Akvaristika, Biológia, Biológia, Organizmy, Príroda, Rastliny

Vodné rastliny

Hits: 51407

Vod­né rast­li­ny sa líšia od sucho­zem­ských rast­lín, sú adap­to­va­né na pro­stre­die pod vodou. Lis­ty vod­ných rast­lín majú prie­du­chy aj na vrch­nej, aj na spod­nej stra­ne – tak­po­ve­diac dýcha­jú obo­ma stra­na­mi” na roz­diel od sucho­zem­ských rast­lín. Povrch sucho­zem­ských rast­lín tvo­rí kuti­ku­la, u rast­lín vod­ných tak­mer u všet­kých dru­hov chý­ba. Prav­de­po­dob­ne by naj­mä brá­ni­la difú­zii ply­nov. Plá­va­jú­ce rast­li­ny oby­čaj­ne neza­ko­re­ňu­jú, ani tie, kto­ré žijú na hla­di­ne. Kore­ne sú čo do tva­ru obdob­né ako pri sucho­zem­ských dru­hoch. Do dôsled­kov nemož­no brať za kaž­dých okol­nos­tí vodu ako bari­é­ru, pre­to­že sú vod­né rast­li­ny, kto­ré aj v pri­ro­dze­ných pod­mien­kach vyras­ta­jú nad hla­di­nu, resp. ras­tú v moča­ri­nách s níz­kou hla­di­nou vody vo veľ­kom vlh­ku. Aj v akva­ris­ti­ke sa zau­ží­val pojem sub­merz­ná for­ma a emerz­ná for­ma rast­li­ny. Sub­merz­ná for­ma ras­tie pod hla­di­nou vody, emerz­ná for­ma nad hla­di­nou. Jed­not­li­vé for­my sa čas­to líšia, okrem iné­ho tva­rom, aj far­bou. V pra­xi je v drvi­vej väč­ši­ne pou­ží­va­né nepo­hlav­né roz­mno­žo­va­nie rast­lín – odrez­ka­mi, pop­laz­mi, výhon­ka­mi apod. Sub­merz­ná for­ma môže aj v akvá­riu vyrásť do emerz­nej for­my – čas­to napr. Echi­no­do­rus. Ak je nádrž pre rast­li­nu prí­liš níz­ka, čas­to si náj­de ces­tu von. Avšak aj vod­ná rast­li­na kvit­ne a čas­to veľ­mi podob­ne ako sucho­zem­ské dru­hy. Kvet tvo­rí nie­ke­dy pod hla­di­nou, čas­tej­šie nad jej povr­chom. Pohlav­né mno­že­nie rast­lín nie je vylú­če­né, ale je prob­le­ma­tic­ké a je skôr prá­cou pre špe­cia­lis­tu. Vod­né rast­li­ny sú väč­ši­nou zele­né, nie­ke­dy čer­ve­né, fia­lo­vé, hne­do­čer­ve­né. Exis­tu­je množ­stvo dru­hov vod­ných rastlín.


Aqu­atic plants dif­fer from ter­res­trial plants; they are adap­ted to the under­wa­ter envi­ron­ment. The lea­ves of aqu­atic plants have sto­ma­ta on both the upper and lower sur­fa­ces – they bre­at­he through both sides,” unli­ke ter­res­trial plants. The sur­fa­ce of ter­res­trial plants is cove­red with a cutic­le, which is almost absent in almost all spe­cies of aqu­atic plants. It would like­ly hin­der gas dif­fu­si­on. Flo­ating plants usu­al­ly do not root, even tho­se that live on the water sur­fa­ce. The roots are simi­lar in sha­pe to tho­se of ter­res­trial spe­cies. The con­se­qu­en­ces can­not alwa­ys be taken as a bar­rier, as the­re are aqu­atic plants that grow abo­ve the water sur­fa­ce in natu­ral con­di­ti­ons or grow in mars­hes with low water levels but high humi­di­ty. In aqu­ariums, the terms sub­mer­ged form and emer­ged form of plants are com­mon. The sub­mer­ged form gro­ws under­wa­ter, whi­le the emer­ged form gro­ws abo­ve the water. The indi­vi­du­al forms often dif­fer in sha­pe and color. In prac­ti­ce, vege­ta­ti­ve pro­pa­ga­ti­on of plants is wide­ly used – by cut­tings, run­ners, sho­ots, etc. The sub­mer­ged form can grow into the emer­ged form in an aqu­arium – often seen in plants like Echi­no­do­rus. If the tank is too low for the plant, it often finds its way out. Howe­ver, aqu­atic plants also blo­om, often very simi­lar to ter­res­trial spe­cies. The flo­wer some­ti­mes forms below the water sur­fa­ce, more often abo­ve it. Sexu­al repro­duc­ti­on of plants is not exc­lu­ded but is prob­le­ma­tic and is rat­her a task for a spe­cia­list. Aqu­atic plants are most­ly gre­en, some­ti­mes red, purp­le, or reddish-​brown. The­re are nume­rous spe­cies of aqu­atic plants.


Was­serpf­lan­zen unters­che­i­den sich von Landpf­lan­zen; sie sind an die Unter­was­se­rum­ge­bung ange­passt. Die Blät­ter von Was­serpf­lan­zen haben Sto­ma­ta auf sowohl der obe­ren als auch der unte­ren Oberf­lä­che – sie atmen durch bei­de Sei­ten”, im Gegen­satz zu Landpf­lan­zen. Die Oberf­lä­che von Landpf­lan­zen ist mit einer Cuti­cu­la bedec­kt, die bei fast allen Arten von Was­serpf­lan­zen fast nicht vor­han­den ist. Sie wür­de wahrs­che­in­lich die Gas­dif­fu­si­on behin­dern. Sch­wim­men­de Pflan­zen wur­zeln nor­ma­ler­we­i­se nicht, auch nicht die­je­ni­gen, die auf der Was­se­ro­berf­lä­che leben. Die Wur­zeln ähneln in ihrer Form denen ter­res­tris­cher Arten. Die Kon­se­qu­en­zen kön­nen nicht immer als Bar­rie­ren ange­se­hen wer­den, da es Was­serpf­lan­zen gibt, die in natür­li­chen Bedin­gun­gen über der Was­se­ro­berf­lä­che wach­sen oder in Sümp­fen mit nied­ri­gem Was­sers­tand, aber hoher Luft­fe­uch­tig­ke­it wach­sen. In Aqu­arien sind die Beg­rif­fe sub­mer­se Form” und emer­se Form” von Pflan­zen verb­re­i­tet. Die sub­mer­se Form wächst unter Was­ser, wäh­rend die emer­se Form über dem Was­ser wächst. Die ein­zel­nen For­men unters­che­i­den sich oft in Form und Far­be. In der Pra­xis wird die vege­ta­ti­ve Ver­meh­rung von Pflan­zen weit verb­re­i­tet – durch Steck­lin­ge, Aus­lä­u­fer, Trie­be usw. Die sub­mer­se Form kann sich in die emer­se Form in einem Aqu­arium ent­wic­keln – oft bei Pflan­zen wie Echi­no­do­rus zu beobach­ten. Wenn das Bec­ken für die Pflan­ze zu nied­rig ist, fin­det sie oft einen Weg nach drau­ßen. Was­serpf­lan­zen blühen auch, oft sehr ähn­lich wie ter­res­tris­che Arten. Die Blu­me bil­det sich manch­mal unter der Was­se­ro­berf­lä­che, häu­fi­ger darüber. Die sexu­el­le Ver­meh­rung von Pflan­zen ist nicht aus­gesch­los­sen, aber prob­le­ma­tisch und eher eine Auf­ga­be für einen Spe­zia­lis­ten. Was­serpf­lan­zen sind meis­tens grün, manch­mal rot, lila oder rötlich-​braun. Es gibt zahl­re­i­che Arten von Wasserpflanzen.


Svet­lo je dôle­ži­tým fak­to­rom pre rast­li­ny – sú dru­hy tie­ňo­mil­né, napr. Mic­ro­so­rium, Vesi­cu­la­ria, dru­hy svet­lo­mil­né, napr. Sal­vi­nia, Pis­tia. Roz­die­ly sú aj v otáz­ke opti­mál­nej tep­lo­ty. Sú dru­hy, kto­ré pri rela­tív­ne malom roz­die­ly tep­lo­ty ras­tú evi­den­tne inak. Lis­ty sú hus­tej­šie pri sebe v chlad­nej­šej vode, far­ba lis­tov je tmav­šia apod. Väč­ši­na vod­ných akvá­ri­ových rast­lín má pomer­ne úzky roz­sah tep­lo­ty, v kto­rej žijú. Nie­kto­ré akvá­ri­ové dru­hy zne­sú naozaj veľ­mi níz­ke tep­lo­ty, podob­né už aj našim stu­de­no­vod­ným prí­rod­ným pod­mien­kam mier­ne­ho pás­ma. Na rast­li­ny takis­to vplý­va prú­de­nie vody. Nie­kto­ré dru­hy sú sta­va­né na sto­ja­té vody, nie­kto­ré na rých­lo tečú­ce toky. V akvá­riu je zdro­jom prú­dov vody naj­mä fil­ter a vzdu­cho­va­nie. Prú­de­nie vody znač­ne ovplyv­ňu­je deko­rá­cia, svo­ju úlo­hu zohrá­va aj sklon, reli­éf dna. Rov­né dno dáva vznik sil­nej­šie­mu prú­de­niu. Na rast­li­ny veľ­mi nebla­ho vplý­va­jú lie­či­vá pou­ží­va­né v akva­ris­ti­ke. Ich nega­tív­ny úči­nok je bohu­žiaľ dlho­do­bý. Ak máme mož­nosť, pre­saď­me aspoň časť rast­lín do inej nádr­že počas lieč­by. Aj to je dôvod na zria­de­nie samos­tat­nej karan­tén­nej nádr­že. Po pou­ži­tí lie­čiv je mož­né pou­žiť aktív­ne uhlie. Rast­li­ny akva­ris­ti pre­sá­dza­jú. naj­čas­tej­šie k tomu dochá­dza pri vege­ta­tív­nom rozmnožovaní.


Light is an impor­tant fac­tor for plants – the­re are shade-​tolerant spe­cies, for exam­ple, Mic­ro­so­rium, Vesi­cu­la­ria, and light-​loving spe­cies, for exam­ple, Sal­vi­nia, Pis­tia. Dif­fe­ren­ces also exist in terms of the opti­mal tem­pe­ra­tu­re. The­re are spe­cies that cle­ar­ly grow dif­fe­ren­tly with rela­ti­ve­ly small tem­pe­ra­tu­re dif­fe­ren­ces. Lea­ves are den­ser toget­her in cooler water, and the color of the lea­ves is dar­ker, etc. Most aqu­atic aqu­arium plants have a rela­ti­ve­ly nar­row tem­pe­ra­tu­re ran­ge in which they live. Some aqu­arium spe­cies can tole­ra­te very low tem­pe­ra­tu­res, simi­lar to the cold-​water con­di­ti­ons of our tem­pe­ra­te zone. Water flow also affects plants. Some spe­cies are adap­ted to stag­nant water, whi­le others pre­fer fast-​flowing stre­ams. In the aqu­arium, the main sour­ces of water flow are the fil­ter and aera­ti­on. Water flow sig­ni­fi­can­tly influ­en­ces deco­ra­ti­on, and the slo­pe and relief of the bot­tom also play a role. A flat bot­tom cre­a­tes stron­ger cur­rents. Medi­ca­ti­ons used in aqu­aris­tics have a very nega­ti­ve effect on plants, unfor­tu­na­te­ly, the­ir nega­ti­ve impact is long-​lasting. If possib­le, trans­p­lant at least some of the plants to anot­her tank during tre­at­ment. This is also a rea­son to set up a sepa­ra­te quaran­ti­ne tank. After using medi­ca­ti­ons, acti­va­ted car­bon can be used. Aqu­arium ent­hu­siasts often trans­p­lant plants, usu­al­ly during vege­ta­ti­ve propagation.


Licht ist ein wich­ti­ger Fak­tor für Pflan­zen – es gibt schat­ten­lie­ben­de Arten wie Mic­ro­so­rium, Vesi­cu­la­ria und licht­lie­ben­de Arten wie Sal­vi­nia, Pis­tia. Es gibt auch Unters­chie­de hin­sicht­lich der opti­ma­len Tem­pe­ra­tur. Es gibt Arten, die sich bei rela­tiv gerin­gen Tem­pe­ra­tu­run­ters­chie­den deut­lich anders ent­wic­keln. Blät­ter sind dich­ter beie­i­nan­der in küh­le­rem Was­ser, die Far­be der Blät­ter ist dunk­ler usw. Die meis­ten Was­serpf­lan­zen im Aqu­arium haben einen rela­tiv engen Tem­pe­ra­tur­be­re­ich, in dem sie leben. Eini­ge Aqu­arie­nar­ten kön­nen sehr nied­ri­ge Tem­pe­ra­tu­ren tole­rie­ren, ähn­lich wie die Kalt­was­ser­be­din­gun­gen unse­rer gemä­ßig­ten Zone. Auch der Was­serf­luss bee­in­flusst Pflan­zen. Eini­ge Arten sind an ste­hen­des Was­ser ange­passt, wäh­rend ande­re schnell flie­ßen­de Ströme bevor­zu­gen. Im Aqu­arium sind die Haup­tqu­el­len für Was­sers­trömung der Fil­ter und die Belüf­tung. Die Was­sers­trömung bee­in­flusst die Deko­ra­ti­on erheb­lich, und die Neigung und das Relief des Bodens spie­len eben­falls eine Rol­le. Ein fla­cher Boden erze­ugt stär­ke­re Strömun­gen. Medi­ka­men­te, die in der Aqu­aris­tik ver­wen­det wer­den, haben lei­der einen sehr nega­ti­ven Ein­fluss auf Pflan­zen, und ihr nega­ti­ver Ein­fluss ist lei­der lan­gan­hal­tend. Wenn mög­lich, verpf­lan­zen Sie wäh­rend der Behand­lung zumin­dest eini­ge Pflan­zen in ein ande­res Bec­ken. Dies ist auch ein Grund für die Ein­rich­tung eines sepa­ra­ten Quaran­tä­ne­bec­kens. Nach der Anwen­dung von Medi­ka­men­ten kann Aktiv­koh­le ver­wen­det wer­den. Aqu­aria­ner trans­p­lan­tie­ren Pflan­zen oft, meist wäh­rend der vege­ta­ti­ven Vermehrung.


Väč­šie mater­ské rast­liny neod­po­rú­čam čas­to pre­sá­dzať. Rast­li­ny môžu byť aj zdro­jom potra­vy pre ryby, sli­má­ky apod., čo je však väč­ši­nou nežia­du­ce. Čas­to sa na eli­mi­ná­ciu rias pou­ží­va­jú mla­dé prí­sav­ní­ky. Pokiaľ sú malé svo­ju úlo­hu plnia poc­ti­vo, no väč­šie sa rad­šej pus­tia do rast­lín. Sli­má­ky doká­žu takis­to požie­rať ria­sy, naj­mä ak majú nedos­ta­tok inej potra­vy, vedia sa však pus­tiť aj do rast­lín. Naj­roz­ší­re­nej­šie ampu­lá­rie rast­li­ny neže­rú. V akvá­riu svie­ti­me ume­lým svet­lom, dĺž­ka osvet­le­nia by mala byť taká ako v ich domo­vi­ne. Dôle­ži­té rov­na­ko je dodr­žia­vať pra­vi­del­nosť, 12 – 14 hodi­no­vý inter­val je nut­ný. Závi­sí od umiest­ne­nia, od toho či sme v tma­vej miest­nos­ti, aká je dĺž­ka den­né­ho svet­la a koľ­ko ho sln­ko posky­tu­je. Den­né svet­lo má inú kva­li­tu ako ume­lé svet­lo, dá sa mu iba pris­pô­so­biť. Dru­hy sú pris­pô­so­be­né rôz­ne­mu pro­stre­diu. Vod­né rast­li­ny, napo­kon rov­na­ko ako aj ich sucho­zem­ské prí­buz­né menia svoj meta­bo­liz­mus v závis­los­ti od strie­da­nia dňa a noci. Je to ich vlast­ný pri­ro­dze­ný bio­ryt­mus. Rast­li­ny cez deň pri­jí­ma­jú svet­lo, CO2, tvo­ria orga­nic­kú hmo­tu a ako ved­ľaj­ší pro­dukt tvo­ria kys­lík. Tej­to reak­cii vra­ví­me foto­syn­té­za.


I don’t recom­mend trans­p­lan­ting lar­ger mot­her plants fre­qu­en­tly. Plants can also be a sour­ce of food for fish, snails, etc., which is usu­al­ly unde­si­rab­le. Young suc­ti­on snails are often used to eli­mi­na­te algae. If they are small, they do the­ir job dili­gen­tly, but lar­ger ones tend to go after the plants ins­te­ad. Snails can also con­su­me algae, espe­cial­ly if they lack other food, but they can also tar­get plants. The most com­mon app­le snails do not eat plants. In the aqu­arium, we use arti­fi­cial light, and the length of illu­mi­na­ti­on should be simi­lar to the­ir natu­ral habi­tat. It’s equ­al­ly impor­tant to main­tain regu­la­ri­ty; a 12 – 14 hour inter­val is neces­sa­ry. It depends on the pla­ce­ment, whet­her we are in a dark room, the length of day­light, and how much sun­light is avai­lab­le. Natu­ral light has a dif­fe­rent quali­ty than arti­fi­cial light; it can only be adap­ted to. Spe­cies are adap­ted to dif­fe­rent envi­ron­ments. Water plants, just like the­ir ter­res­trial rela­ti­ves, chan­ge the­ir meta­bo­lism depen­ding on the alter­na­ti­on of day and night. It’s the­ir own natu­ral bio­r­hythm. During the day, plants absorb light, CO2, pro­du­ce orga­nic mat­ter, and as a by-​product, pro­du­ce oxy­gen. This pro­cess is cal­led photosynthesis.


Größe­re Mut­terpf­lan­zen soll­te man nicht häu­fig umset­zen. Pflan­zen kön­nen auch eine Nahrung­squ­el­le für Fis­che, Schnec­ken usw. sein, was jedoch in der Regel uner­wün­scht ist. Jun­ge Saug­schnec­ken wer­den oft zur Bese­i­ti­gung von Algen ein­ge­setzt. Wenn sie kle­in sind, erle­di­gen sie ihre Auf­ga­be gewis­sen­haft, aber größe­re gehen lie­ber an die Pflan­zen. Schnec­ken kön­nen auch Algen fres­sen, beson­ders wenn ihnen ande­re Nahrung fehlt, aber sie kön­nen auch Pflan­zen angre­i­fen. Die am wei­tes­ten verb­re­i­te­ten Apfel­schnec­ken fres­sen kei­ne Pflan­zen. Im Aqu­arium ver­wen­den wir künst­li­ches Licht, und die Bele­uch­tungs­dau­er soll­te ähn­lich wie in ihrem natür­li­chen Lebens­raum sein. Es ist eben­so wich­tig, die Regel­mä­ßig­ke­it ein­zu­hal­ten; ein Inter­vall von 12 – 14 Stun­den ist not­wen­dig. Es hängt von der Plat­zie­rung ab, ob wir uns in einem dunk­len Raum befin­den, wie lang das Tages­licht ist und wie viel Son­nen­licht ver­füg­bar ist. Natür­li­ches Licht hat eine ande­re Quali­tät als künst­li­ches Licht; es kann nur ange­passt wer­den. Arten sind an vers­chie­de­ne Umge­bun­gen ange­passt. Was­serpf­lan­zen ändern eben­so wie ihre ter­res­tris­chen Ver­wand­ten ihren Stof­fwech­sel je nach Wech­sel von Tag und Nacht. Es ist ihr eige­ner natür­li­cher Bio­r­hyth­mus. Tag­süber neh­men Pflan­zen Licht, CO2 auf, pro­du­zie­ren orga­nis­che Sub­stanz und pro­du­zie­ren als Neben­pro­dukt Sau­ers­toff. Die­ser Pro­zess wird Pho­to­synt­he­se genannt.


V noci naopak rast­li­ny kys­lík pri­jí­ma­jú – rast­li­ny dýcha­jú a vylu­ču­jú do vody CO2. Rast­li­ny však dýcha­jú aj cez deň, pre­vlá­da však prí­jem CO2. Vply­vom dýcha­nia rast­lín v noci – pro­duk­cie CO2 sa pH v akvá­riu zvy­šu­je. Kon­cen­trá­cia CO2 stú­pa s tvrdo­s­ťou vody, tep­lo­tou vody a kle­sá s pH. Medzi základ­né fun­kcie rast­lín pat­rí mine­ra­li­zá­cia hmo­ty. Det­rit je usa­de­ná vrstva odpa­du, výka­lov rýb, sli­má­kov apod., kto­ré je nut­né roz­lo­žiť. Ten­to pro­ces, kto­rý usku­toč­ňu­jú mik­ro­or­ga­niz­my, naj­mä bak­té­rie. Rast­li­ny hra­jú pri­tom dôle­ži­tú úlo­hu, pre­to­že nie­kto­ré lát­ky doká­žu odbú­ra­vať aj ony, ale v kaž­dom prí­pa­de už mine­ra­li­zo­va­né lát­ky sú zdro­jom výži­vy pre ne. Nie­kto­ré kore­ne tvo­ria podob­ne ako lis­ty (zele­né čas­ti rast­lín) kys­lík, no za nor­mál­nych pod­mie­nok kaž­dá rast­li­na tvo­rí malé množ­stvo kys­lí­ka, kto­ré napo­má­ha aerób­nej reduk­cii hmo­ty oko­lo nich. Nie­kto­ré dru­hy doká­žu obzvlášť dob­re odčer­pá­vať z vody živi­ny, kto­ré sú pre akva­ris­tu žia­da­né, napr. Ric­cia flu­itans je ide­ál­nym bio­lo­gic­kým pros­tried­kom na zní­že­nie hla­di­ny dusič­na­nov. Podob­ný­mi schop­nos­ťa­mi oplý­va Cera­top­hyl­lum demer­sum. Obdob­ne Ana­cha­ris den­sa efek­tív­ne odčer­pá­va z vody váp­nik. Tie­to lát­ky rast­li­ny via­žu do svo­jich ple­tív a začle­ňu­jú sa do ich fyzi­olo­gic­kých pocho­dov. Vzhľa­dom na to, že čas­to ide o lát­ky pre nás akva­ris­tov nie prí­liš víta­né, je táto schop­nosť cenná.


