toho zba­viť – buď príp­rav­ka­mi na to urče­ný­mi z obcho­du, ale­bo odstá­tím. Chlór vypr­chá behom 2 hodín – zále­ží od toho aká veľ­ká je plo­cha hla­di­ny a či je umož­ne­ný jej voľ­ný prie­chod. Ostat­né ply­ny vypr­cha­jú do 2 až 4 dní. Nie­kto­ré dru­hy sú chú­los­ti­vej­šie viac, iné menej, ale­bo prak­tic­ky vôbec. 

Sprá­va­nie rýb nám čas­to napo­vie. Čias­toč­ne pomô­že napúš­ťa­nie vody poma­lým tokom v dlhej hadi­ci. To má napo­kon aj súvis so zvý­še­ním tep­lo­ty napúš­ťa­nej vody. Vhod­nej­šia je voda stu­de­ná ako tep­lá. Ak nemá­me vodu ohrie­va­nú boj­le­rom. Voda vo vodo­vod­nej sie­ti sa jed­no­znač­ne pou­ží­va naj­čas­tej­šie. Keď­že sa táto voda pou­ží­va ako voda pit­ná, moh­li by sme pred­po­kla­dať, že jej para­met­re by mali zod­po­ve­dať požia­dav­kám akva­ris­ti­ky. Veď pred­sa pit­ná voda dodr­žia­va nor­mu, hygie­nic­ké požia­dav­ky. Nie je tomu cel­kom tak, to čo vyho­vu­je nám, nie vždy je ide­ál­ne pre ryby. Vodo­vod­ná voda obsa­hu­je naj­čas­tej­šie tie­to nežia­du­ce zložky:

  • chlór (oby­čaj­ne 0.1 – 0.2 mg/​l) – zabí­ja (dez­in­fi­ku­je) mik­ro­or­ga­niz­my kto­ré tvo­ria dôle­ži­tú časť spo­lo­čen­stva v akváriu,
  • dusič­na­ny – nor­ma dovo­ľu­je veľ­mi vyso­ký obsah z hľa­dis­ka cho­vu nie­kto­rých dru­hov rýb ako sú napr. Trop­he­us, Apis­to­gram­ma, plô­dik Cory­do­ras sterbai,
  • fos­fo­reč­na­ny – spô­so­bu­jú napr. roz­mach siníc,
  • ťaž­ké kovy – naj­mä z potru­bia, v mor­skej akva­ris­ti­ke je ten­to prob­lém veľ­mi vypuklý,
  • flu­ori­dy,
  • ochran­né pros­tried­ky voči hmy­zuškod­com atď. Tie­to zlož­ky je mož­né eli­mi­no­vať napr. selek­tív­ny­mi ion­to­me­nič­mi, pomo­cou reverz­nej osmózy.

Voda z vodo­vo­du ma zvy­čaj­ne pH vyš­šie ako 7.5. Je to kvô­li tomu, aby neroz­púš­ťa­la a nena­lep­tá­va­la potru­bie. Má rôz­nu tvrdo­sť. Jej pres­né hod­no­ty vám ozná­mi prí­sluš­ná vodá­reň (vply­vom potru­bia, jej pre­no­su na ces­te do vašej domác­nos­ti vy sa nema­la prí­liš meniť), ale­bo si ju môže­te zme­rať. V akva­ris­tic­kých obcho­doch je pre ten­to účel dostať kúpiť rôz­ne pro­duk­ty. Ryby jed­not­li­vých oblas­tí sú pris­pô­so­be­né na urči­tú tvrdo­sť. Doká­žu exis­to­vať aj v inej vode, ale mali by sme sa im sna­žiť pris­pô­so­biť. Napr. oblasť Ama­zo­nu vyka­zu­je veľ­mi níz­ku tvrdo­sť, oblasť Mexi­ka naopak pomer­ne vyso­kú tvrdo­sť. IndiaSumat­ra posky­tu­je oby­čaj­ne vodu mäk­kú až stred­ne tvr­dú, naopak afric­ká Tan­ga­ni­ka vodu tvr­d­šiu. Je to ana­ló­giu ku moriam. Aj v nich exis­tu­je diver­zi­ta v obsa­hu solí. Balt­ské more obsa­hu­je iné množ­stvo ako Atlan­tik, a úpl­ne inú ako Mŕt­ve moreVoda hor­ských oblas­tí je oby­čaj­ne mäk­ká – žulo­vý pod­klad jad­ro­vých poho­rí, nížin­ných oblas­tí naopak tvr­d­šia – vyš­ší obsah vápen­cu blíz­kych hor­nín a pôd – sad­rov­ca, tra­ver­tí­nu. Úzko to súvi­sí z geolo­gic­kým pod­lo­žím a pedo­lo­gic­ký­mi pomer­mi. Tvrdo­sť u nás na Slo­ven­sku sa pohy­bu­je od zvy­čaj­ne od 5°N po 35°N.