At night, on the other hand, plants absorb oxy­gen – plants res­pi­re and rele­a­se CO2 into the water. Howe­ver, plants also res­pi­re during the day, but CO2 upta­ke pre­vails. Due to the res­pi­ra­ti­on of plants at night – the pro­duc­ti­on of CO2, the pH in the aqu­arium inc­re­a­ses. The con­cen­tra­ti­on of CO2 rises with water hard­ness, water tem­pe­ra­tu­re, and dec­re­a­ses with pH. One of the basic func­ti­ons of plants is the mine­ra­li­za­ti­on of mat­ter. Det­ri­tus is a lay­er of sedi­ment com­po­sed of was­te, fish exc­re­ment, snails, etc., which needs to be bro­ken down. This pro­cess is car­ried out by mic­ro­or­ga­nisms, espe­cial­ly bac­te­ria. Plants play an impor­tant role in this pro­cess becau­se they can also bre­ak down some sub­stan­ces, but in any case, alre­a­dy mine­ra­li­zed sub­stan­ces are a sour­ce of nut­ri­ti­on for them. Some roots, like lea­ves (gre­en parts of plants), pro­du­ce oxy­gen, but under nor­mal con­di­ti­ons, each plant pro­du­ces a small amount of oxy­gen that con­tri­bu­tes to the aero­bic reduc­ti­on of mat­ter around them. Some spe­cies are par­ti­cu­lar­ly good at remo­ving nut­rients from the water, which are desi­red by aqu­arists, e.g., Ric­cia flu­itans is an ide­al bio­lo­gi­cal agent for redu­cing nit­ra­te levels. Simi­lar­ly, Cera­top­hyl­lum demer­sum posses­ses simi­lar abi­li­ties. Like­wi­se, Ana­cha­ris den­sa effec­ti­ve­ly remo­ves cal­cium from the water. Plants bind the­se sub­stan­ces into the­ir tis­su­es and incor­po­ra­te them into the­ir phy­si­olo­gi­cal pro­ces­ses. Sin­ce the­se sub­stan­ces are often unwel­co­me for us aqu­arists, this abi­li­ty is valuable.


Nachts neh­men Pflan­zen jedoch Sau­ers­toff auf – Pflan­zen atmen und geben CO2 ins Was­ser ab. Pflan­zen atmen jedoch auch tag­süber, aber die CO2-​Aufnahme über­wiegt. Aufg­rund der Atmung von Pflan­zen in der Nacht – der CO2-​Produktion ste­igt der pH-​Wert im Aqu­arium. Die Kon­zen­tra­ti­on von CO2 ste­igt mit der Was­ser­här­te, der Was­ser­tem­pe­ra­tur und sinkt mit dem pH-​Wert. Eine der grund­le­gen­den Funk­ti­onen von Pflan­zen ist die Mine­ra­li­sie­rung von Stof­fen. Det­ri­tus ist eine Schicht aus Sedi­men­ten, die aus Abfäl­len, Fis­chauss­che­i­dun­gen, Schnec­ken usw. bes­teht und abge­baut wer­den muss. Die­ser Pro­zess wird von Mik­ro­or­ga­nis­men, ins­be­son­de­re Bak­te­rien, durch­ge­fü­hrt. Pflan­zen spie­len dabei eine wich­ti­ge Rol­le, da sie auch eini­ge Sub­stan­zen abbau­en kön­nen, aber in jedem Fall bere­its mine­ra­li­sier­te Sub­stan­zen eine Nahrung­squ­el­le für sie sind. Eini­ge Wur­zeln, wie Blät­ter (grüne Tei­le von Pflan­zen), pro­du­zie­ren Sau­ers­toff, aber unter nor­ma­len Bedin­gun­gen pro­du­ziert jede Pflan­ze eine kle­i­ne Men­ge Sau­ers­toff, die zur aero­ben Reduk­ti­on von Stof­fen um sie herum beit­rägt. Eini­ge Arten sind beson­ders gut darin, Nährs­tof­fe aus dem Was­ser zu ent­fer­nen, die von Aqu­aria­nern gewün­scht wer­den, z.B. ist Ric­cia flu­itans ein ide­a­les bio­lo­gis­ches Mit­tel zur Redu­zie­rung des Nit­rat­ge­halts. Ähn­lich ver­hält es sich mit Cera­top­hyl­lum demer­sum. Eben­so ent­fernt Ana­cha­ris den­sa effek­tiv Cal­cium aus dem Was­ser. Pflan­zen bin­den die­se Sub­stan­zen in ihre Gewe­be und integ­rie­ren sie in ihre phy­si­olo­gis­chen Pro­zes­se. Da die­se Sub­stan­zen für uns Aqu­aria­ner oft uner­wün­scht sind, ist die­se Fähig­ke­it wertvoll.


Vplyv fil­tro­va­nia a naj­mä vzdu­cho­va­nia na rast rast­lín je viac-​menej nega­tív­ny. Nedá sa to jed­no­znač­ne pove­dať, ale fil­tro­va­nie, kto­ré čerí hla­di­nu, a teda aj vzdu­cho­va­nie je pre rast rast­lín nežia­du­ce, pre­to to nepre­há­ňaj­me. Udr­žia­vať akvá­ri­um cel­kom bez fil­trá­cie nechaj­me rad­šej na špe­cia­lis­tov, ja sám mám nie­koľ­ko takých akvá­rií. Rast­li­ny však môžu meniť aj far­bu. Vod­né rast­li­ny, ostat­ne podob­ne ako ich sucho­zem­ské prí­buz­né, oplý­va­jú vďa­ka chlo­ro­fy­lu pre­dov­šet­kým zele­ným sfar­be­ním. Avšak aj jeden jedi­nec môže vyka­zo­vať v prie­be­hu onto­ge­né­zy zme­ny. Fia­lo­vá far­ba inak zele­ných rast­lín má prí­či­nu vo veľ­kom množ­stve svet­la, živín.


The influ­en­ce of fil­tra­ti­on and espe­cial­ly aera­ti­on on plant gro­wth is more or less nega­ti­ve. It can­not be said defi­ni­ti­ve­ly, but fil­tra­ti­on that dra­ws from the sur­fa­ce, and thus aera­ti­on as well, is unde­si­rab­le for plant gro­wth, so let’s not over­do it. Let’s lea­ve the task of kee­ping an aqu­arium com­ple­te­ly wit­hout fil­tra­ti­on to the spe­cia­lists; I myself have seve­ral such aqu­ariums. Howe­ver, plants can also chan­ge color. Aqu­atic plants, much like the­ir ter­res­trial rela­ti­ves, pri­ma­ri­ly exhi­bit gre­en colo­ra­ti­on due to chlo­rop­hyll. Howe­ver, even an indi­vi­du­al can under­go chan­ges during onto­ge­ny. The purp­le color of other­wi­se gre­en plants is due to a lar­ge amount of light and nutrients.


Der Ein­fluss von Fil­tra­ti­on und ins­be­son­de­re Belüf­tung auf das Pflan­zen­wachs­tum ist mehr oder weni­ger nega­tiv. Es lässt sich nicht ein­de­utig sagen, aber Fil­tra­ti­on, die von der Oberf­lä­che absaugt, und somit auch Belüf­tung, sind für das Pflan­zen­wachs­tum uner­wün­scht, daher soll­ten wir es nicht über­tre­i­ben. Das Hal­ten eines Aqu­ariums kom­plett ohne Fil­tra­ti­on soll­ten wir lie­ber den Fach­le­uten über­las­sen; Ich selbst habe meh­re­re sol­cher Aqu­arien. Pflan­zen kön­nen jedoch auch ihre Far­be ändern. Was­serpf­lan­zen, ähn­lich wie ihre ter­res­tris­chen Ver­wand­ten, zei­gen vor allem durch Chlo­rop­hyll eine grüne Fär­bung. Ein­zel­ne Exem­pla­re kön­nen jedoch wäh­rend der Onto­ge­ne­se Verän­de­run­gen aufwe­i­sen. Die violet­te Far­be ansons­ten grüner Pflan­zen ist auf eine gro­ße Men­ge Licht und Nährs­tof­fe zurückzuführen.


Sade­nie rastlín

V prvom rade by sme mali dodr­žať, že veľ­ké jedin­ce (dru­hy) sadí­me doza­du a men­šie dopre­du. Vyva­ruj­me sa tiež sade­niu pres­ne do stre­du nádr­že. Rov­na­ko s citom nará­baj­me so symet­ri­ou. Kore­ne skrá­ti­me ostrý­mi nož­nič­ka­mi na 12 cm (nie u rodu Anu­bias, Cryp­to­co­ry­ne) a pri sade­ní sa vyva­ruj­me ich poško­de­niu. Všet­ky kore­ne by mali byť v dne, žiad­ne trčia­ce kore­ne nie sú žia­du­ce. Pri nie­kto­rý rast­li­nách, kto­ré majú kore­ňo­vý sys­tém dob­re vyvi­nu­tý, napr. Echi­no­do­rus, zasa­de­nú rast­li­nu po zasa­de­ní mier­ne povy­tiah­ne­me – kore­ňo­vý krčok by mal troš­ku vyčnie­vať. V prí­pa­de odrez­kov je vhod­né, aby sme zasa­di­li rast­li­nu tak, aby sme nesa­di­li holú ston­ku, ale aby doslo­va spod­né lis­ty boli zafi­xo­va­né do dna. Vod­ná rast­li­ny tak zís­ka opo­ru, bude mať ove­ľa lep­šiu stav­bu. Plá­va­jú­ce rast­li­ny hla­di­ny Lim­no­bium, Pis­tia, Ric­cia, Sal­vi­nia voľ­ne pokla­dá­me na hla­di­nu, iné plá­va­jú­ce rast­li­ny voľ­ne hodí­me do vody. Nie­kto­ré z nich sú schop­né zako­re­niť, avšak nie dlho­do­bo. Ric­cia napr. sa dá cel­kom efekt­ne pou­žiť ako kobe­rec na dno. Keď­že sama ma ten­den­ciu vyplá­vať na hla­di­nu, je nut­né ju neja­ko zachy­tiť – napr. o plo­ché kame­ne. Mic­ro­so­rium, Anu­bias sa pri­pev­ňu­jú ku dre­vu, na fil­ter. Najv­hod­nej­šia na to je sple­ta­ná šnú­ra z rybár­ske­ho obcho­du. Ak kúpi­me rast­li­ny v obcho­de, prav­de­po­dob­ne budú zasa­de­né v koší­koch a v mine­rál­nej vate. Tie­to sa do akvá­ria neho­dia, naj­mä nie skal­ná vata, pre­to vod­né rast­li­ny vybe­rie­me z koší­kov a zba­ví­me ich pre­dov­šet­kým mine­rál­nej vaty. Výži­va rast­lín, hno­je­nie Rast­li­ny sa zís­ka­va­jú ener­giu via­ce­rý­mi spô­sob­mi. Ich pri­ro­dze­ným zdro­jom ener­gie je CO2 oxid uhli­či­týsvet­lo. Sta­čí si spo­me­núť na foto­syn­té­zu zo ško­ly. Ak majú rast­li­ny dosta­tok CO2, nedo­ká­žu ho zužit­ko­vať pri nedos­tat­ku svet­la. Ak rast­li­ny majú dosta­tok svet­la, pri defi­ci­te CO2 ho nedo­ká­žu dosta­toč­ne využiť. Ak však sú obe hod­no­ty opti­mál­ne, je to veľ­ký pred­po­klad pre veľ­mi úspeš­ný rast našich rast­lín. V pora­dí dôle­ži­tos­ti by som svet­lo posta­vil pred CO2. Pre úspeš­ný rast rast­lín tre­ba kva­lit­né osvet­le­nie.


Plan­ting of plants

First of all, we should keep in mind that lar­ge spe­ci­mens (spe­cies) should be plan­ted in the back and smal­ler ones in the front. Also, let’s avo­id plan­ting exact­ly in the cen­ter of the tank. Like­wi­se, hand­le sym­met­ry with care. Trim the roots with sharp scis­sors to 1 – 2 cm (not for the genus Anu­bias, Cryp­to­co­ry­ne), and when plan­ting, avo­id dama­ging them. All roots should be in the sub­stra­te; no expo­sed roots are desi­rab­le. For some plants with a well-​developed root sys­tem, such as Echi­no­do­rus, gen­tly lift the plan­ted plant after plan­ting – the root col­lar should prot­ru­de slight­ly. In the case of cut­tings, it is advi­sab­le to plant the plant so that we do not plant a bare stem, but so that the lower lea­ves are lite­ral­ly fixed into the sub­stra­te. Water plants will thus gain sup­port and have a much bet­ter struc­tu­re. Flo­ating plants such as Lim­no­bium, Pis­tia, Ric­cia, Sal­vi­nia are fre­e­ly pla­ced on the sur­fa­ce, whi­le other flo­ating plants are sim­ply drop­ped into the water. Some of them are capab­le of rooting, but not long-​term. For exam­ple, Ric­cia can be quite effec­ti­ve­ly used as a car­pet on the bot­tom. Sin­ce it tends to flo­at to the sur­fa­ce, it is neces­sa­ry to some­how anchor it – for exam­ple, with flat sto­nes. Mic­ro­so­rium, Anu­bias are atta­ched to wood, to the fil­ter. The most suitab­le for this is a brai­ded string from a fis­hing shop. If we buy plants in a sto­re, they will pro­bab­ly be plan­ted in bas­kets and mine­ral wool. The­se are not suitab­le for the aqu­arium, espe­cial­ly not rock wool, so we remo­ve water plants from the bas­kets and remo­ve them from mine­ral wool. Plants obtain ener­gy in seve­ral ways. The­ir natu­ral sour­ce of ener­gy is CO2 – car­bon dioxi­de and light. Just remem­ber pho­to­synt­he­sis from scho­ol. If plants have enough CO2, they can­not uti­li­ze it in the absen­ce of light. If plants have enough light, in the absen­ce of CO2, they can­not uti­li­ze it suf­fi­cien­tly. Howe­ver, if both valu­es are opti­mal, it is a gre­at pre­re­qu­isi­te for the very suc­cess­ful gro­wth of our plants. In terms of impor­tan­ce, I would pla­ce light befo­re CO2. Quali­ty ligh­ting is essen­tial for suc­cess­ful plant growth.


Pflan­zung von Pflanzen

Zunächst soll­ten wir beach­ten, dass gro­ße Exem­pla­re (Arten) hin­ten und kle­i­ne­re vor­ne gepf­lanzt wer­den soll­ten. Ver­me­i­den wir auch das Pflan­zen genau in die Mit­te des Tanks. Gehen wir auch mit Sym­met­rie sor­gsam um. Schne­i­den Sie die Wur­zeln mit schar­fen Sche­ren auf 1 – 2 cm (nicht für die Gat­tung Anu­bias, Cryp­to­co­ry­ne), und beim Pflan­zen ver­me­i­den Sie es, sie zu bes­chä­di­gen. Alle Wur­zeln soll­ten im Sub­strat sein; kei­ne fre­i­lie­gen­den Wur­zeln sind erwün­scht. Für eini­ge Pflan­zen mit gut ent­wic­kel­tem Wur­zel­sys­tem, wie Echi­no­do­rus, heben Sie die gepf­lanz­te Pflan­ze nach dem Pflan­zen vor­sich­tig an – der Wur­zelk­ra­gen soll­te leicht heraus­ra­gen. Im Fall von Steck­lin­gen ist es rat­sam, die Pflan­ze so zu pflan­zen, dass wir kei­nen nackten Stän­gel pflan­zen, son­dern dass die unte­ren Blät­ter buchs­täb­lich ins Sub­strat ein­ge­bet­tet sind. Was­serpf­lan­zen gewin­nen so Unters­tüt­zung und haben eine viel bes­se­re Struk­tur. Sch­wim­men­de Pflan­zen wie Lim­no­bium, Pis­tia, Ric­cia, Sal­vi­nia wer­den frei auf die Oberf­lä­che gelegt, wäh­rend ande­re Sch­wimmpf­lan­zen ein­fach ins Was­ser gewor­fen wer­den. Eini­ge von ihnen sind in der Lage zu wur­zeln, aber nicht langf­ris­tig. Zum Beis­piel kann Ric­cia recht effek­tiv als Tep­pich auf dem Boden ver­wen­det wer­den. Da es dazu neigt, an die Oberf­lä­che zu ste­i­gen, ist es not­wen­dig, es irgen­dwie zu veran­kern – zum Beis­piel mit fla­chen Ste­i­nen. Mic­ro­so­rium, Anu­bias wer­den an Holz, an den Fil­ter befes­tigt. Am bes­ten gee­ig­net dafür ist ein gef­loch­te­ner Faden aus einem Angel­ges­chäft. Wenn wir Pflan­zen im Laden kau­fen, wer­den sie wahrs­che­in­lich in Kör­ben und Mine­ra­lwol­le gepf­lanzt sein. Die­se sind für das Aqu­arium nicht gee­ig­net, ins­be­son­de­re kei­ne Ste­in­wol­le, also neh­men wir Was­serpf­lan­zen aus den Kör­ben und ent­fer­nen sie von Mine­ra­lwol­le. Pflan­zen erhal­ten Ener­gie auf vers­chie­de­ne Arten. Ihre natür­li­che Ener­gie­qu­el­le ist CO2 – Koh­len­di­oxid und Licht. Erin­nern Sie sich ein­fach an die Pho­to­synt­he­se aus der Schu­le. Wenn Pflan­zen genügend CO2 haben, kön­nen sie es im Feh­len von Licht nicht nut­zen. Wenn Pflan­zen genügend Licht haben, kön­nen sie es im Feh­len von CO2 nicht aus­re­i­chend nut­zen. Wenn jedoch bei­de Wer­te opti­mal sind, ist dies eine gro­ßar­ti­ge Voraus­set­zung für das sehr erfolg­re­i­che Wachs­tum unse­rer Pflan­zen. Ich wür­de Licht vor CO2 als wich­tig eins­tu­fen. Eine quali­ta­tiv hoch­wer­ti­ge Bele­uch­tung ist ents­che­i­dend für das erfolg­re­i­che Pflanzenwachstum.


V prí­pa­de, že vidí­me pro­duk­ciu kys­lí­ka rast­li­na­mi – tvo­ria­ce sa bub­lin­ky čerstvé­ho kys­lí­ka, kon­cen­trá­cia kys­lí­ka v bun­ke stúp­la nad 40 mg/​l. Pre úspeš­nej­ší rast rast­lín je veľa krát vhod­né siah­nuť po dopl­ne­ní výži­vy. Ku zvý­še­né­mu pri­jí­ma­niu živín – ener­gie pris­pie­va aj prú­de­nie vody. Výži­vu rast­li­ny dostá­va­jú aj vo for­me odpad­ných látok – výka­lov rýb. Aj nádr­že tzv. holand­ské­ho typu (rast­lin­né) čas­to krát obsa­hu­jú neja­ké ryby, kto­ré slú­žia prá­ve na neus­tá­le obo­ha­co­va­nie živi­na­mi. V tom­to prí­pa­de skôr tými sto­po­vý­mi. V prí­pa­de, že sa vo vode nachá­dza nedos­ta­tok CO2 a rast­li­ny doká­žu z hyd­ro­ge­nuh­li­či­ta­nov ten­to zís­kať, môže dôjsť ku bio­gén­ne­mu odváp­ne­niu – vyzrá­ža­nie neroz­pust­né­ho uhli­či­ta­nu vápe­na­té­ho na povr­chu lis­tov. Pri­jí­ma­nie hyd­ro­ge­nuh­li­či­ta­nov je však ener­ge­tic­ky nároč­nej­šie. Akvá­ri­um má čas­to dosta­tok živín vo for­me exkre­men­tov rýb. Humí­no­vé kyse­li­ny sú lát­ky, kto­ré sa naj­mä v prí­ro­de bež­ne nachá­dza­jú vo vode. Sú to pro­duk­ty lát­ko­vej pre­me­ny dre­va, pôdy, lis­tov, čas­tí rast­lín. Z hľa­dis­ka využi­tia pre akva­ris­ti­ku je zau­jí­ma­vé pou­ži­tie dre­valis­tov, prí­pad­ne šišiek, škru­pín ore­chov apod. Sú nesmier­ne dôle­ži­té pre rast­li­ny, pre­to­že doká­žu byť ener­ge­tic­kým mos­tom medzi zdro­jom výži­vy a rast­li­nou. Vďa­ka tým­to orga­nic­kým kom­ple­xom doká­že rast­li­na zís­kať to, čo je prí­ro­da ponú­ka. Je to podob­ná fun­kcia ako majú bio­f­la­vo­no­idy pre vita­mín C. Dar­mo bude­me pri­jí­mať mega­dáv­ky vita­mí­nov ak ich telo nedo­ká­že zužit­ko­vať. Humí­no­vé kyse­li­ny sa tvo­ria v prí­ro­de v pôde. Žele­zo vo vode za nor­mál­nych pod­mie­nok veľ­mi rých­lo oxi­du­je na for­mu nevy­uži­teľ­nú pre rastliny.


If we obser­ve oxy­gen pro­duc­ti­on by plants – the for­ma­ti­on of bubb­les of fresh oxy­gen, the con­cen­tra­ti­on of oxy­gen in the cell has risen abo­ve 40 mg/​l. For more suc­cess­ful plant gro­wth, it is often advi­sab­le to supp­le­ment nut­rients. Inc­re­a­sed nut­rient upta­ke – ener­gy is also con­tri­bu­ted by water flow. Plants also rece­i­ve nut­rients in the form of was­te mate­rials – fish exc­re­ment. Even tanks of the so-​called Dutch type (plan­ted) often con­tain some fish, which ser­ve to cons­tan­tly enrich the nut­rients. In this case, more with tra­ce ele­ments. If the­re is a lack of CO2 in the water and plants are able to obtain it from bicar­bo­na­tes, bio­ge­nic decal­ci­fi­ca­ti­on can occur – the pre­ci­pi­ta­ti­on of inso­lub­le cal­cium car­bo­na­te on the sur­fa­ce of lea­ves. Howe­ver, the upta­ke of bicar­bo­na­tes is more energy-​intensive. Aqu­ariums often have enough nut­rients in the form of fish exc­re­ment. Humic acids are sub­stan­ces that are com­mon­ly found in water in natu­re. They are pro­ducts of the trans­for­ma­ti­on of wood, soil, lea­ves, plant parts. From the point of view of use for aqu­aris­tics, the use of wood and lea­ves, or cones, nut shells, etc., is inte­res­ting. They are extre­me­ly impor­tant for plants becau­se they can be an ener­gy brid­ge bet­we­en a sour­ce of nut­ri­ti­on and a plant. Thanks to the­se orga­nic com­ple­xes, the plant can obtain what natu­re offers. It’s a simi­lar func­ti­on to what bio­f­la­vo­no­ids have for vita­min C. It’s use­less to take mega­do­ses of vita­mins if the body can’t uti­li­ze them. Humic acids are for­med natu­ral­ly in the soil. Iron in water under nor­mal con­di­ti­ons oxi­di­zes very quick­ly into a form unu­sab­le for plants.


Wenn wir die Sau­ers­toff­pro­duk­ti­on durch Pflan­zen beobach­ten – die Bil­dung von Bla­sen fris­chen Sau­ers­toffs -, ist die Kon­zen­tra­ti­on von Sau­ers­toff in der Zel­le auf über 40 mg/​l ges­tie­gen. Für ein erfolg­re­i­che­res Pflan­zen­wachs­tum ist es oft rat­sam, Nährs­tof­fe zu ergän­zen. Eine erhöh­te Nährs­tof­fauf­nah­me – Ener­gie wird auch durch den Was­serf­luss bei­get­ra­gen. Pflan­zen erhal­ten auch Nährs­tof­fe in Form von Abfall­ma­te­ria­lien – Fis­chauss­che­i­dun­gen. Selbst Bec­ken des soge­nann­ten hol­län­dis­chen Typs (bepf­lanzt) ent­hal­ten oft eini­ge Fis­che, die dazu die­nen, die Nährs­tof­fe stän­dig anzu­re­i­chern. In die­sem Fall eher mit Spu­re­ne­le­men­ten. Wenn es im Was­ser an CO2 man­gelt und Pflan­zen es aus Hyd­ro­gen­car­bo­na­ten gewin­nen kön­nen, kann es zu bio­ge­nem Ent­kal­ken kom­men – der Aus­fäl­lung von unlös­li­chem Cal­cium­car­bo­nat auf der Oberf­lä­che der Blät­ter. Die Auf­nah­me von Hyd­ro­gen­car­bo­na­ten ist jedoch ener­gie­au­fwen­di­ger. Aqu­arien haben oft genug Nährs­tof­fe in Form von Fis­chauss­che­i­dun­gen. Humin­sä­u­ren sind Sub­stan­zen, die in der Natur im Was­ser häu­fig vor­kom­men. Sie sind Pro­duk­te der Umwand­lung von Holz, Boden, Blät­tern, Pflan­zen­te­i­len. Vom Stand­punkt der Ver­wen­dung für die Aqu­aris­tik ist die Ver­wen­dung von Holz und Blät­tern oder Kegeln, Nusss­cha­len usw. inte­res­sant. Sie sind äußerst wich­tig für Pflan­zen, weil sie eine Ener­gieb­rüc­ke zwis­chen einer Nahrung­squ­el­le und einer Pflan­ze sein kön­nen. Dank die­ser orga­nis­chen Kom­ple­xe kann die Pflan­ze das bekom­men, was die Natur bie­tet. Es ist eine ähn­li­che Funk­ti­on wie die von Bio­f­la­vo­no­iden für Vita­min C. Es ist sinn­los, Mega­do­sen von Vita­mi­nen ein­zu­neh­men, wenn der Kör­per sie nicht nut­zen kann. Humin­sä­u­ren ents­te­hen natür­lich im Boden. Eisen im Was­ser oxi­diert unter nor­ma­len Bedin­gun­gen sehr schnell in eine Form, die für Pflan­zen unb­rauch­bar ist.


Fil­ter je doslo­va požie­rač žele­za. Ak sa však via­že v che­lá­toch, v orga­nic­kých kom­ple­xoch, je prí­stup­né rast­li­nám. Ide o Fe2+, aj Fe3+, a prá­ve humí­no­vé kyse­li­ny sú sub­strá­tom, v kto­rom sa môže žele­zo uplat­niť pre rast­li­ny. Nedos­ta­tok žele­za spô­so­bu­je chlo­ró­zu, kto­rá sa pre­ja­vu­je sla­bým ple­ti­vom – sklo­vi­tý­mi lis­ta­mi, žlt­nu­tím naj­mä od okra­jov podob­ne ako aj u sucho­zem­ských rast­lín. Mine­rá­ly a sto­po­vé lát­ky sú zís­ka­va­né pri­ro­dze­nou ces­tou z vody a z det­ri­tu. Sto­po­vé lát­ky sú lát­ky, prv­ky, kto­ré nie sú nevy­hnut­né vo veľ­kom množ­stve, ale iba v níz­kych (sto­po­vých) kon­cen­trá­ciách – napr. Zn, Mn, K, Cu. Nie­kto­ré z tých­to prv­kov sú vo vyš­ších kon­cen­trá­ciách škod­li­vé až jedo­va­té. Det­rit je hmo­ta, tvo­re­ná mik­ro­or­ga­niz­ma­mi orga­nic­kou hmo­tou odum­re­tých rast­lín, výka­lov rýb apod. V prí­pa­de rast­lin­né­ho akvá­ria je čas­to kame­ňom úra­zu prá­ve obsah mine­rál­nych látok. Naj­lep­ší spô­sob ako toho dosiah­nuť sú ryby. Mik­ro­or­ga­niz­my – naj­mä nit­ri­fi­kač­né a denit­ri­fi­kač­né bak­té­rie roz­kla­da­jú hmo­tu na lát­ky využi­teľ­né rast­li­na­mi. Rast­li­ny ten­to zdroj ener­gie využí­va­jú naj­mä pomo­cou kore­ňov. Nie­kto­ré sú schop­né via­zať viac NO3 – dusič­na­nov napr. Cera­top­hyl­lum demer­sum, Ric­cia flu­itans. Veľa z nás má zdro­jo­vú vodu obsa­hu­jú­cu vyso­ké množ­stvo dusič­na­nov. Nor­ma pit­nej vody o maxi­mál­nej hod­no­te je dosť vyso­ká pre akva­ris­ti­ku, nevhod­né naj­mä pre nové akvá­ri­um. Vďa­ka pomer­ne vyso­ké­mu obsa­hu dusí­ka potom môže ľah­šie dôjsť ku tvor­be toxic­ké­ho amo­nia­ku.


The fil­ter is lite­ral­ly an iron eater. Howe­ver, when it binds in che­la­tes, in orga­nic com­ple­xes, it beco­mes acces­sib­le to plants. This inc­lu­des Fe2+ and Fe3+, and it is pre­ci­se­ly humic acids that ser­ve as a sub­stra­te whe­re iron can be uti­li­zed by plants. Iron defi­cien­cy cau­ses chlo­ro­sis, cha­rac­te­ri­zed by weak tis­su­es – glas­sy lea­ves, yel­lo­wing espe­cial­ly from the edges, simi­lar to ter­res­trial plants. Mine­rals and tra­ce ele­ments are obtai­ned natu­ral­ly from water and det­ri­tus. Tra­ce ele­ments are sub­stan­ces, ele­ments that are not essen­tial in lar­ge quan­ti­ties, but only in low (tra­ce) con­cen­tra­ti­ons – e.g., Zn, Mn, K, Cu. Some of the­se ele­ments can be harm­ful or even toxic in hig­her con­cen­tra­ti­ons. Det­ri­tus is mat­ter com­po­sed of orga­nic mat­ter from dead plants, fish exc­re­ment, etc. In the case of a plan­ted aqu­arium, the mine­ral con­tent is often the stum­bling block. The best way to achie­ve this is through fish. Mic­ro­or­ga­nisms – espe­cial­ly nit­ri­fy­ing and denit­ri­fy­ing bac­te­ria – bre­ak down mat­ter into sub­stan­ces that plants can use. Plants pri­ma­ri­ly uti­li­ze this ener­gy sour­ce through the­ir roots. Some are capab­le of bin­ding more NO3 – nit­ra­tes, for exam­ple, Cera­top­hyl­lum demer­sum, Ric­cia flu­itans. Many of us have sour­ce water con­tai­ning high levels of nit­ra­tes. The maxi­mum value in drin­king water stan­dards is quite high for aqu­ariums, espe­cial­ly unsu­itab­le for new ones. Due to the rela­ti­ve­ly high nit­ro­gen con­tent, it can lead more easi­ly to the for­ma­ti­on of toxic ammonia.


Der Fil­ter ist buchs­täb­lich ein Eisen­fres­ser. Wenn es jedoch in Che­la­ten, in orga­nis­chen Kom­ple­xen gebun­den ist, wird es für Pflan­zen zugän­glich. Dies umfasst Fe2+ und Fe3+, und genau Humin­sä­u­ren die­nen als Sub­strat, auf dem Eisen von Pflan­zen genutzt wer­den kann. Eisen­man­gel führt zu Chlo­ro­se, gekenn­ze­ich­net durch sch­wa­che Gewe­be – gla­si­ge Blät­ter, Ver­gil­bung beson­ders an den Rän­dern, ähn­lich wie bei ter­res­tris­chen Pflan­zen. Mine­ra­lien und Spu­re­ne­le­men­te wer­den auf natür­li­che Wei­se aus Was­ser und Det­ri­tus gewon­nen. Spu­re­ne­le­men­te sind Sub­stan­zen, Ele­men­te, die nicht in gro­ßen Men­gen, son­dern nur in nied­ri­gen (Spuren-)Konzentrationen not­wen­dig sind – z. B. Zn, Mn, K, Cu. Eini­ge die­ser Ele­men­te kön­nen in höhe­ren Kon­zen­tra­ti­onen schäd­lich oder sogar gif­tig sein. Det­ri­tus bes­teht aus orga­nis­chem Mate­rial aus abges­tor­be­nen Pflan­zen, Fis­chauss­che­i­dun­gen usw. Im Fal­le eines bepf­lanz­ten Aqu­ariums ist der Mine­ral­ge­halt oft der Stol­pers­te­in. Der bes­te Weg, dies zu erre­i­chen, sind Fis­che. Mik­ro­or­ga­nis­men – ins­be­son­de­re nit­ri­fi­zie­ren­de und denit­ri­fi­zie­ren­de Bak­te­rien – zer­set­zen Mate­rie in Sub­stan­zen, die Pflan­zen nut­zen kön­nen. Pflan­zen nut­zen die­se Ener­gie­qu­el­le haupt­säch­lich über ihre Wur­zeln. Eini­ge sind in der Lage, mehr NO3 – Nit­ra­te zu bin­den, zum Beis­piel Cera­top­hyl­lum demer­sum, Ric­cia flu­itans. Vie­le von uns haben Quel­lwas­ser mit hohen Nit­rat­ge­hal­ten. Der Höchst­wert in den Trink­was­sers­tan­dards ist für Aqu­arien recht hoch, beson­ders unge­e­ig­net für neue. Aufg­rund des rela­tiv hohen Sticks­toff­ge­halts kann es leich­ter zur Bil­dung von gif­ti­gem Ammo­niak führen.


Cyk­lus dusí­ka trvá nie­čo vyše mesia­ca, tak­že dusič­na­no­vý ani­ón pri­da­ný dnes putu­je eko­sys­té­mom akvá­ria viac ako mesiac, kým ho opus­tí. Denit­ri­fi­kač­né a nit­ri­fi­kač­né pro­ce­sy sú pomer­ne zlo­ži­té, zau­jí­ma­vé aj pre lai­ka je snáď fakt, že sa ako pro­dukt tých­to reak­cií tvo­rí aj plyn­ný dusík N2. Ten samoz­rej­me uni­ká do atmo­sfé­ry – von z nádr­že. Denit­ri­fi­kač­né bak­té­rie sa nachá­dza­jú vo fil­tri. Tak ako píšem v člán­ku o fil­tro­va­ní, je nevhod­né fil­trač­né vlož­ky pod­ro­bo­vať tečú­cej vode z bež­né­ho vodo­vo­du. Pre­to, aby sme neza­bi­li naše roz­vi­nu­té bak­té­rie je vhod­nej­šie umý­vať moli­tan vo vode neob­sa­hu­jú­cej chlór a ostat­né ply­ny pou­ží­va­né vo vodo­vod­nej sie­ti. Na trhu exis­tu­jú­ce pro­duk­ty, kto­ré obsa­hu­jú bak­té­rie, kto­ré sa pri­dá­va­jú do fil­tra. Na trhu sú dostup­né rôz­ne pro­duk­ty hno­jív a výži­vo­vých dopl­n­kov pre rast­li­ny. Neod­po­rú­ča sa kom­bi­no­vať hno­ji­vá ani rôz­nych firiem ani výrob­kov jed­nej fir­my. Mecha­nic­ky zachy­te­né čas­ti z fil­tra pou­ží­vam ako hno­ji­vo aj do kve­ti­ná­čov sucho­zem­ských rast­lín. Fil­ter ako oxi­dant oby­čaj­ne obsa­hu­je množ­stvo látok, hod­not­né je naj­mä žele­zo, kto­ré je bal­za­mom pre čas­to chu­dob­né pôdy v črep­ní­koch. Táto hmo­ta, je okrem toho tak­po­ve­diac natrá­ve­ná, tak­že sa v pôde pomer­ne rých­lo rozkladá.


The nit­ro­gen cyc­le takes a litt­le over a month, so the nit­ra­te ani­on added today tra­vels through the aqu­arium eco­sys­tem for more than a month befo­re it lea­ves. Denit­ri­fi­ca­ti­on and nit­ri­fi­ca­ti­on pro­ces­ses are quite com­plex. An inte­res­ting fact even for a lay­per­son is that gase­ous nit­ro­gen N2 is also pro­du­ced as a pro­duct of the­se reac­ti­ons. This nit­ro­gen natu­ral­ly esca­pes into the atmo­sp­he­re – out of the tank. Denit­ri­fy­ing bac­te­ria are found in the fil­ter. As I wro­te in the artic­le about fil­tra­ti­on, it is not suitab­le to sub­ject fil­ter media to flo­wing water from the regu­lar water supp­ly. The­re­fo­re, to avo­id kil­ling our estab­lis­hed bac­te­ria, it is bet­ter to wash the foam in water wit­hout chlo­ri­ne and other gases used in the water supp­ly sys­tem. The­re are pro­ducts avai­lab­le on the mar­ket con­tai­ning bac­te­ria that are added to the fil­ter. Vari­ous fer­ti­li­zer pro­ducts and nut­ri­ti­onal supp­le­ments for plants are avai­lab­le on the mar­ket. It is not recom­men­ded to com­bi­ne fer­ti­li­zers from dif­fe­rent com­pa­nies or pro­ducts from one com­pa­ny. I use mecha­ni­cal­ly trap­ped par­tic­les from the fil­ter as fer­ti­li­zer for potted ter­res­trial plants. The fil­ter, as an oxi­dant, usu­al­ly con­tains a lot of sub­stan­ces, with iron being par­ti­cu­lar­ly valu­ab­le, which acts as a balm for often nutrient-​poor soils in pots. This mate­rial is, more­over, so to spe­ak, diges­ted, so it decom­po­ses rela­ti­ve­ly quick­ly in the soil.


Der Sticks­toffk­re­is­lauf dau­ert etwas mehr als einen Monat, sodass das heute zuge­ge­be­ne Nitrat-​Anion mehr als einen Monat lang durch das Aquarium-​Ökosystem wan­dert, bevor es es ver­lässt. Die Pro­zes­se der Denit­ri­fi­ka­ti­on und Nit­ri­fi­ka­ti­on sind ziem­lich kom­plex. Eine inte­res­san­te Tat­sa­che auch für Laien ist, dass als Pro­dukt die­ser Reak­ti­onen auch gas­för­mi­ger Sticks­toff N2 ents­teht. Die­ser Sticks­toff ent­we­icht natür­lich in die Atmo­sp­hä­re – aus dem Bec­ken heraus. Denit­ri­fi­zie­ren­de Bak­te­rien befin­den sich im Fil­ter. Wie ich in dem Arti­kel über die Fil­tra­ti­on sch­rieb, ist es nicht rat­sam, Fil­ter­me­dien dem flie­ßen­den Was­ser aus der nor­ma­len Was­ser­ver­sor­gung aus­zu­set­zen. Daher ist es bes­ser, um unse­re etab­lier­ten Bak­te­rien nicht zu töten, den Sch­wamm in Was­ser ohne Chlor und ande­re Gase, die im Was­ser­ver­sor­gungs­sys­tem ver­wen­det wer­den, zu was­chen. Es gibt Pro­duk­te auf dem Mar­kt, die Bak­te­rien ent­hal­ten, die dem Fil­ter zuge­setzt wer­den. Auf dem Mar­kt sind vers­chie­de­ne Dün­ger­pro­duk­te und Nahrung­ser­gän­zungs­mit­tel für Pflan­zen erhält­lich. Es wird nicht emp­foh­len, Dün­ger vers­chie­de­ner Unter­neh­men oder Pro­duk­te eines Unter­neh­mens zu kom­bi­nie­ren. Ich ver­wen­de mecha­nisch ein­ge­fan­ge­ne Par­ti­kel aus dem Fil­ter als Dün­ger für Topfpf­lan­zen. Der Fil­ter ent­hält als Oxi­da­ti­ons­mit­tel in der Regel vie­le Sub­stan­zen, wobei Eisen beson­ders wer­tvoll ist, das als Bal­sam für oft nährs­tof­far­me Böden in Töp­fen wir­kt. Die­ses Mate­rial wird außer­dem sozu­sa­gen ver­daut, sodass es sich im Boden rela­tiv schnell zersetzt.


Raše­li­na zni­žu­je pH aj tvrdo­sť vody, vode posky­tu­je humí­no­vé kyse­li­ny a iné orga­nic­ké lát­ky. PMDD je sve­to­vo veľ­mi roz­ší­re­né tak­po­ve­diac neko­merč­né hno­ji­vo. Mie­ša sa zo síra­nu dra­sel­né­ho, hep­ta­hyd­rá­tu síra­nu horeč­na­té­ho, dusič­na­nu dra­sel­né­ho a sto­po­vých látok: B, Ca, Cu, Fe, Mn, Mo, Zn, kto­ré sú vo for­me orga­nic­ké­ho kom­ple­xu. Je to vhod­ná kom­bi­ná­cia, v kto­rej sú sto­po­vé lát­ky asi naj­dô­le­ži­tej­šie. CO2 ne pri­dá­vam pomo­cou zná­me­ho pro­ce­su kva­se­nia. Sta­čí však na to fľa­ša, do kto­rej nale­je­me tak­mer po vrch vodu, pri­dá­me drož­die (kvas­ni­ce) a cukor. Vodu na začia­tok odpo­rú­čam tep­lej­šiu (oko­lo 35°C). Fľa­šu uzat­vo­rím vrch­ná­kom, v kto­rom mám otvor pre hadič­ku, kto­rá na dru­hom kon­ci kon­čí v akvá­riu, kde je zakon­če­ná vzdu­cho­va­cím kame­ňom, ale­bo lipo­vým driev­kom. Pou­žiť sa dá úspeš­ne aj ciga­re­to­vý fil­ter. Prí­pad­ne hadič­ka kon­čí v akvá­ri­ovom fil­tri, cez kto­rý sa roz­stre­ku­je do vody. Taký­to dáv­ko­vač CO2 doká­že pro­du­ko­vať 35 týž­dňov oxid uhli­či­tý. Má to však chy­bu v tom, že nie je ošet­re­ný pro­ti náh­le­mu vzo­stu­pu pro­duk­cie CO2. V noci je lep­šie CO2 tak­to do nádr­že nepum­po­vať. Na pro­duk­ciu CO2 sa hodia aj bom­bič­ky z fľa­še na výro­bu sódy. Na trhu exis­tu­jú rôz­ne difú­ze­ry CO2. Ja pou­ží­vam CO2 fľa­šu, na kto­rej je redukč­ný ven­til a ihlo­vý” (bicyk­lo­vý) ven­til, z kto­ré­ho ide hadič­ka do kanis­tra v akvá­riu. Fun­gu­je to tak, voda si vypý­ta” toľ­ko CO2, koľ­ko potre­bu­je”. Tak dosiah­nem maxi­mál­ne roz­um­né nasý­te­nie akvá­ria oxi­dom uhli­či­tým. Redukč­ný ven­til je nato, aby zní­žil tlak na 5 atmo­sfér. Ihlo­vý ven­til vo vše­obec­nos­ti je na to, aby tlak zní­žil na mie­ru vhod­nú do oby­čaj­nej ten­kej akva­ris­tic­kej hadič­ky. Exis­tu­jú aj nor­mál­ne ihlo­vé ven­ti­ly, ja však pou­ží­vam ven­til, kto­rý pou­ží­va­jú cyk­lis­ti na hus­te­nie pneuma­tík. Nesto­jí ani 10 €. Redukč­né ven­ti­ly exis­tu­jú rôz­ne, sú aj také, kto­ré na výstu­pe ponú­ka­jú tlak CO2, kto­rý môže ísť rov­no do nádr­že. Kom­bi­no­vať sa dá pomo­cou elek­tro­mag­ne­tic­kých ven­ti­lov, kto­ré by sa otvo­ril pod­ľa spí­na­ča. Ja si to ria­dim tak, že CO2 napus­tím vždy ráno. Neod­po­rú­čam sýtiť akvá­ri­um sústav­ne, tla­čiť do vody oxid uhli­či­tý cez otvo­re­né ven­ti­ly napr. cez roz­stre­ko­va­nie pomo­cou fil­tra. V kaž­dom prí­pa­de, či už pri zakú­pe­ní komerč­né­ho pro­duk­tu, ale­bo vlast­né­ho rie­še­nia, tre­ba mať na zre­te­li, že difú­zia ply­nov vo vode je rádo­vo 4 krát niž­šia ako vo vzdu­chu. Čiže podob­ne ako kys­lík, aj CO2 je pri­ja­té vo vyš­šom množ­stve za pred­po­kla­du tvor­by men­ších bub­li­niek. Hen­ry­ho zákon hovo­rí, že kon­cen­trá­cia roz­pus­te­né­ho ply­nu je pria­mo úmer­ná par­ciál­ne­mu tla­ku ply­nu nad jej hla­di­nou – je to v pod­sta­te ana­ló­gia ku osmo­tic­kým javom.