Nie­kto však má vlast­nú stud­ňu. Táto voda môže byť veľ­mi dob­rá, avšak nechaj­te si rad­šej uro­biť roz­bor.. V prí­pa­de, že nie je pit­ná, zrej­me nebu­de vhod­ná ani pre akva­ris­ti­ku. Ide­ál­na je voda z artéz­skej stud­ne – takých je naozaj málo, posky­tu­jú mäk­kú vodu vyso­kej kva­li­ty. Nemu­sím zdô­raz­ňo­vať, že stud­nič­ná voda je voda bez úprav, tak­že nie je nut­né vodu nechať odstáť, snáď len v prí­pa­de vyš­šie­ho obsa­hu CO2. Ak sa nebo­jí­te expe­ri­men­to­vať, skôr by som pou­žil vodu pochá­dza­jú­cu z pra­me­ňov, resp. z hor­ných oblas­tí hor­ských oblas­tí, ale kaž­do­pád­ne blíz­ko pri pra­me­ni, a tam kde ešte neži­jú ryby. Táto voda je v zása­de veľ­mi vhod­ná, naj­mä v oblas­tiach, kde sú rašeliniská. 

Daž­ďo­vá voda je teore­tic­ky najv­hod­nej­ší zdroj vody. Ale v dneš­nej dobe v stred­nej Euró­pe by som veľ­mi neod­po­rú­čal pou­ží­vať daž­ďo­vú vodu. Zne­čis­ťo­va­nie je takých roz­me­rov, že to čo na nás padá často­krát z neba chu­tí skôr ako cit­rón ako voda. V atmo­sfé­re sa voda aku­mu­lu­je, obsa­hu­je mno­ho nežia­du­cich, až toxic­kých prí­me­sí. Neza­bú­daj­te, že prí­ro­da hra­ni­ce nepoz­ná. V nija­kom prí­pa­de, ak necho­vá­te jazier­ko­vé dru­hy, ale­bo stu­de­no­vod­né, neod­po­rú­čam pou­ží­vať vodu z ryb­ní­kov, poto­kov, riek.

Jeden zo základ­ných para­met­rov vody zau­jí­ma­vých a dôle­ži­tých pre akva­ris­tov je jej tvrdo­sť. Deter­mi­nu­je mož­nos­ti, kto­ré nám posky­tu­je pri úspeš­nom cho­ve, a odcho­ve rýb a pes­to­va­ní rast­lín. Tvrdo­sť urču­je obsah vápe­na­tých a horeč­na­tých solí (Ca + Mg). Defi­ní­cia stá­lej tvrdo­s­ti je urče­ná pre­dov­šet­kým síran­mi – SO42-, chlo­rid­mi – Cl dusič­nan­mi – NO32-Uhli­či­ta­no­vú tvrdo­sť (ozna­čo­va­nej nie­ke­dy aj pre­chod­nej) obsa­hom uhli­či­ta­nov – CO32– a hyd­ro­gé­nuh­li­či­ta­nov – HCO3. Tie­to však môžu byť navia­za­né aj na iné kati­ó­ny ako váp­nik resp. hor­čík – naj­čas­tej­šie na sodík – Na. Cel­ko­vá tvrdo­sť je súč­tom uhli­či­ta­no­vej a stá­lej tvrdo­s­ti. V pra­xi, aj mera­nia mera­jú zvy­čaj­ne cel­ko­vú tvrdo­sť a uhli­či­ta­no­vú tvrdo­sť. Vďa­ka tomu, že hyd­ro­gé­nuh­li­či­ta­ny sa môžu nachá­dzať aj v inej väz­be ako s Ca, Mg, ako to uvá­dzam v pred­chá­dza­jú­com odstav­ci, súčet uhli­či­ta­no­vej a stá­lej tvrdo­s­ti nemu­sí dávať rov­na­kú hod­no­tu ako je cel­ko­vá tvrdo­sť. Aj z toh­to dôvo­du sa čas­to uvá­dza iba tvrdo­sť uhli­či­ta­no­vá, ale­bo ako para­me­ter vody sa uvá­dza jej vodi­vosť. Jed­not­kou tvrdo­s­ti je mg.l-1 – čo sa však tak­mer vždy pre­rá­ta­va pria­mo­ú­mer­ne na dKH a dGH, ale­bo na stup­ne nemec­ké – °N. Akva­ris­ti mera­jú tvrdo­sť zväč­ša pomo­cou komerč­ne pre­dá­va­ných pro­duk­tov, kto­ré sú zalo­že­né na tit­rá­cii. Dochá­dza pri­tom ku zme­ne far­by roz­to­ku pomo­cou orga­nic­ké­ho far­bi­va, napr. mety­lo­ran­že, metyl­čer­ve­ne. Meria sa pomo­cou kva­piek – kto­ré pred­sta­vu­jú napr. 1 °N. Oso­bit­ne uhli­či­ta­no­vá a cel­ko­vá tvrdo­sť. Pre­poč­ty tvrdosti:

  • dKH – uhli­či­ta­no­vá tvrdosť
  • dNKH – stá­la tvrdosť
  • dGH – cel­ko­vá tvrdo­sť; 1°dGH = 10 mg/​l CaO ale­bo 14 mg MgO = 7.143 mg/​l Ca = 17.8575 mg/​l CaCO= 0.179 mol/​l CaCO3, inak 1 mmol/​l = 56.08 mg CaO/​l

Ioni­zá­cia – vodi­vosť – mine­ra­li­zá­cia Na diver­zi­fi­ko­va­nej­šiu kva­li­tu jed­not­li­vých prv­kov by som chcel nad­via­zať v tej­to čas­ti. Tvrdo­sť totiž vyjad­ru­je len to čo jej posky­tu­je defi­ní­cia. Avšak rea­li­ta nie je taká čier­no­bie­la. Voda v prí­ro­de, a aj vo vašom akvá­riu obsa­hu­je aj iné prv­ky, kto­ré sú hod­né pozor­nos­ti. Nej­de len o Ca a Mg. Je tu aj P, Na, K, Fe, S, orga­nic­ké che­lá­ty, humí­no­vé kyse­li­ny, atď. Nie­kto­ré z nich sa dajú merať – špe­ci­fi­ko­vať vodi­vos­ťou. Je to kom­plex­nej­šie vyjad­re­nie rea­li­ty ako v prí­pa­de mera­nia tvrdo­s­ti. Názor­ným prí­kla­dom roz­die­lom medzi tvrdo­s­ťou a vodi­vos­ťou je voda rie­ky Ama­zon. Táto obsa­hu­je len sto­po­vé množ­stvá Ca a Mg, pri­čom obsa­hu­je pomer­ne veľa iónov. Čiže aj keď je to voda prak­tic­ky nulo­vej tvrdo­s­ti, nej­de ani zďa­le­ka o vodu demi­ne­ra­li­zo­va­nú. Pre­to je chy­ba ak pre urči­tý druh pri­pra­ví­me vodu nulo­vej tvrdo­s­ti, kto­rá neob­sa­hu­je žiad­ne ióny – napr. des­ti­lá­ci­ou. Taká­to voda je prak­tic­ky ste­ril­ná. Aj ioni­zá­ciu vie­me upra­viť. Naše ryby sú nie­ke­dy vysta­ve­né šoku, kto­rý by sa dal popí­sať aj zme­nou vodi­vos­ti. Ak napr. vymie­ňa­me väč­šie množ­stvo vody – vte­dy môže dôjsť za urči­tých okol­nos­tí dôjsť ku výraz­nej­šie­mu pokle­su ale­bo k náras­tu kon­cen­trá­cie látok vo for­me iónov. Ale­bo ak napr. apli­ku­je­me NaCl – môže dôjsť až ku lep­ta­niu pokož­ky rýb – naru­še­niu sli­zo­vi­té­ho ochran­né­ho povla­ku rýb. Nie­ke­dy je to žia­du­ce, napr. je na tom zalo­že­ný lie­čeb­ný postup tzv. soľ­né­ho kúpe­ľu