Peat redu­ces the pH and water hard­ness, pro­vi­ding humic acids and other orga­nic sub­stan­ces to the water. PMDD is a wide­ly used non-​commercial fer­ti­li­zer. It is mixed from potas­sium sul­fa­te, mag­ne­sium sul­fa­te hep­ta­hyd­ra­te, potas­sium nit­ra­te, and tra­ce ele­ments: B, Ca, Cu, Fe, Mn, Mo, Zn, which are in the form of orga­nic com­ple­xes. It is a suitab­le com­bi­na­ti­on in which tra­ce ele­ments are pro­bab­ly the most impor­tant. I don’t add CO2 using the well-​known fer­men­ta­ti­on pro­cess. Howe­ver, a bott­le is enough for this pur­po­se, into which we pour water almost to the top, add yeast and sugar. I recom­mend star­ting with war­mer water (around 35°C). I seal the bott­le with a stop­per, in which I have a hole for a tube, which ends in the aqu­arium with an air sto­ne or a lime wood pie­ce. A ciga­ret­te fil­ter can also be suc­cess­ful­ly used. Alter­na­ti­ve­ly, the tube ends in the aqu­arium fil­ter, through which it spra­ys into the water. Such a CO2 dis­pen­ser can pro­du­ce car­bon dioxi­de for 35 weeks. Howe­ver, it has a flaw in that it is not pro­tec­ted against a sud­den inc­re­a­se in CO2 pro­duc­ti­on. It’s bet­ter not to pump CO2 into the tank at night. CO2 cylin­ders for making soda can also be used for CO2 pro­duc­ti­on. The­re are vari­ous CO2 dif­fu­sers avai­lab­le on the mar­ket. I use a CO2 cylin­der with a pre­ssu­re regu­la­tor and a need­le” (bicyc­le) val­ve, from which a tube goes into the canis­ter in the aqu­arium. It works so that the water requ­ests” as much CO2 as it needs”. This way, I achie­ve a maxi­mal­ly rea­so­nab­le satu­ra­ti­on of the aqu­arium with car­bon dioxi­de. The pre­ssu­re regu­la­tor is the­re to redu­ce the pre­ssu­re to 5 atmo­sp­he­res. The need­le val­ve, in gene­ral, redu­ces the pre­ssu­re to a suitab­le level for a regu­lar thin aqu­arium hose. The­re are also nor­mal need­le val­ves, but I use a val­ve that cyc­lists use to infla­te tires. It costs less than 10 €. The­re are vari­ous pre­ssu­re regu­la­tors avai­lab­le; some offer CO2 pre­ssu­re at the out­put, which can go straight into the tank. It can be com­bi­ned using sole­no­id val­ves, which would open accor­ding to a switch. I mana­ge it so that I alwa­ys inject CO2 in the mor­ning. I do not recom­mend cons­tan­tly satu­ra­ting the aqu­arium, pus­hing car­bon dioxi­de into the water through open val­ves, for exam­ple, through spra­y­ing using a fil­ter. In any case, whet­her pur­cha­sing a com­mer­cial pro­duct or a DIY solu­ti­on, it should be bor­ne in mind that gas dif­fu­si­on in water is about 4 times lower than in air. So, simi­lar­ly to oxy­gen, CO2 is absor­bed in lar­ger quan­ti­ties assu­ming the for­ma­ti­on of smal­ler bubb­les. Hen­ry­’s law sta­tes that the con­cen­tra­ti­on of dis­sol­ved gas is direct­ly pro­por­ti­onal to the par­tial pre­ssu­re of the gas abo­ve its sur­fa­ce – it is essen­tial­ly ana­lo­gous to osmo­tic phenomena.


Torf senkt den pH-​Wert und die Was­ser­här­te und lie­fert dem Was­ser Humin­sä­u­ren und ande­re orga­nis­che Sub­stan­zen. PMDD ist ein weit verb­re­i­te­ter nicht kom­mer­ziel­ler Dün­ger. Er wird aus Kalium­sul­fat, Magnesiumsulfat-​Heptahydrat, Kalium­nit­rat und Spu­re­ne­le­men­ten wie B, Ca, Cu, Fe, Mn, Mo, Zn gemischt, die in Form orga­nis­cher Kom­ple­xe vor­lie­gen. Es han­delt sich um eine gee­ig­ne­te Kom­bi­na­ti­on, bei der Spu­re­ne­le­men­te wahrs­che­in­lich am wich­tigs­ten sind. Ich füge kein CO2 nach dem bekann­ten Gärungs­pro­zess hin­zu. Es reicht jedoch eine Flas­che, in die wir fast bis zum Rand Was­ser gie­ßen, Hefe und Zuc­ker hin­zu­fügen. Ich emp­feh­le, zu Beginn war­mes Was­ser zu ver­wen­den (etwa 35°C). Ich versch­lie­ße die Flas­che mit einem Stop­fen, in den ich ein Loch für einen Sch­lauch habe, der im Aqu­arium mit einem Lufts­prud­ler oder einem Kalk­holzs­tück endet. Auch ein Ziga­ret­ten­fil­ter kann erfolg­re­ich ver­wen­det wer­den. Alter­na­tiv endet der Sch­lauch im Aqu­arium­fil­ter, durch den er in das Was­ser sprüht. Ein sol­cher CO2-​Spender kann Koh­len­di­oxid für 35 Wochen pro­du­zie­ren. Es hat jedoch den Feh­ler, dass es nicht gegen einen plötz­li­chen Ans­tieg der CO2-​Produktion ges­chützt ist. Es ist bes­ser, nachts kein CO2 in den Tank zu pum­pen. CO2-​Zylinder zur Hers­tel­lung von Soda kön­nen eben­falls zur CO2-​Produktion ver­wen­det wer­den. Auf dem Mar­kt gibt es vers­chie­de­ne CO2-​Diffusoren. Ich ver­wen­de einen CO2-​Zylinder mit Druck­reg­ler und einem Nadel” (Fahrrad)-Ventil, von dem aus ein Sch­lauch in den Behäl­ter im Aqu­arium führt. Es funk­ti­oniert so, dass das Was­ser so viel CO2 anfragt”, wie es benötigt”. Auf die­se Wei­se erre­i­che ich eine maxi­mal ver­nünf­ti­ge Sät­ti­gung des Aqu­ariums mit Koh­len­di­oxid. Der Druck­reg­ler ist dafür da, den Druck auf 5 Atmo­sp­hä­ren zu redu­zie­ren. Das Nadel­ven­til redu­ziert den Druck im All­ge­me­i­nen auf ein für einen nor­ma­len dün­nen Aqu­arien­sch­lauch gee­ig­ne­tes Nive­au. Es gibt auch nor­ma­le Nadel­ven­ti­le, aber ich ver­wen­de ein Ven­til, das von Rad­fah­rern zum Auf­pum­pen von Rei­fen ver­wen­det wird. Es kos­tet weni­ger als 10 €. Es gibt vers­chie­de­ne Druck­reg­ler erhält­lich; eini­ge bie­ten CO2-​Druck am Aus­gang an, der direkt in den Tank gele­i­tet wer­den kann. Es kann mit Hil­fe von Mag­nets­pu­len­ven­ti­len kom­bi­niert wer­den, die sich ents­pre­chend einem Schal­ter öff­nen wür­den. Ich ste­ue­re es so, dass ich immer mor­gens CO2 eins­prit­ze. Ich emp­feh­le nicht, das Aqu­arium stän­dig zu sät­ti­gen, indem man Koh­len­di­oxid durch offe­ne Ven­ti­le in das Was­ser pumpt, beis­piel­swe­i­se durch Sprühen mit einem Fil­ter. Auf jeden Fall, ob Sie ein kom­mer­ziel­les Pro­dukt kau­fen oder eine DIY-​Lösung ver­wen­den, soll­te beach­tet wer­den, dass die Gas­dif­fu­si­on im Was­ser etwa 4‑mal gerin­ger ist als in der Luft. Also wird, ähn­lich wie bei Sau­ers­toff, CO2 in größe­ren Men­gen auf­ge­nom­men, voraus­ge­setzt, es ents­te­hen kle­i­ne­re Bla­sen. Das Hen­rys­che Gesetz besagt, dass die Kon­zen­tra­ti­on des gelös­ten Gases direkt pro­por­ti­onal zum Par­tial­druck des Gases über sei­ner Oberf­lä­che ist – es ist im Wesen­tli­chen ana­log zu osmo­tis­chen Phänomenen.

Use Facebook to Comment on this Post

Akvaristika, Organizmy, Príroda, Ryby, Údržba, Živočíchy

Založenie akvária

Hits: 57583

Pri zakla­da­ní akvá­ria je ide­ál­ne, ak si akva­ris­ta najprv zaob­sta­rá samot­nú nádrž a sto­jan, vyba­ví sa potreb­nou tech­ni­kou a až potom si zado­vá­ži vod­né rast­li­nyryby. Pred zado­vá­že­ním nádr­že pre vaše rybič­ky sto­jí­me pred základ­nou otáz­kou, aké veľ­ké bude vaše nové akvá­ri­um. Kaž­do­pád­ne je dob­ré, ak chce­me cho­vať ryby, aby sme pred­tým roz­mýš­ľa­li, kde bude ich život­ný pries­tor, v čom budú exis­to­vať. Nuž a to so sebou pri­ne­sie aj odpo­ve­de na otáz­ky, aký bude zabe­rať pries­tor samot­ná nádrž, či bude nut­ný sto­jan, akú pou­žiť elek­tro­in­šta­lá­ciu, tech­ni­ku, pomôc­ky. Ako zalo­žiť akvá­ri­um, aby fun­go­va­lo pod­ľa vašich pred­stáv? Ak máme novú nádrž, kto­rá je čerstvo zle­pe­ná, odpo­rú­čam umyť naj­mä spo­je octom a násled­ne celú nádrž oplách­nuť vodou. Do nádr­že nasyp­me na dno štrk. Štrk by mal byť skôr hlad­ký. Na ostrých hra­nách sa ryby môžu pora­niť. Dno akvá­ria je veľ­mi dôle­ži­té. Ryby pro­du­ku­jú exkre­men­ty, kto­rý spra­cú­va naj­mä mik­rof­ló­ra a neskôr z neho čer­pa­jú živi­ny rast­li­ny. Ide­ál­ne je pou­žiť rieč­ny štrk. Ak pou­ži­je­me mor­ský a záro­veň kre­mi­či­tý štrk, nemu­sí­me sa sta­rať o uvoľ­ňo­va­nie vápe­na­tých a horeč­na­tých solí do vody, čiže štrk vám nebu­de zvy­šo­vať tvrdo­sť vody.

Ak chce­me úspeš­ne pes­to­vať rast­li­ny, odpo­rú­čam jem­ný štrk s veľ­kos­ťou frak­cie 14 mm. Samoz­rej­me jed­not­li­vé dru­hy rýb majú rôz­ne náro­ky na veľ­kosť štr­ku. Štrk dosta­ne­me kúpiť v akva­ris­tic­kom obcho­de, ale­bo si ho zado­vá­ži­me vlast­ný­mi pros­tried­ka­mi. Ak máme mož­nosť, pou­ži­me tzv. sta­rý štrk z nádr­že od zná­me­ho, prí­pad­ne si pomô­že­me z iné­ho už zabe­hnu­té­ho akvá­ria. Taký­to štrk už v sebe obsa­hu­je mik­ro­or­ga­niz­my, kto­ré napo­mô­žu úspeš­né­mu roz­vo­ju vašej nádr­že. Vaše akvá­ri­um tak­to sa rých­lej­šie zabeh­ne. Štrk z obcho­du ale­bo z prí­ro­dy pred pou­ži­tím pre­my­me vo vode. Štrk sám je chu­dob­ný na využi­teľ­né živi­ny, ale je sub­strá­tom pre roz­voj mik­ro­or­ga­niz­mov. Štrk na vami poža­do­va­nú veľ­kosť si môže­me sami pre­osiať. Do jem­nej­šie­ho štr­ku sa aj rast­li­ny sadia lep­šie. Do štr­ku môže­me pri zakla­da­ní akvá­ria hneď pri­dať aj hno­ji­vo, sub­strát pre rast­li­ny, napr. kús­ky dre­va, jel­šo­vé šiš­ky, raše­li­nu, pev­né komerč­né ale­bo vlast­né hno­ji­vo. Všet­ko pod­ľa náro­kov a mož­nos­tí váš­ho budú­ce­ho akvá­ria. Mini­mál­ne množ­stvo štr­ku, kto­ré si dob­ré akvá­ri­um vyža­du­je, je 5 cm po plo­che celé­ho dna. Ak však chce­me docie­liť per­fekt­ný rast rast­lín, je vhod­ná 10 cm vrstva štr­ku. Všet­ko závi­sí na tom, čo chce­me a aké máme pros­tried­ky. Do men­šie­ho akvá­ria prav­de­po­dob­ne dáme niž­šiu vrstvu štr­ku ako do väč­šie­ho. Vhod­nosť závi­sí aj od dru­hov vod­ných rast­lín, kto­ré chce­me pes­to­vať. Mohut­nej­šie rast­li­ny vyža­du­jú vyš­šiu vrstvu štrku.

Dno môže­me tva­ro­vať, v zása­de vza­du je kraj­šie a prak­tic­kej­šie mať vyš­šiu vrstvu ako vpre­du. Štrk sa však časom začne hýbať“, a pre­to môže­me vytvo­riť tera­sy ale­bo pou­žiť iné tech­nic­ké rie­še­nia, kto­ré zafi­xu­jú tvar dna. Pie­sok do akvá­ria v zása­de nepat­rí. Ak pred­sa len pie­sok chce­me, tak pou­ži­me hru­bo­zrn­ný. Jem­ný pie­sok tvo­rí ťaž­ké, zľa­hnu­té, málo prie­pust­né dno. Do akvá­ria urči­te chce­me nasa­diť ryby a rast­li­ny. Len­že na to, aby sa ryby a rast­li­ny moh­li v akvá­riu cítiť dob­re, a aby sa vám akvá­ri­um páči­lo, je nut­né pou­žiť deko­rá­ciu a potreb­nú tech­ni­ku. Zalo­žiť akvá­ri­um bez tech­ni­ky, prí­pad­ne s mini­mom tech­ni­ky mož­né je, začia­toč­ní­kom to však neod­po­rú­čam. Ak už máte v nádr­ži štrk, osaď­te tech­ni­ku a deko­rá­ciu. Tech­ni­ka sa dá zakryť deko­rá­ci­ou, prav­da­že aj rast­li­na­mi a je vhod­né na to mys­lieť dopre­du. Ako deko­rá­ci­ou sa dá pou­žiť ska­la, dre­vo, kera­mic­ká jas­kyn­ka apod. Viac o tom v samos­tat­nom člán­ku.

Tech­ni­ku tvo­rí napr. fil­ter, ohrie­vač, vzdu­cho­va­cí kameň, tep­lo­mer. V prí­pa­de ak pou­ži­je­te 3D poza­die, je urči­te vhod­nej­šie ho inšta­lo­vať do nena­pus­te­nej nádr­že. Tape­ta na zadnú ste­nu sa rov­na­ko ľah­šie nale­pu­je na prázd­ne akvá­ri­um, aj keď ja som pro­ti tape­tám v bež­nej akva­ris­tic­kej pra­xi. Na cel­kom prázd­ne akvá­ri­um sa výbor­ne nale­pu­je samo­le­pia­ca fólia, pre­fe­ru­jem čier­nu a lepím ju čas­to aj na boč­né ste­ny. Samoz­rej­me, pat­rí na zadnú ste­nu. Keď ste tie­to kro­ky absol­vo­va­li, pri­stúp­me ku napus­te­niu nádr­že vodou. Viac sa hodí stu­de­ná voda. Ak je k dis­po­zí­cii, je vhod­né pou­žiť aj zabe­hnu­tú vodu z iné­ho akvá­ria. Napr. od neja­ké­ho akva­ris­tu, prí­pad­ne z akvá­ria kto­ré už neja­ký čas máme. Celý pro­ces zabe­hnu­tia akvá­ria to uľah­čí a urých­li. Po napus­te­ní vody zapni­me fil­ter a nechaj­me vodu fil­tro­vať aspoň týž­deň. Ana­lo­gic­ky, ak máme mož­nosť, infi­kuj­me fil­trač­nú hmo­tu vodou z iné­ho akvá­ria. Napr. tak, že sta­rú vlož­ku vyper­me vo vode z akvá­ria a novú vlož­ku v tej­to zaka­la­nej vode umy­me“. Tým sa mik­ro­oga­niz­my naoč­ku­jú do novej vlož­ky a urých­li sa pro­ces zave­de­nia filtra.

S rast­li­na­mi a ryba­mi zatiaľ trpez­li­vo vyčkaj­me. Po týžd­ni vypus­ti­me tre­ti­nu vody a nasaď­me rast­li­ny – ide­ál­ne rých­lo­ras­tú­ce dru­hy ako Sagit­ta­ria subu­la­ta, Hyg­rop­hi­la polys­pe­ma a zapni­me osvet­le­nie vzdu­cho­va­nie. Vzdu­cho­va­nie je veľ­mi účin­ný nástroj na potla­če­nie mno­hých nepriaz­ni­vých situ­ácií. Osvet­le­nie nechaj­me zapnu­té po dobu 12 hodín den­ne. Ten­to stav pone­chaj­me ďal­ších aspoň 5 dní. Cyk­lus dusí­ka trvá nie­čo vyše mesia­ca. Po dvoch týžd­ňoch od napus­te­nia vody je kon­cen­trá­cia amo­nia­ku naj­vyš­šia. V prí­pa­de, že sme nie­čo zaned­ba­li, môže sa nám stať, že zací­ti­me amo­niak. To ale zna­me­ná, že sme nie­kde spra­vi­li chy­bu. Ak sme dovte­dy nena­sa­di­li rast­li­ny, tak teraz je tá správ­na chví­ľa. Navy­še tre­ba zapnúť vzdu­cho­va­nie. Po troch – šty­roch týžd­ňoch môže­me nasa­diť ryby. Sta­rost­li­vo sle­duj­me ich sprá­va­nie, prí­pad­né zna­ky cho­ro­by ale­bo otra­vy neza­ned­baj­me. V prí­pa­de veľ­kých prob­lé­mov vyme­ní­me časť vody, pri­daj­me vzdu­cho­va­nie, v extrém­nom prí­pa­de vylov­te ryby do inej vody, tre­bárs aj čerstvej.

Koľ­ko rýb však vo svo­jom akvá­riu cho­vať? V prvom rade neod­po­rú­čam pre­ryb­ňo­vať nádrž. Tre­ba uvá­žiť, že ryby časom vyras­tú, pri­čom ras­tú celý život. Iné náro­ky vyža­du­jú väč­šie dru­hy rýb ako men­šie. Situ­ácia závi­sí aj od tech­ni­ky, od špe­ci­fic­kých vlast­nos­tí jed­not­li­vých dru­hov. Veľ­mi zhru­ba sa dá pove­dať, že na cen­ti­me­ter dĺž­ky tela ryby by sme mali rátať s lit­rom vody. Pove­dz­me, že máme 1 000 lit­ro­vé akvá­ri­um. Moh­lo by v ňom byť napr. 200300 neóniek, ale­bo 50 väč­ších dru­hov rýb veľ­kos­ti 1020 cm. V prí­pa­de, že nasa­dí­te prí­liš malý počet rýb, vaše ryby môžu vyka­zo­vať zme­ny v sprá­va­ní od nor­má­lu. Napr. veľ­kú vyľa­ka­nosť strach. V takom prí­pa­de je dob­ré uva­žo­vať o zvý­še­ní počtu rýb s ohľa­dom na ich budú­cu veľ­kosť. Pomô­že aj vytvo­re­nie via­ce­rých úkry­tov. Vaše akvá­ri­um, ryby, osa­den­stvo aj tech­ni­ka si bude vyža­do­vať váš čas a vedo­mos­ti, bez toho to nepôj­de. Na dru­hej stra­ne vám doká­že uká­zať nád­her­né veci a vie byť pek­ným dopl­n­kom vo vašej domác­nos­ti. Kým sa akvá­ri­um zabeh­ne, uply­nie pol roka. Mož­no nasta­nú prob­lé­my, nene­chaj­me sa však odra­diť. Udr­žia­vať akvá­ri­um nie je jed­no­du­ché, naj­mä pre začia­toč­ní­ka. Akvá­ri­um závi­sí od mno­hých fak­to­rov. Tre­ba sa im len sna­žiť poro­zu­mieť. Skús­me sa na to pozrieť tak, že even­tu­ál­ne stra­ty, ku kto­rým sami nein­for­mo­va­nos­ťou ale­bo zľah­če­ním môže­me dospieť, sa ude­jú z náš­ho vrec­ka. Často­krát počú­vam postu­py, kto­ré sa sna­žia o bles­ko­vé zave­de­nie rýb. Zväč­ša sa to potom kon­čí mojím kon­šta­to­va­ním: Veď vy ste tie ryby otrá­vi­li”. Bon­mo­ty naučil som ryby plá­vať znak.” nie sú pre ryby šťast­né. Akvá­ri­um si vyža­du­je, aby sa mu člo­vek veno­val a ono sa mu potom odvďa­čí. Želám všet­kým akva­ris­tom veľa úspe­chov s ich akváriami.


When set­ting up an aqu­arium, it’s ide­al for the aqu­arist to first acqu­ire the tank itself and a stand, equ­ip it with the neces­sa­ry equ­ip­ment, and then pro­cu­re aqu­atic plants and fish. Befo­re obtai­ning the tank for your fish, you face the fun­da­men­tal ques­ti­on of how lar­ge your new aqu­arium will be. Nevert­he­less, it’s good prac­ti­ce, if we intend to keep fish, to con­si­der befo­re­hand whe­re the­ir living spa­ce will be, how they will exist. This will lead to answers about the size of the tank itself, whet­her a stand will be neces­sa­ry, what elect­ri­cal ins­tal­la­ti­on, equ­ip­ment, and tools to use. How to set up an aqu­arium to make it work accor­ding to your pre­fe­ren­ces? If we have a new tank that has just been sea­led, I recom­mend was­hing the joints with vine­gar and then rin­sing the enti­re tank with water. Fill the bot­tom of the tank with gra­vel. The gra­vel should be smo­oth rat­her than sharp-​edged to pre­vent fish from get­ting inju­red. The bot­tom of the aqu­arium is very impor­tant. Fish pro­du­ce was­te, which is main­ly pro­ces­sed by mic­rof­lo­ra and later absor­bed by plants. It’s ide­al to use river gra­vel. If we use mari­ne and sili­ce­ous gra­vel, we don’t need to wor­ry about the rele­a­se of cal­cium and mag­ne­sium salts into the water, so the gra­vel won’t inc­re­a­se water hardness.

If we want to suc­cess­ful­ly grow plants, I recom­mend using fine gra­vel with a par­tic­le size of 14 mm. Of cour­se, dif­fe­rent types of fish have dif­fe­rent requ­ire­ments for gra­vel size. Gra­vel can be pur­cha­sed at a pet sto­re or obtai­ned by other means. If possib­le, use so-​called old gra­vel from a tank belo­n­ging to a friend or from anot­her estab­lis­hed aqu­arium. Such gra­vel alre­a­dy con­tains mic­ro­or­ga­nisms that will help the suc­cess­ful deve­lop­ment of your tank. Your aqu­arium will thus estab­lish itself more quick­ly. Gra­vel from a sto­re or from natu­re should be rin­sed in water befo­re use. Gra­vel itself is poor in usab­le nut­rients but ser­ves as a sub­stra­te for the deve­lop­ment of mic­ro­or­ga­nisms. We can sift the gra­vel to the desi­red size. Finer gra­vel is bet­ter for plan­ting. We can also add fer­ti­li­zer, sub­stra­te for plants, such as pie­ces of wood, alder cones, peat, solid com­mer­cial or home­ma­de fer­ti­li­zer, direct­ly into the gra­vel when set­ting up the aqu­arium. All accor­ding to the requ­ire­ments and possi­bi­li­ties of your futu­re aqu­arium. The mini­mum amount of gra­vel requ­ired for a good aqu­arium is 5 cm across the enti­re bot­tom area. Howe­ver, if we want to achie­ve per­fect plant gro­wth, a lay­er of gra­vel 10 cm deep is suitab­le. It all depends on what we want and what resour­ces we have. For a smal­ler aqu­arium, we pro­bab­ly use a lower lay­er of gra­vel than for a lar­ger one. Suita­bi­li­ty also depends on the types of aqu­atic plants we want to grow. Lar­ger plants requ­ire a thic­ker lay­er of gravel.

We can sha­pe the bot­tom; in gene­ral, it’s nicer and more prac­ti­cal to have a hig­her lay­er at the back than at the front. Howe­ver, over time, the gra­vel will start to move,” so we can cre­a­te ter­ra­ces or use other tech­ni­cal solu­ti­ons to fix the sha­pe of the bot­tom. Sand does not belo­ng in the aqu­arium. If we still want to use sand, we should use coarse-​grained sand. Fine sand forms a den­se, com­pact, and poor­ly per­me­ab­le bot­tom. We defi­ni­te­ly want to stock fish and plants in our aqu­arium. Howe­ver, to ensu­re that fish and plants feel good in the aqu­arium and that you like your aqu­arium, it’s neces­sa­ry to use deco­ra­ti­ons and the neces­sa­ry equ­ip­ment. Set­ting up an aqu­arium wit­hout tech­no­lo­gy or with mini­mal tech­no­lo­gy is possib­le, but I don’t recom­mend it for begin­ners. Once you have the gra­vel in the tank, ins­tall the tech­no­lo­gy and deco­ra­ti­on. The tech­no­lo­gy can be cove­red with deco­ra­ti­on, pre­fe­rab­ly also with plants, and it’s good to plan this in advan­ce. Deco­ra­ti­on can inc­lu­de rocks, wood, cera­mic caves, etc. More about this in a sepa­ra­te article.

The equ­ip­ment inc­lu­des, for exam­ple, a fil­ter, hea­ter, air sto­ne, and ther­mo­me­ter. If you use a 3D backg­round, it’s defi­ni­te­ly bet­ter to ins­tall it in an emp­ty tank. Wall­pa­per on the back wall is also easier to app­ly to an emp­ty aqu­arium, alt­hough I am against wall­pa­pers in regu­lar aqu­arium prac­ti­ce. Self-​adhesive film adhe­res very well to a com­ple­te­ly emp­ty aqu­arium, espe­cial­ly if it’s black, and I often stick it to the side walls. Of cour­se, it’s for the back wall. Once you­’ve com­ple­ted the­se steps, let’s pro­ce­ed to fill the tank with water. Cold water is more suitab­le, if avai­lab­le, it’s advi­sab­le to use sea­so­ned water from anot­her aqu­arium, for exam­ple, from anot­her aqu­arist or from an aqu­arium that you­’ve had for some time. This will faci­li­ta­te and spe­ed up the enti­re pro­cess of set­ting up the aqu­arium. After fil­ling the tank with water, turn on the fil­ter and let the water fil­ter for at least a week. Simi­lar­ly, if possib­le, infect the fil­ter mate­rial with water from anot­her aqu­arium. For exam­ple, rin­se the old fil­ter car­trid­ge in water from the aqu­arium and cle­an” the new car­trid­ge in this mur­ky water. This will ino­cu­la­te mic­ro­or­ga­nisms into the new car­trid­ge and spe­ed up the pro­cess of intro­du­cing the filter.

Let’s patien­tly wait with plants and fish for now. After a week, drain one-​third of the water and plant the plants – ide­al­ly fast-​growing spe­cies such as Sagit­ta­ria subu­la­ta, Hyg­rop­hi­la polysperma,

and turn on the ligh­ting and aera­ti­on. Aera­ti­on is a very effec­ti­ve tool for supp­res­sing many unfa­vo­rab­le situ­ati­ons. Lea­ve the ligh­ting on for 12 hours a day. Main­tain this sta­te for at least anot­her 5 days. The nit­ro­gen cyc­le takes just over a month. After two weeks from fil­ling the water, the con­cen­tra­ti­on of ammo­nia is hig­hest. If we have neg­lec­ted somet­hing, we may expe­rien­ce ammo­nia spi­kes. Howe­ver, this means that we have made a mis­ta­ke some­whe­re. If we have­n’t plan­ted any plants by then, now is the right time. Also, make sure to turn on aera­ti­on. After three to four weeks, we can add fish. Care­ful­ly moni­tor the­ir beha­vi­or and don’t neg­lect any signs of dise­a­se or poiso­ning. In case of major prob­lems, chan­ge part of the water, add aera­ti­on, and in extre­me cases, remo­ve the fish to dif­fe­rent water, even fresh water.

But how many fish should we keep in our aqu­arium? First of all, I don’t recom­mend overs­toc­king the tank. Con­si­der that fish will grow over time, and they grow throug­hout the­ir lives. Lar­ger fish spe­cies requ­ire dif­fe­rent con­di­ti­ons than smal­ler ones. The situ­ati­on also depends on the tech­no­lo­gy and the spe­ci­fic cha­rac­te­ris­tics of each spe­cies. Rough­ly spe­a­king, we should cal­cu­la­te one liter of water per cen­ti­me­ter of fish body length. Let’s say we have a 1,000-liter aqu­arium. It could con­tain, for exam­ple, 200300 neon tetras, or 50 lar­ger fish spe­cies ran­ging in size from 10 to 20 cm. If you start with too few fish, your fish may show chan­ges in beha­vi­or from the norm, such as gre­at timi­di­ty or even fear. In such cases, it’s good to con­si­der inc­re­a­sing the num­ber of fish with regard to the­ir futu­re size. Cre­a­ting mul­tip­le hiding pla­ces can also help. Your aqu­arium, fish, inha­bi­tants, and tech­no­lo­gy will requ­ire your time and kno­wled­ge, it won’t work wit­hout them. On the other hand, it can show you won­der­ful things and be a nice addi­ti­on to your home. It takes about six months for the aqu­arium to sta­bi­li­ze. The­re may be prob­lems, but don’t let them dis­cou­ra­ge you. Main­tai­ning an aqu­arium is not easy, espe­cial­ly for a begin­ner. An aqu­arium depends on many fac­tors. We just need to try to unders­tand them. Let’s look at it in a way that any poten­tial los­ses resul­ting from our igno­ran­ce or neg­li­gen­ce will come from our own poc­ket. I often hear about pro­ce­du­res that aim for a quick intro­duc­ti­on of fish. It usu­al­ly ends with my obser­va­ti­on: Well, you­’ve poiso­ned tho­se fish.” The quips I taught the fish to swim sign” are not luc­ky for the fish. The aqu­arium requ­ires atten­ti­on from a per­son, and then it will repay them. I wish all aqu­arists suc­cess with the­ir aquariums.


Beim Ein­rich­ten eines Aqu­ariums ist es ide­al, wenn der Aqu­aria­ner zuerst das eigen­tli­che Bec­ken und einen Stän­der besorgt, es mit der not­wen­di­gen Aus­rüs­tung auss­tat­tet und dann erst Was­serpf­lan­zen und Fis­che bes­chafft. Bevor man das Bec­ken für die Fis­che bes­chafft, steht man vor der grund­le­gen­den Fra­ge, wie groß das neue Aqu­arium sein wird. Trotz­dem ist es rat­sam, wenn wir Fis­che hal­ten wol­len, im Voraus zu über­le­gen, wo ihr Lebens­raum sein wird, wie sie exis­tie­ren wer­den. Dies wird Ant­wor­ten auf Fra­gen lie­fern, wie groß das Bec­ken selbst sein wird, ob ein Stän­der erfor­der­lich sein wird, wel­che elek­tris­che Ins­tal­la­ti­on, wel­che Aus­rüs­tung und Werk­ze­uge ver­wen­det wer­den sol­len. Wie rich­tet man ein Aqu­arium ein, damit es nach Ihren Vors­tel­lun­gen funk­ti­oniert? Wenn wir ein neues Bec­ken haben, das gera­de ver­sie­gelt wur­de, emp­feh­le ich, die Fugen vor allem mit Essig zu rei­ni­gen und das gesam­te Bec­ken ansch­lie­ßend mit Was­ser zu spülen. Fül­len Sie den Boden des Bec­kens mit Kies. Der Kies soll­te eher glatt als scharf­kan­tig sein, um zu ver­hin­dern, dass sich die Fis­che ver­let­zen. Der Boden des Aqu­ariums ist sehr wich­tig. Fis­che pro­du­zie­ren Abfall, der haupt­säch­lich von Mik­rof­lo­ra verar­be­i­tet und spä­ter von Pflan­zen auf­ge­nom­men wird. Es ist ide­al, Fluss­kies zu ver­wen­den. Wenn wir mari­nen und kie­sel­sä­u­re­hal­ti­gen Kies ver­wen­den, müs­sen wir uns kei­ne Gedan­ken über die Fre­i­set­zung von Calcium- und Mag­ne­sium­sal­zen ins Was­ser machen, sodass der Kies die Was­ser­här­te nicht erhöht.

Wenn wir Pflan­zen erfolg­re­ich anbau­en wol­len, emp­feh­le ich fei­nen Kies mit einer Par­ti­kelg­röße von 14 mm. Natür­lich haben vers­chie­de­ne Fis­char­ten unters­chied­li­che Anfor­de­run­gen an die Kiesg­röße. Kies kann in einem Zoofach­ges­chäft gekauft oder ander­we­i­tig bes­chafft wer­den. Wenn mög­lich, ver­wen­den Sie so genann­ten alten Kies aus einem Aqu­arium eines Fre­un­des oder aus einem ande­ren etab­lier­ten Aqu­arium. Sol­cher Kies ent­hält bere­its Mik­ro­or­ga­nis­men, die die erfolg­re­i­che Ent­wick­lung Ihres Bec­kens för­dern wer­den. Ihr Aqu­arium wird sich so schnel­ler etab­lie­ren. Kies aus einem Ges­chäft oder aus der Natur soll­te vor Geb­rauch in Was­ser ges­pült wer­den. Kies selbst ist arm an ver­wert­ba­ren Nährs­tof­fen, dient jedoch als Sub­strat für die Ent­wick­lung von Mik­ro­or­ga­nis­men. Wir kön­nen den Kies auf die gewün­sch­te Größe sie­ben. Fei­ner Kies eig­net sich bes­ser zum Pflan­zen. Bei der Ein­rich­tung des Aqu­ariums kön­nen wir auch Dün­ger, Sub­strat für Pflan­zen wie Holzs­tüc­ke, Erlen­kätz­chen, Torf, fes­te kom­mer­ziel­le oder haus­ge­mach­te Dün­ger direkt in den Kies geben. Alles nach den Anfor­de­run­gen und Mög­lich­ke­i­ten Ihres zukünf­ti­gen Aqu­ariums. Die Min­des­tmen­ge an Kies, die ein gutes Aqu­arium benötigt, bet­rägt 5 cm über die gesam­te Boden­flä­che. Wenn wir jedoch ein per­fek­tes Pflan­zen­wachs­tum erre­i­chen wol­len, ist eine Schicht Kies von 10 cm gee­ig­net. Es hängt alles davon ab, was wir wol­len und wel­che Res­sour­cen wir haben. Für ein kle­i­ne­res Aqu­arium ver­wen­den wir wahrs­che­in­lich eine dün­ne­re Kies­chicht als für ein größe­res. Die Eig­nung hängt auch von den Arten von Was­serpf­lan­zen ab, die wir anbau­en möch­ten. Größe­re Pflan­zen benöti­gen eine dic­ke­re Kieschicht.

Wir kön­nen den Boden for­men; im All­ge­me­i­nen ist es schöner und prak­tis­cher, hin­ten eine höhe­re Schicht zu haben als vor­ne. Der Kies wird jedoch im Lau­fe der Zeit wan­dern”, daher kön­nen wir Ter­ras­sen ers­tel­len oder ande­re tech­nis­che Lösun­gen ver­wen­den, um die Form des Bodens zu fixie­ren. Sand gehört nicht ins Aqu­arium. Wenn wir trotz­dem Sand ver­wen­den möch­ten, soll­ten wir grob­kör­ni­gen Sand ver­wen­den. Fei­ner Sand bil­det einen dich­ten, kom­pak­ten und sch­lecht durch­läs­si­gen Boden. Wir wol­len auf jeden Fall Fis­che und Pflan­zen in unse­rem Aqu­arium unterb­rin­gen. Damit sich Fis­che und Pflan­zen im Aqu­arium wohl­füh­len kön­nen und Ihnen das Aqu­arium gefällt, ist es jedoch not­wen­dig, Deko­ra­ti­on und die erfor­der­li­che Tech­nik zu ver­wen­den. Ein Aqu­arium ohne Tech­nik oder mit mini­ma­ler Tech­nik ein­zu­rich­ten ist mög­lich, aber ich emp­feh­le es Anfän­gern nicht. Wenn Sie bere­its Kies im Bec­ken haben, ins­tal­lie­ren Sie die Tech­nik und Deko­ra­ti­on. Die Tech­nik kann mit Deko­ra­ti­on ver­dec­kt wer­den, auch mit Pflan­zen, und es ist rat­sam, dies im Voraus zu beden­ken. Als Deko­ra­ti­on kön­nen Ste­i­ne, Holz, kera­mis­che Höh­len usw. ver­wen­det wer­den. Mehr darüber in einem sepa­ra­ten Artikel.

Zur Tech­nik gehören zum Beis­piel Fil­ter, Hei­zung, Lufts­te­in, Ther­mo­me­ter. Wenn Sie 3D-​Hintergründe ver­wen­den, ist es defi­ni­tiv bes­ser, sie in ein lee­res Bec­ken zu ins­tal­lie­ren. Tape­ten an der Rück­wand las­sen sich eben­falls leich­ter auf ein lee­res Aqu­arium kle­ben, obwohl ich gegen Tape­ten in der her­kömm­li­chen Aqu­aris­tik bin. Selb­s­t­kle­ben­de Folie klebt auf einer kom­plett lee­ren Oberf­lä­che her­vor­ra­gend und ich bevor­zu­ge sch­war­ze und kle­be sie oft auch an die Sei­ten­wän­de. Natür­lich gehört sie an die Rück­wand. Wenn Sie die­se Sch­rit­te abgesch­los­sen haben, fül­len Sie das Bec­ken mit Was­ser. Kal­tes Was­ser ist bes­ser gee­ig­net. Wenn ver­füg­bar, ist es rat­sam, auch ver­wen­de­tes Was­ser aus einem ande­ren Aqu­arium zu ver­wen­den. Zum Beis­piel von einem ande­ren Aqu­aria­ner oder aus einem Aqu­arium, das Sie schon eine Wei­le haben. Der gesam­te Pro­zess der Ein­füh­rung eines Aqu­ariums wird dadurch erle­ich­tert und besch­le­unigt. Nach dem Befül­len des Was­sers schal­ten Sie den Fil­ter ein und las­sen Sie das Was­ser min­des­tens eine Woche fil­tern. Ana­log dazu kön­nen wir die Fil­ter­me­dien mit Was­ser aus einem ande­ren Aqu­arium infi­zie­ren, indem wir beis­piel­swe­i­se den alten Ein­satz im Was­ser aus dem Aqu­arium spülen und den neuen Ein­satz in die­sem trüben Was­ser was­chen”. Dadurch wer­den Mik­ro­or­ga­nis­men in den neuen Ein­satz ein­ge­fügt und der Pro­zess der Fil­te­re­in­füh­rung beschleunigt.

Las­sen Sie uns vorerst gedul­dig auf Pflan­zen und Fis­che war­ten. Nach einer Woche las­sen wir ein Drit­tel des Was­sers ab und pflan­zen Pflan­zen ein – ide­a­ler­we­i­se schnell wach­sen­de Arten wie Sagit­ta­ria subu­la­ta, Hyg­rop­hi­la polys­per­ma – und schal­ten Sie das Licht und die Belüf­tung ein. Belüf­tung ist ein sehr effek­ti­ves Mit­tel zur Unterd­rüc­kung vie­ler ungüns­ti­ger Situ­ati­onen. Las­sen Sie das Licht 12 Stun­den am Tag ein­ges­chal­tet. Behal­ten Sie die­sen Zus­tand min­des­tens wei­te­re 5 Tage bei. Der Sticks­toffk­re­is­lauf dau­ert etwas mehr als einen Monat. Nach zwei Wochen nach dem Befül­len des Was­sers ist die Ammo­niak­kon­zen­tra­ti­on am höchs­ten. Wenn wir etwas ver­nach­läs­sigt haben, kann es sein, dass wir Ammo­niaks­pit­zen erle­ben. Das bede­utet jedoch, dass wir irgen­dwo einen Feh­ler gemacht haben. Wenn wir bis dahin noch kei­ne Pflan­zen gepf­lanzt haben, ist jetzt der rich­ti­ge Zeit­punkt. Stel­len Sie außer­dem sicher, dass die Belüf­tung ein­ges­chal­tet ist. Nach drei bis vier Wochen kön­nen wir Fis­che ein­set­zen. Über­wa­chen Sie ihr Ver­hal­ten sorg­fäl­tig und ver­nach­läs­si­gen Sie kei­ne Anze­i­chen von Kran­khe­it oder Ver­gif­tung. Im Fal­le größe­rer Prob­le­me wech­seln Sie einen Teil des Was­sers, fügen Sie Belüf­tung hin­zu, und ent­fer­nen Sie im Extrem­fall die Fis­che in ein ande­res Was­ser, viel­le­icht sogar in fris­ches Wasser.

Aber wie vie­le Fis­che soll­ten wir in unse­rem Aqu­arium hal­ten? Zunächst ein­mal emp­feh­le ich, das Aqu­arium nicht zu über­be­set­zen. Beden­ken Sie, dass die Fis­che im Lau­fe der Zeit wach­sen und ihr gan­zes Leben lang wach­sen. Größe­re Fis­char­ten haben ande­re Anfor­de­run­gen als kle­i­ne­re. Die Situ­ati­on hängt auch von der Tech­no­lo­gie und den spe­zi­fis­chen Merk­ma­len jeder Art ab. Grob gesagt soll­ten wir pro Zen­ti­me­ter Fisch­kör­per­län­ge einen Liter Was­ser berech­nen. Neh­men wir an, wir haben ein 1.000-Liter-Aquarium. Es könn­te zum Beis­piel 200300 Neons oder 50 größe­re Fis­char­ten in Größen von 10 bis 20 cm ent­hal­ten. Wenn Sie mit zu weni­gen Fis­chen begin­nen, kön­nen Ihre Fis­che Ver­hal­ten­sän­de­run­gen von der Norm zei­gen, wie gro­ße Schüch­tern­he­it oder sogar Angst. In sol­chen Fäl­len ist es rat­sam, die Anzahl der Fis­che im Hinb­lick auf ihre zukünf­ti­ge Größe zu erhöhen. Das Schaf­fen meh­re­rer Vers­tec­ke kann eben­falls hilf­re­ich sein. Ihr Aqu­arium, Ihre Fis­che, die Ein­rich­tung und die Tech­nik erfor­dern Zeit und Wis­sen von Ihnen; ohne die­se wird es nicht funk­ti­onie­ren. Auf der ande­ren Sei­te kann es Ihnen wun­ders­chöne Din­ge zei­gen und eine schöne Ergän­zung zu Ihrem Zuhau­se sein. Es dau­ert etwa ein hal­bes Jahr, bis sich das Aqu­arium ein­ge­fah­ren hat. Es kön­nen Prob­le­me auft­re­ten, aber las­sen Sie sich davon nicht absch­rec­ken. Ein Aqu­arium zu pfle­gen ist nicht ein­fach, beson­ders für Anfän­ger. Ein Aqu­arium hängt von vie­len Fak­to­ren ab. Wir müs­sen ver­su­chen, sie zu vers­te­hen. Bet­rach­ten wir es so, dass mög­li­che Ver­lus­te, die durch unse­re Unkenn­tnis oder Leicht­fer­tig­ke­it verur­sacht wer­den kön­nen, aus unse­rer eige­nen Tas­che kom­men. Oft höre ich von Ver­fah­ren, die darauf abzie­len, Fis­che schnell ein­zu­set­zen. Nor­ma­ler­we­i­se endet dies mit mei­ner Fests­tel­lung: Aber Sie haben die Fis­che ver­gif­tet.” Die Anek­do­ten ich habe die Fis­che das Sch­wim­men gele­hrt” sind für die Fis­che nicht glück­lich. Ein Aqu­arium erfor­dert, dass man sich ihm wid­met, und es wird sich dann revan­chie­ren. Ich wün­sche allen Aqu­aria­nern viel Erfolg mit ihren Aquarien.