Vodi­vosť je udá­va­ná v µS – mik­ro­sie­men­soch, je mera­teľ­ná kon­duk­to­me­rom. Slo­vo vodi­vosť nám hovo­rí že ide o vyjad­re­nie obsa­hu iónov. Syno­ny­mom je v tej­to súvis­los­ti aj slo­vo mine­ra­li­zá­cia, aj keď do dôsled­kov vyjad­ru­jú tie­to tri ter­mí­ny rôz­ne veci. Voda sama o sebe vyka­zu­je diso­ciá­ciu na ióny – H3Oa OH, opi­su­je to diso­ciač­ná kon­štan­ta – jav sa nazý­va pro­to­lý­za vody – vďa­ka nemu je che­mic­ky čis­tá voda elek­tric­kým vodi­čom. Avšak voda v prí­ro­de obsa­hu­je množ­stvo iónov, čím sa jej elek­tric­ké vlast­nos­ti dosť zme­nia. Na to sú mimo­cho­dom cit­li­vé naj­mä orga­niz­my žijú­ce vo vode, teda aj ryby. Roz­diel medzi obsa­hom mine­rá­lov a iónov sa dá vysvet­liť elek­tric­ký­mi vlast­nos­ťa­mi súčas­tí. Mine­rá­ly sú totiž aj vo for­me neut­rál­nej roz­pus­te­né vo vode, síce men­šie množ­stvo, ale pred­sa. Väč­ši­na zlo­žiek živých sústav vôbec a čas­to aj v prí­rod­ných sub­strá­toch diso­ci­ova­ná na iónypH – pon­dus hyd­ro­ge­nii pH je para­me­ter, kto­rý je defi­no­va­ný ako zápor­ný deka­dic­ký loga­rit­mus kon­cen­trá­cie vodí­ko­vej H3O+. Pohy­bu­je sa v inter­va­le 0 – 14. Jeho vyjad­re­nie je loga­rit­mic­ké, na čo je tre­ba brať zre­teľ – voda s pH 6 a pH 8 je voda dia­met­rál­ne roz­diel­na. Kon­cen­trá­cia zása­di­tej sku­pi­ny OH je v loga­rit­mic­kom vyjad­re­ní dopl­n­kom do čís­la 14, čiže ak má voda pH 6, kon­cen­trá­cia H3Oje 10-6 mol​.dm-3 a OH ja 10-8 mol.m-3. Ak má voda pH 7 hovo­rí­me, že je to voda neut­rál­na, pH pod 7 je voda kys­lá, nad 7 je voda zása­di­tá (alka­lic­ká). pH 8 napr. zna­me­ná, že voda o tep­lo­te 25 °C má kon­cen­trá­ciu H3O10-8 mol​.dm-3 a OH 10-6 mol.m-3.

Väč­ši­na rýb potre­bu­je vodu kys­lú, pH sa pohy­bu­je v inter­va­le od 6.2 do 6.8. No sú dru­hy, kto­rým sa darí a nor­mál­ne sa roz­mno­žu­jú pri pH 5, ale­bo naopak nad pH 8. Z pH úzko súvi­sí aj kon­cen­trá­cia amo­nia­ku, cyk­lus dusí­ka. Pri vyso­kom ph je amo­niak vo vode vo for­me ove­ľa nebez­peč­nej­šej ako v kys­lom pro­stre­dí. pH stú­pa v noci vply­vom dýcha­nia rast­lín. pH kolí­še naj­mä v mäk­kých vodách, kde je puf­rač­ná schop­nosť vody niž­šia. Hod­no­ta pH úzko súvi­sí aj s foto­syn­té­zou dýcha­ním vod­ných rast­lín. To má na sve­do­mí kolí­sa­nie hla­di­ny COvo vode – rast­li­ny via­žu COa tie­to zme­ny majú za násle­dok kolí­sa­nie pH počas dňa, resp. kolí­sa­nie v závis­los­ti od dostup­né­ho svet­la, keď­že máme na mys­li pod­mien­ky v akvá­riu a nie v prírode. 

Oxid uhli­či­tý vplý­va na pH – pri reak­cii s H2O vzni­ká sla­bá kyse­li­na uhli­či­tá – H2CO3, ale­bo naopak sa kyse­li­na diso­ciu­je v zása­di­tom pro­stre­dí. Cyk­lus kyse­li­ny uhli­či­tej je veľ­mi zná­my v bio­ló­gii a pat­rí ku základ­ným pro­ce­som živo­ta. Je to ukáž­ka puf­rač­nej schop­nos­ti. Toto kolí­sa­nie sa vyzna­ču­je pomer­ne veľ­kou ampli­tú­dou, zme­na závi­sí od puf­rač­nej schop­nos­ti vody – prak­tic­ky čím je vode viac mine­rá­lov a látok schop­ných via­zať CO2 – čím je vyš­šia vodi­vosť, tým men­šie kolí­sa­nie. Hla­di­na COje počas dňa (dostat­ku svet­la) niž­šia ako počas noci (nedos­tat­ku svet­la) – pH je v cez deň vyš­šie (alka­lic­ká fáza) ako v noci (kys­lej­šia fáza). Podob­né cyk­ly sú aj počas roč­ných obdo­bí – v lete dochá­dza pri inten­zív­nom ras­te ku nedos­tat­ku CO2 a tým ku zvý­še­niu hla­di­ny pH – tie­to zme­ny sú však pozo­ro­va­teľ­né skôr v prírode.