Use Facebook to Comment on this Post

Akvaristika, Biológia

Chemické procesy v akváriu

Hits: 20905

Ché­mie sa netre­ba báť, má svo­je pev­né záko­ni­tos­ti, ale bez jej aspoň malých vedo­mos­tí sa dá len veľ­mi ťaž­ko zaobísť pri úspeš­nom cho­ve, ale­bo pes­to­va­ní rast­lín. Bio­lo­gic­ké pro­ce­sy úzko súvi­sia aj s fyzi­kál­ny­mi zákon­mi. V prí­ro­de sa len veľ­mi málo látok v kva­pal­nom ale­bo plyn­nom sta­ve nachá­dza v stá­lom, neut­rál­nom sta­ve. Drvi­vá väč­ši­na látok je diso­ci­ova­ná na ióny. Schop­nosť via­zať sa na lát­ky, prv­ky je špe­ci­fic­ká, závi­sí od množ­stva che­mic­kých, ale aj fyzi­kál­nych fak­to­rov. Aj samot­ná voda sa vyzna­ču­je ioni­zá­ci­ou – veď kaž­dý z nás vie, že je vodi­čom elek­tric­ké­ho prú­du. O pH počul asi kaž­dý akva­ris­ta. Čo popi­su­je pH? Roz­diel­nu kon­cen­trá­ciu che­mic­ky čis­tých zlo­žiek vody – jed­not­li­vých zlo­žiek” tvo­ria­cich vodu. Voda posky­tu­je mož­nos­ti pre množ­stvo che­mic­kých reak­cií. Pre tie­to reak­cie je mož­né opí­sať rov­no­váž­ne kon­štan­ty. Nie je to nič nenor­mál­ne, nič ťaž­ko pocho­pi­teľ­né. Keď pou­ži­jem ana­ló­giu, je to pres­ne ako medzi ľuď­mi, aj tam exis­tu­je medzi nami urči­tá rov­no­vá­ha, urči­té napä­tie (tlak), kto­ré sa raz pri­klo­ní na jed­nu stra­nu, ino­ke­dy na opač­nú. A k pod­mien­kam, kto­ré urču­jú ten­to stav rov­na­ko pat­rí aj taká malič­kosť, ako odkiaľ fúka vie­tor”. Spo­meň­me si na osmó­zu, ale aj na to, čo sa sta­ne, keď uvoľ­ní­me ven­til na pneuma­ti­ke – časom sa vyrov­ná tlak. Che­mic­ká väz­ba je kreh­ká vec, podob­ne ako vzťa­hy medzi ľuď­mi. Aj medzi nami exis­tu­jú kata­ly­zá­to­ry, enzý­my podob­ne ako sa popi­su­jú v ché­mii a bio­ló­gii, kto­ré dovo­ľu­jú usku­toč­niť neja­ký pro­ces, neja­kú reak­ciu. Samoz­rej­me aj spo­ma­ľo­va­če – inhi­bí­to­ry.

Prí­ro­da má jed­not­ný základ, Aris­to­te­les ju chá­pe ako vznik, pod­sta­tu a vývoj vecí, a ja to vidím rov­na­ko. Ak sa k tomu posta­ví­me spo­loč­ne, máme väč­šiu šan­cu poro­zu­mieť aj akva­ris­ti­ke. Pocho­pe­nie súvis­los­tí rôz­nych ved­ných odbo­rov popi­su­je ter­mín kon­zi­lien­cia. Základ­ným sta­veb­ným prv­kov živých sústav je uhlík. Uhlík pat­rí spo­lu s vodí­kom, kys­lí­kom, dusí­kom, fos­fo­rom, sírou ku bio­gén­nym prv­kom. Ché­mia uhlí­ka tvo­rí samos­tat­ne sto­ja­cu dis­cip­lí­nu – orga­nic­kú ché­miu (neza­obe­rá sa len oxid­mi uhlí­ka). Uhlík tvo­rí naj­väč­šiu časť suši­ny rýb, rast­lín, aj mik­ro­or­ga­niz­mov. Asi kaž­dý z vás sa v živo­te stre­tol s poj­mom foto­syn­té­za. Aj táto reak­cia, kto­rá aj nám, ľuďom dovo­ľu­je exis­to­vať, sa točí oko­lo uhlí­ka. V akvá­riu sa uhlík vysky­tu­je naj­mä vo for­me oxi­du uhli­či­té­ho, uhli­či­ta­nov, hyd­ro­ge­nuh­li­či­ta­nov a kyse­li­ny uhli­či­tej. V akom pome­re závi­sí naj­mä od pH. Uhlík sa nachá­dza aj vo for­me biel­ko­vín v potra­ve, v dre­ve kde postup­ným roz­kla­dom dochá­dza ku štie­pe­niu biel­ko­vín na ami­no­ky­se­li­ny a násled­ne ku nit­ri­fi­ká­cii a denit­ri­fi­ká­cii, čo posú­va pH sme­rom dole – pro­stre­die sa okys­ľu­je. V denit­ri­fi­ká­cii nit­ri­fi­ká­cii hrá naj­dô­le­ži­tej­šiu úlo­hu dusík. V akvá­riu dochá­dza najprv ku nit­ri­fi­ká­cii. Najprv oxi­du­je amo­niak na dusi­ta­ny a dusič­na­ny pôso­be­ním nit­ri­fi­kač­ných bak­té­rií Nit­ro­so­mo­nas. Ako nám už naho­vá­ra pred­chá­dza­jú­ca veta, ten­to pro­ces je aerób­ny (za prí­stu­pu vzdu­chu). V ana­e­rób­nych pod­mien­kach dochá­dza k opač­né­mu pro­ce­su (redukč­né­mu) – ku denit­ri­fi­ká­cii. Dochá­dza ku reduk­cii zlú­če­nín dusí­ka na oxi­dy dusí­ka – N2O, NO, prí­pad­ne na až N2 pri pH vyš­šom ako 6 pôso­be­ním bak­té­rií Nit­ro­bac­ter. Keď­že ide o ply­ny, denit­ri­fi­ká­cia doká­že odstrá­niť z vody (akvá­ria) zlú­če­ni­ny dusí­ka. Tie­to pro­ce­sy sú pre akva­ris­ti­ku veľ­mi dôle­ži­té a v zása­de pozi­tív­ne naklo­ne­né. Toxi­ci­ta pro­duk­tov látok cyk­lu dusí­ka kle­sá v tom­to rade: NH3NO2NO3. Vyš­ší obsah dusič­na­nov nezná­ša­jú nie­kto­ré cit­li­vej­šie dru­hy – napr. ame­ric­ké Apis­to­gram­my. Toxi­ci­ta amo­nia­ku je vyš­šia pri vyš­šom pH. Viac amo­nia­ku sa nachá­dza vo vode s vyš­ším pH a vyš­šou tep­lo­tou.

Dusík pochá­dza zo štie­pe­nia biel­ko­vín, kto­ré dodá­va­me potra­vou. Najprv sa tvo­ria ami­no­ky­se­li­ny, neskôr amo­niak. Dusič­na­ny je mož­né účin­ne eli­mi­no­vať rast­li­na­mi, prí­pad­ne reverz­nou osmó­zou v zdro­jo­vej vode , ale­bo selek­tív­ny­mi ion­to­me­nič­mi. Fos­fo­reč­na­ny ( PO4) a ťaž­ké kovy ako napr. olo­vo, zinok sú takis­to toxic­ké. Nie­kto­ré kovy sú v sto­po­vom množ­stve žia­du­ce, ale vo vyš­šej kon­cen­trá­cií pôso­bia ako jedy. V prí­pa­de, že pri roz­kla­de hmo­ty je kys­lí­ko­vý defi­cit, pro­duk­ty hni­tia sú metán ( CH4), amo­niak, sul­fán ( H2S), kyse­li­na mlieč­na. Dru­hy nezná­ša­jú­ce prí­liš mäk­kú vodu čas­to trpia na vod­na­teľ­nosť. To je spô­so­be­né osmo­tic­kým tla­kom – z ich tela sa soli vypla­vu­jú a viac čis­tej vody pre­ni­ká do ich tela ako je únos­né. Oxid uhli­či­tý je nevy­hnut­ná anor­ga­nic­ká lát­ka, kto­rá však pri vyso­kej kon­cen­trá­cii pôso­bí ako nar­ko­ti­kum a ryby dusí. Nie­ke­dy sa tie­to účin­ky dajú využiť. Ak chce­me napr. ryby humán­ne usmr­tiť, sta­čí na to mine­rál­ka – tá by mala obsa­ho­vať viac ako 5% roz­pus­te­né­ho CO2. Medzi uhli­či­ta­no­vou tvrdo­s­ťou, pHoxi­dom uhli­či­tým je závis­losť. Obsah CO2 je nepria­mo úmer­ný ku pH a tep­lo­te a pria­mo úmer­ný ku uhli­či­ta­no­vej tvrdosti.


Che­mis­try should­n’t be fea­red; it has its solid laws, but wit­hout at least some kno­wled­ge of it, it’s very dif­fi­cult to suc­ce­ed in fish­ke­e­ping or plant cul­ti­va­ti­on. Bio­lo­gi­cal pro­ces­ses are clo­se­ly rela­ted to phy­si­cal laws as well. In natu­re, very few sub­stan­ces are found in a liqu­id or gase­ous sta­te in a stab­le, neut­ral sta­te. The vast majo­ri­ty of sub­stan­ces are dis­so­cia­ted into ions. The abi­li­ty to bind to sub­stan­ces, ele­ments, is spe­ci­fic and depends on many che­mi­cal and phy­si­cal fac­tors. Water itself is cha­rac­te­ri­zed by ioni­za­ti­on – as we all know, it con­ducts elect­ric cur­rent. Almost eve­ry aqu­arist has heard of pH. What does pH desc­ri­be? The dif­fe­ren­tial con­cen­tra­ti­on of che­mi­cal­ly pure com­po­nents in water – the indi­vi­du­al com­po­nents” that make up water. Water pro­vi­des oppor­tu­ni­ties for many che­mi­cal reac­ti­ons. Equ­ilib­rium cons­tants can desc­ri­be the­se reac­ti­ons. It’s not­hing abnor­mal, not­hing dif­fi­cult to unders­tand. Using an ana­lo­gy, it’s exact­ly like among peop­le; the­re­’s a cer­tain balan­ce among us, a cer­tain ten­si­on (pre­ssu­re) that some­ti­mes tilts to one side, some­ti­mes to the other. And the con­di­ti­ons that deter­mi­ne this sta­te inc­lu­de even such a tri­via­li­ty as whe­re the wind blo­ws from”. Let’s remem­ber osmo­sis, but also what hap­pens when we rele­a­se air from a tire val­ve – pre­ssu­re is equ­ali­zed over time. Che­mi­cal bon­ding is a fra­gi­le thing, just like rela­ti­ons­hips bet­we­en peop­le. Among us, the­re are cata­lysts, enzy­mes, as desc­ri­bed in che­mis­try and bio­lo­gy, which allow for some pro­cess, some reac­ti­on to take pla­ce. Of cour­se, the­re are also retar­dants – inhibitors.

Natu­re has a uni­fied foun­da­ti­on; Aris­tot­le unders­tands it as the ori­gin, essen­ce, and deve­lop­ment of things, and I see it the same way. If we app­ro­ach it toget­her, we have a gre­a­ter chan­ce of unders­tan­ding aqu­atics as well. Unders­tan­ding the con­nec­ti­ons bet­we­en dif­fe­rent scien­ti­fic dis­cip­li­nes is desc­ri­bed by the term con­ci­lien­ce. The basic buil­ding block of living sys­tems is car­bon. Car­bon, along with hyd­ro­gen, oxy­gen, nit­ro­gen, phosp­ho­rus, and sul­fur, belo­ngs to the bio­ge­nic ele­ments. Car­bon che­mis­try forms a sepa­ra­te dis­cip­li­ne – orga­nic che­mis­try (it’s not just about car­bon oxi­des). Car­bon cons­ti­tu­tes the lar­gest part of the dry mat­ter of fish, plants, and mic­ro­or­ga­nisms. Almost eve­ry­o­ne has encoun­te­red the con­cept of pho­to­synt­he­sis in life. Even this reac­ti­on, which allo­ws us humans to exist, revol­ves around car­bon. In the aqu­arium, car­bon occurs main­ly in the form of car­bon dioxi­de, car­bo­na­tes, bicar­bo­na­tes, and car­bo­nic acid. The ratio depends main­ly on pH. Car­bon is also found in the form of pro­te­ins in food, in wood whe­re gra­du­al decom­po­si­ti­on leads to the cle­a­va­ge of pro­te­ins into ami­no acids and sub­se­qu­en­tly to nit­ri­fi­ca­ti­on and denit­ri­fi­ca­ti­on, which lowers the pH – the envi­ron­ment beco­mes more aci­dic. Nit­ro­gen pla­ys the most impor­tant role in denit­ri­fi­ca­ti­on and nit­ri­fi­ca­ti­on. Nit­ri­fi­ca­ti­on occurs first in the aqu­arium. Ammo­nia is first oxi­di­zed to nit­ri­tes and nit­ra­tes by the acti­on of nit­ri­fy­ing bac­te­ria Nit­ro­so­mo­nas. As the pre­vi­ous sen­ten­ce sug­gests, this pro­cess is aero­bic (with access to air). Under ana­e­ro­bic con­di­ti­ons, the oppo­si­te (reduc­ti­ve) pro­cess occurs – denit­ri­fi­ca­ti­on. Com­pounds of nit­ro­gen are redu­ced to nit­ro­gen oxi­des – N2O, NO, or even to N2 at pH hig­her than 6 by the acti­on of Nit­ro­bac­ter bac­te­ria. Sin­ce the­se are gases, denit­ri­fi­ca­ti­on can remo­ve nit­ro­gen com­pounds from the water (aqu­arium). The­se pro­ces­ses are very impor­tant for aqu­aris­tics and are fun­da­men­tal­ly posi­ti­ve. The toxi­ci­ty of nit­ro­gen cyc­le pro­ducts dec­re­a­ses in this order: NH3NO2NO3. Some more sen­si­ti­ve spe­cies do not tole­ra­te hig­her levels of nit­ra­tes – for exam­ple, Ame­ri­can Apis­to­gram­mas. The toxi­ci­ty of ammo­nia is hig­her at hig­her pH. More ammo­nia is found in water with hig­her pH and temperature.

Nit­ro­gen comes from the bre­ak­do­wn of pro­te­ins pro­vi­ded by food. First, ami­no acids are for­med, later ammo­nia. Nit­ra­tes can be effec­ti­ve­ly eli­mi­na­ted by plants, rever­se osmo­sis in sour­ce water, or selec­ti­ve ion exchan­gers. Phosp­ha­tes (PO4) and hea­vy metals such as lead, zinc are also toxic. Some metals are desi­rab­le in tra­ce amounts but act as poisons in hig­her con­cen­tra­ti­ons. If the­re is an oxy­gen defi­cit during the decom­po­si­ti­on of mat­ter, the pro­ducts of rot­ting are met­ha­ne (CH4), ammo­nia, hyd­ro­gen sul­fi­de (H2S), lac­tic acid. Spe­cies not tole­ra­ting very soft water often suf­fer from flab­bi­ness. This is due to osmo­tic pre­ssu­re – salts are flus­hed out of the­ir bodies, and more pure water penet­ra­tes the­ir bodies than is tole­rab­le. Car­bon dioxi­de is a neces­sa­ry inor­ga­nic sub­stan­ce, but at high con­cen­tra­ti­ons, it acts as a nar­co­tic and suf­fo­ca­tes fish. Some­ti­mes the­se effects can be uti­li­zed. If, for exam­ple, we want to huma­ne­ly eut­ha­ni­ze fish, mine­ral water is suf­fi­cient – it should con­tain more than 5% dis­sol­ved CO2. The­re is a depen­den­ce bet­we­en car­bo­na­te hard­ness, pH, and car­bon dioxi­de. The con­tent of CO2 is inver­se­ly pro­por­ti­onal to pH and tem­pe­ra­tu­re and direct­ly pro­por­ti­onal to car­bo­na­te hardness.


Che­mie soll­te nicht gefürch­tet wer­den; sie hat ihre fes­ten Geset­ze, aber ohne zumin­dest etwas Wis­sen darüber ist es sehr sch­wer, beim erfolg­re­i­chen Fisch­hal­ten oder der Pflan­zen­zucht aus­zu­kom­men. Bio­lo­gis­che Pro­zes­se sind auch eng mit phy­si­ka­lis­chen Geset­zen ver­bun­den. In der Natur sind nur sehr weni­ge Sub­stan­zen in einem flüs­si­gen oder gas­för­mi­gen Zus­tand in einem sta­bi­len, neut­ra­len Zus­tand zu fin­den. Der über­wie­gen­de Teil der Sub­stan­zen ist in Ionen dis­so­zi­iert. Die Fähig­ke­it, sich an Sub­stan­zen und Ele­men­te zu bin­den, ist spe­zi­fisch und hängt von vie­len che­mis­chen und phy­si­ka­lis­chen Fak­to­ren ab. Was­ser selbst zeich­net sich durch Ioni­sie­rung aus – wie wir alle wis­sen, lei­tet es elek­tris­chen Strom. Fast jeder Aqu­aria­ner hat von pH gehört. Was besch­re­ibt der pH-​Wert? Die dif­fe­ren­tiel­le Kon­zen­tra­ti­on che­misch rei­ner Kom­po­nen­ten im Was­ser – die ein­zel­nen Kom­po­nen­ten”, die das Was­ser bil­den. Was­ser bie­tet Mög­lich­ke­i­ten für vie­le che­mis­che Reak­ti­onen. Gle­ich­ge­wicht­skons­tan­ten kön­nen die­se Reak­ti­onen besch­re­i­ben. Es ist nichts Abnor­ma­les, nichts Sch­wie­ri­ges zu vers­te­hen. Mit einer Ana­lo­gie ist es genau wie unter Men­schen; es gibt ein bes­timm­tes Gle­ich­ge­wicht zwis­chen uns, eine bes­timm­te Span­nung (Druck), die manch­mal auf die eine, manch­mal auf die ande­re Sei­te kippt. Und die Bedin­gun­gen, die die­sen Zus­tand bes­tim­men, umfas­sen selbst Kle­i­nig­ke­i­ten wie woher der Wind weht”. Den­ken wir an die Osmo­se, aber auch daran, was pas­siert, wenn wir Luft aus einem Rei­fen­ven­til ablas­sen – der Druck wird im Lau­fe der Zeit aus­geg­li­chen. Die che­mis­che Bin­dung ist eine fra­gi­le Sache, genau wie Bez­ie­hun­gen zwis­chen Men­schen. Unter uns gibt es Kata­ly­sa­to­ren, Enzy­me, wie sie in der Che­mie und Bio­lo­gie besch­rie­ben wer­den, die es ermög­li­chen, einen bes­timm­ten Pro­zess, eine bes­timm­te Reak­ti­on dur­ch­zu­füh­ren. Natür­lich gibt es auch Ver­zöge­rer – Inhibitoren.

Die Natur hat eine ein­he­it­li­che Grund­la­ge; Aris­to­te­les vers­teht sie als den Urs­prung, die Essenz und die Ent­wick­lung der Din­ge, und ich sehe das genau­so. Wenn wir uns geme­in­sam damit ause­i­nan­der­set­zen, haben wir eine größe­re Chan­ce, auch die Aqu­aris­tik zu vers­te­hen. Das Vers­tänd­nis der Zusam­men­hän­ge zwis­chen vers­chie­de­nen wis­sen­schaft­li­chen Dis­zip­li­nen wird durch den Beg­riff Kon­zi­lienz besch­rie­ben. Der grund­le­gen­de Baus­te­in leben­der Sys­te­me ist Koh­lens­toff. Koh­lens­toff gehört zusam­men mit Was­sers­toff, Sau­ers­toff, Sticks­toff, Phosp­hor und Sch­we­fel zu den bio­ge­nen Ele­men­ten. Die Koh­lens­toff­che­mie bil­det eine eigens­tän­di­ge Dis­zip­lin – die orga­nis­che Che­mie (es geht nicht nur um Koh­lens­tof­fo­xi­de). Koh­lens­toff macht den größten Teil der Troc­ken­mas­se von Fis­chen, Pflan­zen und Mik­ro­or­ga­nis­men aus. Fast jeder ist im Leben auf den Beg­riff Pho­to­synt­he­se ges­to­ßen. Auch die­se Reak­ti­on, die es uns Men­schen ermög­licht zu exis­tie­ren, dreht sich um Koh­lens­toff. Im Aqu­arium kommt Koh­lens­toff haupt­säch­lich in Form von Koh­len­di­oxid, Car­bo­na­ten, Bicar­bo­na­ten und Koh­len­sä­u­re vor. Das Ver­hält­nis hängt haupt­säch­lich vom pH-​Wert ab. Koh­lens­toff kommt auch in Form von Pro­te­i­nen in der Nahrung, im Holz vor, wo der all­mäh­li­che Zer­fall zur Spal­tung von Pro­te­i­nen in Ami­no­sä­u­ren und ansch­lie­ßend zur Nit­ri­fi­ka­ti­on und Denit­ri­fi­ka­ti­on führt, was den pH-​Wert senkt – die Umge­bung wird sau­rer. Sticks­toff spielt bei der Denit­ri­fi­ka­ti­on und Nit­ri­fi­ka­ti­on die wich­tigs­te Rol­le. Zuerst erfolgt in den Aqu­arien die Nit­ri­fi­ka­ti­on. Ammo­niak wird zunächst durch die Wir­kung von Nit­ri­fi­zie­rungs­bak­te­rien Nit­ro­so­mo­nas zu Nit­ri­ten und Nit­ra­ten oxi­diert. Wie der vor­he­ri­ge Satz nahe­legt, ist die­ser Pro­zess aerob (mit Zugang zu Luft). Unter ana­e­ro­ben Bedin­gun­gen tritt der umge­ke­hr­te (reduk­ti­ve) Pro­zess auf – die Denit­ri­fi­ka­ti­on. Sticks­toff­ver­bin­dun­gen wer­den zu Stic­ko­xi­den – N2O, NO oder sogar zu N2 bei einem pH-​Wert über 6 durch die Wir­kung von Nitrobacter-​Bakterien redu­ziert. Da es sich um Gase han­delt, kann die Denit­ri­fi­ka­ti­on Sticks­toff­ver­bin­dun­gen aus dem Was­ser (Aqu­arium) ent­fer­nen. Die­se Pro­zes­se sind für die Aqu­aris­tik sehr wich­tig und im Grun­de genom­men posi­tiv. Die Toxi­zi­tät der Pro­duk­te des Sticks­toffk­re­is­laufs nimmt in die­ser Rei­hen­fol­ge ab: NH3NO2NO3. Eini­ge emp­find­li­che­re Arten ver­tra­gen kei­ne höhe­ren Nit­rat­wer­te – zum Beis­piel ame­ri­ka­nis­che Apis­to­gram­mas. Die Toxi­zi­tät von Ammo­niak ist bei höhe­rem pH-​Wert höher. Mehr Ammo­niak wird in Was­ser mit höhe­rem pH-​Wert und Tem­pe­ra­tur gefunden.

Sticks­toff stammt aus dem Abbau von Pro­te­i­nen, die mit der Nahrung gelie­fert wer­den. Zuerst wer­den Ami­no­sä­u­ren gebil­det, spä­ter Ammo­niak. Nit­ra­te kön­nen effek­tiv von Pflan­zen, durch Umkeh­ros­mo­se im Aus­gang­swas­ser oder durch selek­ti­ve Ione­naus­taus­cher eli­mi­niert wer­den. Phosp­ha­te (PO4) und Sch­wer­me­tal­le wie Blei, Zink sind eben­falls gif­tig. Eini­ge Metal­le sind in Spu­ren­men­ge erwün­scht, wir­ken aber in höhe­ren Kon­zen­tra­ti­onen als Gif­te. Wenn es bei der Zer­set­zung von Mate­rie an Sau­ers­toff man­gelt, sind die Pro­duk­te der Fäul­nis Met­han (CH4), Ammo­niak, Was­sers­toff­sul­fid (H2S), Milch­sä­u­re. Arten, die kein sehr wei­ches Was­ser ver­tra­gen, lei­den oft unter Sch­laff­he­it. Dies ist auf den osmo­tis­chen Druck zurück­zu­füh­ren – Sal­ze wer­den aus ihren Kör­pern aus­ges­pült, und mehr rei­nes Was­ser dringt in ihre Kör­per ein, als tole­rier­bar ist. Koh­len­di­oxid ist eine not­wen­di­ge anor­ga­nis­che Sub­stanz, wir­kt aber in hohen Kon­zen­tra­ti­onen als Nar­ko­ti­kum und ers­tic­kt Fis­che. Manch­mal kön­nen die­se Effek­te genutzt wer­den. Wenn wir zum Beis­piel Fis­che auf huma­ne Wei­se töten wol­len, reicht Mine­ra­lwas­ser aus – es soll­te mehr als 5% gelös­tes CO2 ent­hal­ten. Es gibt eine Abhän­gig­ke­it zwis­chen Kar­bo­nat­här­te, pH-​Wert und Koh­len­di­oxid. Der Gehalt an CO2 ist indi­rekt pro­por­ti­onal zum pH-​Wert und zur Tem­pe­ra­tur und direkt pro­por­ti­onal zur Karbonathärte.

Use Facebook to Comment on this Post

Akvaristika, Biológia

Parametre vody

Hits: 39721

Voda – H2O je spo­lu zo sln­kom asi naj­dô­le­ži­tej­šia pod­mien­ka živo­ta. Je to zlú­če­ni­na vodí­ka a kys­lí­ka. Ak v ché­mii povie­me roz­to­ky bez ďal­šie­ho prí­vlas­t­ku, je jas­né že ide o roz­tok vo vode. Voda sa nachá­dza v živých sústa­vách, v tka­ni­vách živo­čí­chov, ple­ti­vách rast­lín, v pro­ka­ry­o­tic­kých orga­niz­moch, v bak­té­riách, v orga­ne­lách buniek. Vo vode vzni­kol aj život, voda dáva pries­tor vzni­ku. Medzi vodí­kom a kys­lí­kom je špe­ci­fic­ká väz­ba, takz­va­ná vodí­ko­vá väz­ba, pre­to­že inak by bola voda za nor­mál­nych fyzi­kál­nych pod­mie­nok pri izbo­vej tep­lo­te plyn. Navy­še voda má tú vlast­nosť, že je naj­ťaž­šia“ pre tep­lo­te 4°C. Vďa­ka tomu, rie­ky, jaze­rá, poto­ky v zime neza­mŕ­za­jú od dna, čo by malo fatál­ne dôsled­ky. Vodí­ko­vá väz­ba spô­so­bu­je aj ďal­šiu ano­má­liu – pev­né sku­pen­stvo vody je red­šie ako v sta­ve kva­pa­li­ny. To zaprí­či­ňu­je trha­nie fliaš, narú­ša­nie väzieb v bun­kách orga­niz­mov pri tep­lo­tách pod bodom mra­zu. Voda v prí­ro­de však nie je nikdy čis­tá. Vždy obsa­hu­je čosi v sebe. V nej sa roz­púš­ťa mno­ho látok ako som už naz­na­čil vyš­šie. More zamŕ­za pri niž­šej tep­lo­te ako slad­ká voda, pre­to­že obsa­hu­je rela­tív­ne vyš­šie per­cen­to prí­me­sí, naj­mä solí. Prie­mer­ne 3.5%. Bod mra­zu mor­skej vode je oko­lo ‑1.7 °C. Che­mic­ky čis­tá voda je voda ste­ril­ná. Sku­pen­stvá vody takis­to vie snáď kaž­dý pome­no­vať – ľad, voda, vod­ná para.

Voda sa vyzna­ču­je puf­rač­nou schop­nos­ťou v závis­los­ti od roz­pus­te­ných látok v nej. To zna­me­ná, že doká­že pomer­ne účin­ne tlmiť rôz­ne vply­vy. Pre akva­ris­tu je táto vlast­nosť tak­mer vždy výho­dou. Voda má vyš­šiu puf­rač­nú schop­nosť ak je boha­tá na mine­rá­ly. Lát­ky v prí­ro­de sa sko­ro vždy vysky­tu­jú vo for­me iónov – sú teda diso­ci­ova­né. Vo vode obzvlášť. V akej podo­be, závi­sí od veľ­ké­ho množ­stva fak­to­rov. Voda je jed­no­du­cho poklad. My ako akva­ris­ti pou­ží­va­me oby­čaj­ne vodu pit­nú z vodo­vod­nej sie­te. Táto voda je pre akva­ris­ti­ku vhod­ná, ale zďa­le­ka nie ide­ál­na. Úpra­vy, kto­ré vodu zasiah­li počas jej tran­s­por­tu k nám sú naklo­ne­né nezá­vad­nos­ti pre nás ľudí, ako zdroj základ­nej teku­ti­ny na poží­va­nie, ale nie pre život v akvá­riu. Dnes sa už v ove­ľa men­šej mie­re v čis­tič­kách pou­ží­va na dez­in­fek­ciu chlór, ale kaž­do­pád­ne čerstvá voda obsa­hu­je mno­ho ply­nov, kto­ré nie sú žia­du­ce pre naše ryby. Máme dve mož­nos­ti ako sa toho zba­viť – buď príp­rav­ka­mi na to urče­ný­mi z obcho­du, ale­bo odstá­tím. Chlór vypr­chá behom 2 hodín – zále­ží od toho aká veľ­ká je plo­cha hla­di­ny a či je umož­ne­ný jej voľ­ný prie­chod. Ostat­né ply­ny vypr­cha­jú do 2 až 4 dní. Nie­kto­ré dru­hy sú chú­los­ti­vej­šie viac, iné menej, ale­bo prak­tic­ky vôbec.

Sprá­va­nie rýb nám čas­to napo­vie. Čias­toč­ne pomô­že napúš­ťa­nie vody poma­lým tokom v dlhej hadi­ci. To má napo­kon aj súvis so zvý­še­ním tep­lo­ty napúš­ťa­nej vody. Vhod­nej­šia je voda stu­de­ná ako tep­lá. Ak nemá­me vodu ohrie­va­nú boj­le­rom. Voda vo vodo­vod­nej sie­ti sa jed­no­znač­ne pou­ží­va naj­čas­tej­šie. Keď­že sa táto voda pou­ží­va ako voda pit­ná, moh­li by sme pred­po­kla­dať, že jej para­met­re by mali zod­po­ve­dať požia­dav­kám akva­ris­ti­ky. Veď pred­sa pit­ná voda dodr­žia­va nor­mu, hygie­nic­ké požia­dav­ky. Nie je tomu cel­kom tak, to čo vyho­vu­je nám, nie vždy je ide­ál­ne pre ryby. Vodo­vod­ná voda obsa­hu­je naj­čas­tej­šie tie­to nežia­du­ce zložky:

  • chlór (oby­čaj­ne 0.10.2 mg/​l) – zabí­ja (dez­in­fi­ku­je) mik­ro­or­ga­niz­my kto­ré tvo­ria dôle­ži­tú časť spo­lo­čen­stva v akváriu,
  • dusič­na­ny – nor­ma dovo­ľu­je veľ­mi vyso­ký obsah z hľa­dis­ka cho­vu nie­kto­rých dru­hov rýb ako sú napr. Trop­he­us, Apis­to­gram­ma, plô­dik Cory­do­ras sterbai,
  • fos­fo­reč­na­ny – spô­so­bu­jú napr. roz­mach siníc,
  • ťaž­ké kovy – naj­mä z potru­bia, v mor­skej akva­ris­ti­ke je ten­to prob­lém veľ­mi vypuklý,
  • flu­ori­dy,
  • ochran­né pros­tried­ky voči hmy­zuškod­com atď. Tie­to zlož­ky je mož­né eli­mi­no­vať napr. selek­tív­ny­mi ion­to­me­nič­mi, pomo­cou reverz­nej osmózy.

Voda z vodo­vo­du ma zvy­čaj­ne pH vyš­šie ako 7.5. Je to kvô­li tomu, aby neroz­púš­ťa­la a nena­lep­tá­va­la potru­bie. Má rôz­nu tvrdo­sť. Jej pres­né hod­no­ty vám ozná­mi prí­sluš­ná vodá­reň (vply­vom potru­bia, jej pre­no­su na ces­te do vašej domác­nos­ti vy sa nema­la prí­liš meniť), ale­bo si ju môže­te zme­rať. V akva­ris­tic­kých obcho­doch je pre ten­to účel dostať kúpiť rôz­ne pro­duk­ty. Ryby jed­not­li­vých oblas­tí sú pris­pô­so­be­né na urči­tú tvrdo­sť. Doká­žu exis­to­vať aj v inej vode, ale mali by sme sa im sna­žiť pris­pô­so­biť. Napr. oblasť Ama­zo­nu vyka­zu­je veľ­mi níz­ku tvrdo­sť, oblasť Mexi­ka naopak pomer­ne vyso­kú tvrdo­sť. IndiaSumat­ra posky­tu­je oby­čaj­ne vodu mäk­kú až stred­ne tvr­dú, naopak afric­ká Tan­ga­ni­ka vodu tvr­d­šiu. Je to ana­ló­giu ku moriam. Aj v nich exis­tu­je diver­zi­ta v obsa­hu solí. Balt­ské more obsa­hu­je iné množ­stvo ako Atlan­tik, a úpl­ne inú ako Mŕt­ve moreVoda hor­ských oblas­tí je oby­čaj­ne mäk­ká – žulo­vý pod­klad jad­ro­vých poho­rí, nížin­ných oblas­tí naopak tvr­d­šia – vyš­ší obsah vápen­cu blíz­kych hor­nín a pôd – sad­rov­ca, tra­ver­tí­nu. Úzko to súvi­sí z geolo­gic­kým pod­lo­žím a pedo­lo­gic­ký­mi pomer­mi. Tvrdo­sť u nás na Slo­ven­sku sa pohy­bu­je od zvy­čaj­ne od 5°N po 35°N.

Nie­kto však má vlast­nú stud­ňu. Táto voda môže byť veľ­mi dob­rá, avšak nechaj­te si rad­šej uro­biť roz­bor.. V prí­pa­de, že nie je pit­ná, zrej­me nebu­de vhod­ná ani pre akva­ris­ti­ku. Ide­ál­na je voda z artéz­skej stud­ne – takých je naozaj málo, posky­tu­jú mäk­kú vodu vyso­kej kva­li­ty. Nemu­sím zdô­raz­ňo­vať, že stud­nič­ná voda je voda bez úprav, tak­že nie je nut­né vodu nechať odstáť, snáď len v prí­pa­de vyš­šie­ho obsa­hu CO2. Ak sa nebo­jí­te expe­ri­men­to­vať, skôr by som pou­žil vodu pochá­dza­jú­cu z pra­me­ňov, resp. z hor­ných oblas­tí hor­ských oblas­tí, ale kaž­do­pád­ne blíz­ko pri pra­me­ni, a tam kde ešte neži­jú ryby. Táto voda je v zása­de veľ­mi vhod­ná, naj­mä v oblas­tiach, kde sú rašeliniská. 

Daž­ďo­vá voda je teore­tic­ky najv­hod­nej­ší zdroj vody. Ale v dneš­nej dobe v stred­nej Euró­pe by som veľ­mi neod­po­rú­čal pou­ží­vať daž­ďo­vú vodu. Zne­čis­ťo­va­nie je takých roz­me­rov, že to čo na nás padá často­krát z neba chu­tí skôr ako cit­rón ako voda. V atmo­sfé­re sa voda aku­mu­lu­je, obsa­hu­je mno­ho nežia­du­cich, až toxic­kých prí­me­sí. Neza­bú­daj­te, že prí­ro­da hra­ni­ce nepoz­ná. V nija­kom prí­pa­de, ak necho­vá­te jazier­ko­vé dru­hy, ale­bo stu­de­no­vod­né, neod­po­rú­čam pou­ží­vať vodu z ryb­ní­kov, poto­kov, riek.

Jeden zo základ­ných para­met­rov vody zau­jí­ma­vých a dôle­ži­tých pre akva­ris­tov je jej tvrdo­sť. Deter­mi­nu­je mož­nos­ti, kto­ré nám posky­tu­je pri úspeš­nom cho­ve, a odcho­ve rýb a pes­to­va­ní rast­lín. Tvrdo­sť urču­je obsah vápe­na­tých a horeč­na­tých solí (Ca + Mg). Defi­ní­cia stá­lej tvrdo­s­ti je urče­ná pre­dov­šet­kým síran­mi – SO42-, chlo­rid­mi – Cl dusič­nan­mi – NO32-Uhli­či­ta­no­vú tvrdo­sť (ozna­čo­va­nej nie­ke­dy aj pre­chod­nej) obsa­hom uhli­či­ta­nov – CO32– a hyd­ro­gé­nuh­li­či­ta­nov – HCO3. Tie­to však môžu byť navia­za­né aj na iné kati­ó­ny ako váp­nik resp. hor­čík – naj­čas­tej­šie na sodík – Na. Cel­ko­vá tvrdo­sť je súč­tom uhli­či­ta­no­vej a stá­lej tvrdo­s­ti. V pra­xi, aj mera­nia mera­jú zvy­čaj­ne cel­ko­vú tvrdo­sť a uhli­či­ta­no­vú tvrdo­sť. Vďa­ka tomu, že hyd­ro­gé­nuh­li­či­ta­ny sa môžu nachá­dzať aj v inej väz­be ako s Ca, Mg, ako to uvá­dzam v pred­chá­dza­jú­com odstav­ci, súčet uhli­či­ta­no­vej a stá­lej tvrdo­s­ti nemu­sí dávať rov­na­kú hod­no­tu ako je cel­ko­vá tvrdo­sť. Aj z toh­to dôvo­du sa čas­to uvá­dza iba tvrdo­sť uhli­či­ta­no­vá, ale­bo ako para­me­ter vody sa uvá­dza jej vodi­vosť. Jed­not­kou tvrdo­s­ti je mg.l-1 – čo sa však tak­mer vždy pre­rá­ta­va pria­mo­ú­mer­ne na dKH a dGH, ale­bo na stup­ne nemec­ké – °N. Akva­ris­ti mera­jú tvrdo­sť zväč­ša pomo­cou komerč­ne pre­dá­va­ných pro­duk­tov, kto­ré sú zalo­že­né na tit­rá­cii. Dochá­dza pri­tom ku zme­ne far­by roz­to­ku pomo­cou orga­nic­ké­ho far­bi­va, napr. mety­lo­ran­že, metyl­čer­ve­ne. Meria sa pomo­cou kva­piek – kto­ré pred­sta­vu­jú napr. 1 °N. Oso­bit­ne uhli­či­ta­no­vá a cel­ko­vá tvrdo­sť. Pre­poč­ty tvrdosti:

  • dKH – uhli­či­ta­no­vá tvrdosť
  • dNKH – stá­la tvrdosť
  • dGH – cel­ko­vá tvrdo­sť; 1°dGH = 10 mg/​l CaO ale­bo 14 mg MgO = 7.143 mg/​l Ca = 17.8575 mg/​l CaCO3 = 0.179 mol/​l CaCO3, inak 1 mmol/​l = 56.08 mg CaO/​l

Ioni­zá­cia – vodi­vosť – mineralizácia

Na diver­zi­fi­ko­va­nej­šiu kva­li­tu jed­not­li­vých prv­kov by som chcel nad­via­zať v tej­to čas­ti. Tvrdo­sť totiž vyjad­ru­je len to čo jej posky­tu­je defi­ní­cia. Avšak rea­li­ta nie je taká čier­no­bie­la. Voda v prí­ro­de, a aj vo vašom akvá­riu obsa­hu­je aj iné prv­ky, kto­ré sú hod­né pozor­nos­ti. Nej­de len o Ca a Mg. Je tu aj P, Na, K, Fe, S, orga­nic­ké che­lá­ty, humí­no­vé kyse­li­ny, atď. Nie­kto­ré z nich sa dajú merať – špe­ci­fi­ko­vať vodi­vos­ťou. Je to kom­plex­nej­šie vyjad­re­nie rea­li­ty ako v prí­pa­de mera­nia tvrdo­s­ti. Názor­ným prí­kla­dom roz­die­lom medzi tvrdo­s­ťou a vodi­vos­ťou je voda rie­ky Ama­zon. Táto obsa­hu­je len sto­po­vé množ­stvá Ca a Mg, pri­čom obsa­hu­je pomer­ne veľa iónov. Čiže aj keď je to voda prak­tic­ky nulo­vej tvrdo­s­ti, nej­de ani zďa­le­ka o vodu demi­ne­ra­li­zo­va­nú. Pre­to je chy­ba ak pre urči­tý druh pri­pra­ví­me vodu nulo­vej tvrdo­s­ti, kto­rá neob­sa­hu­je žiad­ne ióny – napr. des­ti­lá­ci­ou. Taká­to voda je prak­tic­ky ste­ril­ná. Aj ioni­zá­ciu vie­me upra­viť. Naše ryby sú nie­ke­dy vysta­ve­né šoku, kto­rý by sa dal popí­sať aj zme­nou vodi­vos­ti. Ak napr. vymie­ňa­me väč­šie množ­stvo vody – vte­dy môže dôjsť za urči­tých okol­nos­tí dôjsť ku výraz­nej­šie­mu pokle­su ale­bo k náras­tu kon­cen­trá­cie látok vo for­me iónov. Ale­bo ak napr. apli­ku­je­me NaCl – môže dôjsť až ku lep­ta­niu pokož­ky rýb – naru­še­niu sli­zo­vi­té­ho ochran­né­ho povla­ku rýb. Nie­ke­dy je to žia­du­ce, napr. je na tom zalo­že­ný lie­čeb­ný postup tzv. soľ­né­ho kúpe­ľu

Vodi­vosť je udá­va­ná v µS – mik­ro­sie­men­soch, je mera­teľ­ná kon­duk­to­me­rom. Slo­vo vodi­vosť nám hovo­rí že ide o vyjad­re­nie obsa­hu iónov. Syno­ny­mom je v tej­to súvis­los­ti aj slo­vo mine­ra­li­zá­cia, aj keď do dôsled­kov vyjad­ru­jú tie­to tri ter­mí­ny rôz­ne veci. Voda sama o sebe vyka­zu­je diso­ciá­ciu na ióny – H3OOH, opi­su­je to diso­ciač­ná kon­štan­ta – jav sa nazý­va pro­to­lý­za vody – vďa­ka nemu je che­mic­ky čis­tá voda elek­tric­kým vodi­čom. Avšak voda v prí­ro­de obsa­hu­je množ­stvo iónov, čím sa jej elek­tric­ké vlast­nos­ti dosť zme­nia. Na to sú mimo­cho­dom cit­li­vé naj­mä orga­niz­my žijú­ce vo vode, teda aj ryby. Roz­diel medzi obsa­hom mine­rá­lov a iónov sa dá vysvet­liť elek­tric­ký­mi vlast­nos­ťa­mi súčas­tí. Mine­rá­ly sú totiž aj vo for­me neut­rál­nej roz­pus­te­né vo vode, síce men­šie množ­stvo, ale pred­sa. Väč­ši­na zlo­žiek živých sústav vôbec a čas­to aj v prí­rod­ných sub­strá­toch diso­ci­ova­ná na iónypH – pon­dus hyd­ro­ge­nii pH je para­me­ter, kto­rý je defi­no­va­ný ako zápor­ný deka­dic­ký loga­rit­mus kon­cen­trá­cie vodí­ko­vej H3O+. Pohy­bu­je sa v inter­va­le 014. Jeho vyjad­re­nie je loga­rit­mic­ké, na čo je tre­ba brať zre­teľ – voda s pH 6 a pH 8 je voda dia­met­rál­ne roz­diel­na. Kon­cen­trá­cia zása­di­tej sku­pi­ny OH je v loga­rit­mic­kom vyjad­re­ní dopl­n­kom do čís­la 14, čiže ak má voda pH 6, kon­cen­trá­cia H3Oje 10-6 mol​.dm-3 a OH ja 10-8 mol.m-3. Ak má voda pH 7 hovo­rí­me, že je to voda neut­rál­na, pH pod 7 je voda kys­lá, nad 7 je voda zása­di­tá (alka­lic­ká). pH 8 napr. zna­me­ná, že voda o tep­lo­te 25 °C má kon­cen­trá­ciu H3O10-8 mol​.dm-3 OH 10-6 mol.m-3.

Väč­ši­na rýb potre­bu­je vodu kys­lú, pH sa pohy­bu­je v inter­va­le od 6.2 do 6.8. No sú dru­hy, kto­rým sa darí a nor­mál­ne sa roz­mno­žu­jú pri pH 5, ale­bo naopak nad pH 8. Z pH úzko súvi­sí aj kon­cen­trá­cia amo­nia­ku, cyk­lus dusí­ka. Pri vyso­kom ph je amo­niak vo vode vo for­me ove­ľa nebez­peč­nej­šej ako v kys­lom pro­stre­dí. pH stú­pa v noci vply­vom dýcha­nia rast­lín. pH kolí­še naj­mä v mäk­kých vodách, kde je puf­rač­ná schop­nosť vody niž­šia. Hod­no­ta pH úzko súvi­sí aj s foto­syn­té­zou dýcha­ním vod­ných rast­lín. To má na sve­do­mí kolí­sa­nie hla­di­ny CO2 vo vode – rast­li­ny via­žu CO2 a tie­to zme­ny majú za násle­dok kolí­sa­nie pH počas dňa, resp. kolí­sa­nie v závis­los­ti od dostup­né­ho svet­la, keď­že máme na mys­li pod­mien­ky v akvá­riu a nie v prírode. 