pH sa meria buď elek­tro­nic­ky, ale­bo pomo­cou reak­cie vo fareb­nej šká­le, čo je samoz­rej­me ove­ľa lac­nej­ší, avšak nepres­nej­ší nástroj – tit­rá­ci­ou. Obsah CO2 – oxi­du uhli­či­té­ho je závis­lý naj­mä od obsa­hu Ca a Mg – od tvrdo­s­ti vody a od pH vody, od kyse­li­ny uhli­či­tej a teda aj od puf­rač­nej schop­nos­ti vody. Súhr­n­ne môžem pove­dať, že závi­sí od bio­che­mic­kých vlast­nos­tí vody. Obsah CO2 je naj­mä pre rast rast­lín. Za nor­mál­nych okol­nos­tí totiž obsah oxi­du uhli­či­té­ho nie je tak vyso­ký, aby ohro­zo­val život rýb. Výnim­kou môže byť pou­ži­tie vody z mine­rál­nych pra­me­ňov prí­pad­ne z neove­re­nej stud­ne, z mine­rál­ky, ale­bo apli­ká­cia CO2. Hla­di­na CO2 stú­pa s množ­stvom uhli­či­ta­nov – s alka­li­tou vody a kle­sá s tep­lo­tou vody. V prí­ro­de – kde samoz­rej­me nie je che­mic­ky čis­tá voda – dochá­dza naj­mä v hlbo­kých jaze­rách a v sto­ja­tých vodách so sla­bým prú­de­ním k javu, kedy od urči­tej hĺb­ky je vode voľ­ný kys­lík (O2) vo veľ­kom defi­ci­te – to je pre ryby a pre vyš­šie rast­li­ny mŕt­va zóna. Ak sa obme­dzím na obsah kys­lí­ka v čis­tej vode, tak jeho kon­cen­trá­cia je závis­lá od tla­ku a tep­lo­ty. Keď­že pred­po­kla­dám, že tlak sa v akva­ris­tic­kej pra­xi veľ­mi neme­ní, osta­ne pre nás zau­jí­ma­vá len tep­lo­ta.

V závis­los­ti od tep­lo­ty je kon­cen­trá­cia kys­lí­ka vo vode v nepria­mej úme­re. Čím je voda tep­lej­šia, tým menej je v nej obsia­hnu­tý aj voľ­ný kys­lík. Mož­no ste si to už aj nie­ke­dy všim­li, že ryby vám počas horú­cich let­ných dní naj­mä v men­ších nádr­žiach zača­li pri zvý­še­ných tep­lo­tách stú­pať vyš­šie k hla­di­ne a rých­lej­šie dýchať. Nemož­no to však zjed­no­du­šo­vať, pre­to­že ak naozaj je v akvá­riu defi­cit kys­lí­ka, prí­či­nou nemu­sí a čas­to ani nie je len zvý­še­ná tep­lo­ta – prí­či­nu tre­ba hľa­dať inde. Skôr vo zvý­še­nom meta­bo­liz­me. Dochá­dza ku vyš­šej spot­re­be kys­lí­ka roz­klad­ný­mi pro­ces­mi. Ale aj vďa­ka sla­bej, resp. neúčin­nou fil­trá­cii. Čis­tá voda o tep­lo­te 0°C obsa­hu­je 14.16 mg kys­lí­ka, pri tep­lo­te 30°C tak­mer iba polo­vič­ku – 7.53 mg.

Z hľa­dis­ka meta­bo­liz­mu naj­mä rast­lín je žele­zo – Fe veľ­mi potreb­né. Jeho obsah závi­sí od oxi­dač­nej schop­nos­ti, od redox­né­ho poten­ciá­lu. Fe veľ­mi rých­lo doká­že oxi­do­vať na rast­li­nám neprí­stup­nú for­mu. Pla­tí to, čo som spo­mí­nal v úvo­de. Žele­zo je v akvá­riu, ale v akej for­me závi­sí od toho, či a kde je via­za­né. Exis­tu­jú aj pre potre­by akva­ris­tu tes­ty obsa­hu Fe zalo­že­né na podob­nom prin­cí­pe ako tes­ty na pH.

Use Facebook to Comment on this Post