Oxid uhli­či­tý vplý­va na pH – pri reak­cii s H2O vzni­ká sla­bá kyse­li­na uhli­či­tá – H2CO3, ale­bo naopak sa kyse­li­na diso­ciu­je v zása­di­tom pro­stre­dí. Cyk­lus kyse­li­ny uhli­či­tej je veľ­mi zná­my v bio­ló­gii a pat­rí ku základ­ným pro­ce­som živo­ta. Je to ukáž­ka puf­rač­nej schop­nos­ti. Toto kolí­sa­nie sa vyzna­ču­je pomer­ne veľ­kou ampli­tú­dou, zme­na závi­sí od puf­rač­nej schop­nos­ti vody – prak­tic­ky čím je vode viac mine­rá­lov a látok schop­ných via­zať CO2 – čím je vyš­šia vodi­vosť, tým men­šie kolí­sa­nie. Hla­di­na CO2 je počas dňa (dostat­ku svet­la) niž­šia ako počas noci (nedos­tat­ku svet­la) – pH je v cez deň vyš­šie (alka­lic­ká fáza) ako v noci (kys­lej­šia fáza). Podob­né cyk­ly sú aj počas roč­ných obdo­bí – v lete dochá­dza pri inten­zív­nom ras­te ku nedos­tat­ku CO2 a tým ku zvý­še­niu hla­di­ny pH – tie­to zme­ny sú však pozo­ro­va­teľ­né skôr v prírode.

pH sa meria buď elek­tro­nic­ky, ale­bo pomo­cou reak­cie vo fareb­nej šká­le, čo je samoz­rej­me ove­ľa lac­nej­ší, avšak nepres­nej­ší nástroj – tit­rá­ci­ou. Obsah CO2 – oxi­du uhli­či­té­ho je závis­lý naj­mä od obsa­hu Ca a Mg – od tvrdo­s­ti vody a od pH vody, od kyse­li­ny uhli­či­tej a teda aj od puf­rač­nej schop­nos­ti vody. Súhr­n­ne môžem pove­dať, že závi­sí od bio­che­mic­kých vlast­nos­tí vody. Obsah CO2 je naj­mä pre rast rast­lín. Za nor­mál­nych okol­nos­tí totiž obsah oxi­du uhli­či­té­ho nie je tak vyso­ký, aby ohro­zo­val život rýb. Výnim­kou môže byť pou­ži­tie vody z mine­rál­nych pra­me­ňov prí­pad­ne z neove­re­nej stud­ne, z mine­rál­ky, ale­bo apli­ká­cia CO2. Hla­di­na CO2 stú­pa s množ­stvom uhli­či­ta­nov – s alka­li­tou vody a kle­sá s tep­lo­tou vody. V prí­ro­de – kde samoz­rej­me nie je che­mic­ky čis­tá voda – dochá­dza naj­mä v hlbo­kých jaze­rách a v sto­ja­tých vodách so sla­bým prú­de­ním k javu, kedy od urči­tej hĺb­ky je vode voľ­ný kys­lík (O2) vo veľ­kom defi­ci­te – to je pre ryby a pre vyš­šie rast­li­ny mŕt­va zóna. Ak sa obme­dzím na obsah kys­lí­ka v čis­tej vode, tak jeho kon­cen­trá­cia je závis­lá od tla­ku a tep­lo­ty. Keď­že pred­po­kla­dám, že tlak sa v akva­ris­tic­kej pra­xi veľ­mi neme­ní, osta­ne pre nás zau­jí­ma­vá len tep­lo­ta.

V závis­los­ti od tep­lo­ty je kon­cen­trá­cia kys­lí­ka vo vode v nepria­mej úme­re. Čím je voda tep­lej­šia, tým menej je v nej obsia­hnu­tý aj voľ­ný kys­lík. Mož­no ste si to už aj nie­ke­dy všim­li, že ryby vám počas horú­cich let­ných dní naj­mä v men­ších nádr­žiach zača­li pri zvý­še­ných tep­lo­tách stú­pať vyš­šie k hla­di­ne a rých­lej­šie dýchať. Nemož­no to však zjed­no­du­šo­vať, pre­to­že ak naozaj je v akvá­riu defi­cit kys­lí­ka, prí­či­nou nemu­sí a čas­to ani nie je len zvý­še­ná tep­lo­ta – prí­či­nu tre­ba hľa­dať inde. Skôr vo zvý­še­nom meta­bo­liz­me. Dochá­dza ku vyš­šej spot­re­be kys­lí­ka roz­klad­ný­mi pro­ces­mi. Ale aj vďa­ka sla­bej, resp. neúčin­nou fil­trá­cii. Čis­tá voda o tep­lo­te 0°C obsa­hu­je 14.16 mg kys­lí­ka, pri tep­lo­te 30°C tak­mer iba polo­vič­ku – 7.53 mg.

Z hľa­dis­ka meta­bo­liz­mu naj­mä rast­lín je žele­zo – Fe veľ­mi potreb­né. Jeho obsah závi­sí od oxi­dač­nej schop­nos­ti, od redox­né­ho poten­ciá­lu. Fe veľ­mi rých­lo doká­že oxi­do­vať na rast­li­nám neprí­stup­nú for­mu. Pla­tí to, čo som spo­mí­nal v úvo­de. Žele­zo je v akvá­riu, ale v akej for­me závi­sí od toho, či a kde je via­za­né. Exis­tu­jú aj pre potre­by akva­ris­tu tes­ty obsa­hu Fe zalo­že­né na podob­nom prin­cí­pe ako tes­ty na pH.


Water – H2O is pro­bab­ly the most cru­cial con­di­ti­on for life, along with the sun. It is a com­pound of hyd­ro­gen and oxy­gen. When we talk about solu­ti­ons in che­mis­try wit­hout furt­her spe­ci­fi­ca­ti­on, it is cle­ar that it is a solu­ti­on in water. Water is pre­sent in living sys­tems, in the tis­su­es of ani­mals, in plant tis­su­es, in pro­ka­ry­o­tic orga­nisms, in bac­te­ria, in cell orga­nel­les. Life itself ori­gi­na­ted in water; water pro­vi­des spa­ce for its emer­gen­ce. The­re is a spe­ci­fic bond bet­we­en hyd­ro­gen and oxy­gen cal­led a hyd­ro­gen bond, wit­hout which, under nor­mal phy­si­cal con­di­ti­ons at room tem­pe­ra­tu­re, water would be a gas. Addi­ti­onal­ly, water has the pro­per­ty that it is hea­viest” at 4°C. This cha­rac­te­ris­tic pre­vents rivers, lakes, and stre­ams from fre­e­zing from the bot­tom in win­ter, avo­iding fatal con­se­qu­en­ces. The hyd­ro­gen bond also cau­ses anot­her ano­ma­ly – the solid sta­te of water is less den­se than in the liqu­id sta­te. This leads to the burs­ting of bott­les and dis­rup­ti­on of bonds in cell orga­nisms at tem­pe­ra­tu­res below fre­e­zing. Howe­ver, water in natu­re is never pure; it alwa­ys con­tains somet­hing wit­hin it. Many sub­stan­ces dis­sol­ve in it, as men­ti­oned ear­lier. The sea fre­e­zes at a lower tem­pe­ra­tu­re than fresh water becau­se it con­tains a rela­ti­ve­ly hig­her per­cen­ta­ge of impu­ri­ties, espe­cial­ly salts, ave­ra­ging 3.5%. The fre­e­zing point of sea­wa­ter is around ‑1.7 °C. Che­mi­cal­ly pure water is ste­ri­le water. Almost eve­ry­o­ne can name the sta­tes of water – ice, water, water vapor.

Water is cha­rac­te­ri­zed by its buf­fe­ring capa­ci­ty, depen­ding on the dis­sol­ved sub­stan­ces in it. This means that it can effec­ti­ve­ly dam­pen vari­ous influ­en­ces. This pro­per­ty is almost alwa­ys an advan­ta­ge for aqu­arium ent­hu­siasts. Water has a hig­her buf­fe­ring capa­ci­ty when rich in mine­rals. Sub­stan­ces in natu­re almost alwa­ys occur in the form of ions, so they are dis­so­cia­ted. This is espe­cial­ly true in water. The form they take depends on a lar­ge num­ber of fac­tors. Water is sim­ply a tre­a­su­re. As aqu­arium ent­hu­siasts, we usu­al­ly use tap water from the muni­ci­pal supp­ly. This water is suitab­le for aqu­ariums but far from ide­al. Tre­at­ments that the water under­go­es during tran­s­port to us are inc­li­ned towards safe­ty for us humans, as a sour­ce of basic drin­king flu­id, but not neces­sa­ri­ly suitab­le for aqu­arium life. Today, chlo­ri­na­ti­on is used to a much les­ser extent in water tre­at­ment plants, but fresh water still con­tains many gases that are unde­si­rab­le for our fish. We have two opti­ons to get rid of them – eit­her with com­mer­cial­ly avai­lab­le pro­ducts or by let­ting the water stand. Chlo­ri­ne eva­po­ra­tes wit­hin 2 hours – it depends on the size of the water sur­fa­ce and whet­her the­re is free pas­sa­ge. Other gases will dis­si­pa­te wit­hin 2 to 4 days. Some spe­cies are more sen­si­ti­ve, others less so, or prac­ti­cal­ly not at all.

The beha­vi­or of fish often pro­vi­des us with clu­es. Par­tial­ly, fil­ling the tank with water through a long hose at a slow rate can help. This is also rela­ted to rai­sing the tem­pe­ra­tu­re of the added water. Cold water is more suitab­le than warm water if we don’t have water hea­ted by a boiler. Water from the muni­ci­pal water supp­ly is unqu­es­ti­onab­ly the most com­mon­ly used. Alt­hough this water is desig­na­ted as potab­le, its para­me­ters may not alwa­ys meet the requ­ire­ments of aqu­ariums. Stan­dards and hygie­nic requ­ire­ments app­li­cab­le to drin­king water do not neces­sa­ri­ly mean ide­al con­di­ti­ons for fish. Muni­ci­pal water often con­tains the­se unde­si­rab­le components:

  • Chlo­ri­ne (usu­al­ly 0.10.2 mg/​l) – kills (disin­fects) mic­ro­or­ga­nisms that cons­ti­tu­te an impor­tant part of the aqu­arium community.
  • Nit­ra­tes – per­mis­sib­le levels allow for a high con­tent suitab­le for the bre­e­ding of cer­tain fish spe­cies such as Trop­he­us, Apis­to­gram­ma, and the fry of Cory­do­ras sterbai.
  • Phosp­ha­tes – con­tri­bu­te to the gro­wth of algae, such as cyanobacteria.
  • Hea­vy metals – pri­ma­ri­ly from pipes; this issue is par­ti­cu­lar­ly pro­noun­ced in mari­ne aquariums.
  • Flu­ori­des.
  • Pes­ti­ci­des, insec­ti­ci­des, and other pro­tec­ti­ve agents – the­se com­po­nents can be eli­mi­na­ted, for exam­ple, through the use of selec­ti­ve ion exchan­gers or rever­se osmosis.

Water from the tap usu­al­ly has a pH hig­her than 7.5. This is to pre­vent the water from dis­sol­ving and cor­ro­ding the pipes. It also has vary­ing hard­ness. The spe­ci­fic valu­es can be obtai­ned from the rele­vant water supp­ly aut­ho­ri­ty (it should­n’t chan­ge sig­ni­fi­can­tly during tran­s­port to your hou­se­hold), or you can mea­su­re it your­self. Vari­ous pro­ducts for this pur­po­se are avai­lab­le in aqu­arium sto­res. Fish from dif­fe­rent regi­ons are adap­ted to a cer­tain hard­ness. Whi­le they can sur­vi­ve in dif­fe­rent water con­di­ti­ons, it is advi­sab­le to try to adapt the water to the­ir natu­ral habi­tat. For exam­ple, the Ama­zon regi­on exhi­bits very low hard­ness, whi­le the Mexi­can regi­on, on the other hand, has rela­ti­ve­ly high hard­ness. India and Sumat­ra typi­cal­ly pro­vi­de soft to mode­ra­te­ly hard water, whe­re­as the Afri­can Tan­ga­ni­ka regi­on has har­der water. This is ana­lo­gous to the diver­si­ty in salt con­tent in seas. The Bal­tic Sea has a dif­fe­rent salt con­cen­tra­ti­on than the Atlan­tic, and both dif­fer from the Dead Sea. Water from moun­tai­nous are­as is usu­al­ly soft due to the gra­ni­te base of nuc­le­ar moun­tain ran­ges, whi­le in lowland are­as, the water tends to be har­der due to a hig­her con­tent of limes­to­ne in near­by rocks and soils, such as gyp­sum and tra­ver­ti­ne. This is clo­se­ly rela­ted to geolo­gi­cal and pedo­lo­gi­cal con­di­ti­ons. Hard­ness in Slo­va­kia typi­cal­ly ran­ges from 5°N to 35°N.

Some­one, howe­ver, has the­ir own well. This water can be very good, but it’s bet­ter to have it ana­ly­zed. If it’s not drin­kab­le, it pro­bab­ly won’t be suitab­le for aqu­ariums eit­her. Ide­al is water from an arte­sian well – the­re are very few of them, pro­vi­ding soft, high-​quality water. I don’t need to emp­ha­si­ze that well water is untre­a­ted, so the­re­’s no need to let it stand, per­haps only in the case of hig­her CO2 con­tent. If you­’re not afraid to expe­ri­ment, I would rat­her use water from springs, or from the upper are­as of moun­tain regi­ons, but in any case, clo­se to the sour­ce, whe­re fish do not inha­bit yet. This water is gene­ral­ly very suitab­le, espe­cial­ly in are­as with peat bogs.

Rain­wa­ter is the­ore­ti­cal­ly the most suitab­le sour­ce of water. Howe­ver, in toda­y­’s Cen­tral Euro­pe, I would not recom­mend using rain­wa­ter. Pol­lu­ti­on has rea­ched such pro­por­ti­ons that what falls from the sky often tas­tes more like lemon than water. In the atmo­sp­he­re, water accu­mu­la­tes, con­tai­ning many unde­si­rab­le, even toxic impu­ri­ties. Remem­ber that natu­re kno­ws no boun­da­ries. In no case, unless you keep spe­cies adap­ted to pond con­di­ti­ons or cold-​water spe­cies, do I recom­mend using water from ponds, stre­ams, or rivers.

One of the fun­da­men­tal and impor­tant para­me­ters of water for aqu­arium ent­hu­siasts is its hard­ness. It deter­mi­nes the possi­bi­li­ties we have for suc­cess­ful bre­e­ding, fish rea­ring, and plant cul­ti­va­ti­on. Hard­ness deter­mi­nes the con­tent of cal­cium and mag­ne­sium salts (Ca + Mg). The defi­ni­ti­on of per­ma­nent hard­ness is pri­ma­ri­ly deter­mi­ned by sul­fa­tes – SO42‑, chlo­ri­des – Cl – , and nit­ra­tes – NO32-. Car­bo­na­te hard­ness (some­ti­mes also cal­led tem­po­ra­ry hard­ness) is deter­mi­ned by the con­tent of car­bo­na­tes – CO32- and bicar­bo­na­tes – HCO3 – . Howe­ver, the­se can also be bound to other cati­ons than cal­cium or mag­ne­sium – most com­mon­ly to sodium – Na. Total hard­ness is the sum of car­bo­na­te hard­ness and per­ma­nent hard­ness. In prac­ti­ce, mea­su­re­ments usu­al­ly mea­su­re total hard­ness and car­bo­na­te hard­ness. Becau­se bicar­bo­na­tes can be found in a dif­fe­rent bin­ding than with Ca, Mg, as men­ti­oned in the pre­vi­ous parag­raph, the sum of car­bo­na­te and per­ma­nent hard­ness may not give the same value as the total hard­ness. For this rea­son, only car­bo­na­te hard­ness is often repor­ted, or the water con­duc­ti­vi­ty is given as a para­me­ter. The unit of hard­ness is mg.l‑1 – which is almost alwa­ys con­ver­ted direct­ly to dKH and dGH or degre­es Ger­man – °N. Aqu­arium hob­by­ists usu­al­ly mea­su­re hard­ness using com­mer­cial­ly avai­lab­le pro­ducts based on tit­ra­ti­on. This invol­ves chan­ging the color of the solu­ti­on using an orga­nic dye, such as met­hyl oran­ge or met­hyl red. It is mea­su­red using drops – which repre­sent, for exam­ple, 1 °N. Espe­cial­ly car­bo­na­te and total hard­ness. Hard­ness conversions:

  • dKH – Car­bo­na­te hardness
  • dNKH – Per­ma­nent hardness
  • dGH – Total hard­ness; 1°dGH = 10 mg/​l CaO or 14 mg MgO = 7.143 mg/​l Ca = 17.8575 mg/​l CaCO3 = 0.179 mol/​l CaCO3, other­wi­se 1 mmol/​l = 56.08 mg CaO/​l

Ioni­za­ti­on – Con­duc­ti­vi­ty – Mineralization

To furt­her diver­si­fy the quali­ty of indi­vi­du­al ele­ments, I would like to add­ress this aspect in this sec­ti­on. Hard­ness expres­ses only what its defi­ni­ti­on pro­vi­des. Howe­ver, rea­li­ty is not as black and whi­te. Water in natu­re, and also in your aqu­arium, con­tains other ele­ments that are worth atten­ti­on. It’s not just about Ca and Mg. The­re are also P, Na, K, Fe, S, orga­nic che­la­tes, humic acids, etc. Some of them can be mea­su­red – spe­ci­fied by con­duc­ti­vi­ty. It is a more com­plex expres­si­on of rea­li­ty than in the case of mea­su­ring hard­ness. A illu­stra­ti­ve exam­ple of the dif­fe­ren­ce bet­we­en hard­ness and con­duc­ti­vi­ty is the water of the Ama­zon River. This water con­tains only tra­ce amounts of Ca and Mg, whi­le it con­tains a rela­ti­ve­ly lar­ge amount of ions. So even though it is water with prac­ti­cal­ly zero hard­ness, it is by no means demi­ne­ra­li­zed water. The­re­fo­re, it is a mis­ta­ke to pre­pa­re water of zero hard­ness for a cer­tain spe­cies, which does not con­tain any ions – for exam­ple, by dis­til­la­ti­on. Such water is prac­ti­cal­ly ste­ri­le. Ioni­za­ti­on can also be adjus­ted. Our fish are some­ti­mes expo­sed to shock, which could also be desc­ri­bed as a chan­ge in con­duc­ti­vi­ty. For exam­ple, if we exchan­ge a lar­ge amount of water – then, under cer­tain cir­cum­stan­ces, the­re may be a sig­ni­fi­cant dec­re­a­se or inc­re­a­se in the con­cen­tra­ti­on of sub­stan­ces in the form of ions. Or if, for exam­ple, we app­ly NaCl – it can lead to the ero­si­on of the fis­h’s skin – dis­rup­ting the sli­my pro­tec­ti­ve coating of the fish. Some­ti­mes this is desi­rab­le, for exam­ple, it is the basis for the tre­at­ment pro­ce­du­re of the so-​called salt bath.

Con­duc­ti­vi­ty is expres­sed in µS – mic­ro­sie­mens, and it can be mea­su­red with a con­duc­ti­vi­ty meter. The term con­duc­ti­vi­ty tells us that it expres­ses the con­tent of ions. In this con­text, the syno­nym is also the word mine­ra­li­za­ti­on, alt­hough the­se three terms express dif­fe­rent things in the con­se­qu­en­ces. Water itself exhi­bits dis­so­cia­ti­on into ions – H3O+ and OH – ; this is desc­ri­bed by the dis­so­cia­ti­on cons­tant – the phe­no­me­non is cal­led water pro­to­ly­sis – thanks to it, che­mi­cal­ly pure water beco­mes an elect­ri­cal con­duc­tor. Howe­ver, water in natu­re con­tains a mul­ti­tu­de of ions, which sig­ni­fi­can­tly chan­ges its elect­ri­cal pro­per­ties. By the way, orga­nisms living in water, inc­lu­ding fish, are par­ti­cu­lar­ly sen­si­ti­ve to this. The dif­fe­ren­ce bet­we­en the con­tent of mine­rals and ions can be explai­ned by the elect­ri­cal pro­per­ties of the com­po­nents. Mine­rals are also in the form of neut­ral­ly dis­sol­ved in water, alt­hough in smal­ler quan­ti­ties. Most com­po­nents of living sys­tems are not dis­so­cia­ted into ions in natu­ral sub­stra­tes. pH – pon­dus hyd­ro­ge­nii pH is a para­me­ter defi­ned as the nega­ti­ve deci­mal loga­rithm of the con­cen­tra­ti­on of hyd­ro­gen ions H3O+. It ran­ges from 0 to 14. Its expres­si­on is loga­rith­mic, so it should be taken into account – water with pH 6 and pH 8 is dras­ti­cal­ly dif­fe­rent. The con­cen­tra­ti­on of the basic group OH– is loga­rith­mi­cal­ly expres­sed as a com­ple­ment to the num­ber 14, so if the water has a pH of 6, the con­cen­tra­ti­on of H3O+ is 10 – 6 mol.dm‑3 and OH– is 10 – 8 mol.m‑3. If the water has a pH of 7, it is said to be neut­ral, below 7 is aci­dic water, abo­ve 7 is alka­li­ne (basic) water. For exam­ple, pH 8 means that water at a tem­pe­ra­tu­re of 25 °C has a con­cen­tra­ti­on of H3O+ 10 – 8 mol.dm‑3 and OH10 – 6 mol.m‑3.

Most fish requ­ire aci­dic water, with a pH ran­ging from 6.2 to 6.8. Howe­ver, the­re are spe­cies that thri­ve and repro­du­ce nor­mal­ly at pH 5 or, con­ver­se­ly, abo­ve pH 8. pH is clo­se­ly rela­ted to the con­cen­tra­ti­on of ammo­nia and the nit­ro­gen cyc­le. At high pH, ammo­nia in water is in a much more dan­ge­rous form than in an aci­dic envi­ron­ment. pH rises at night due to the res­pi­ra­ti­on of plants. pH fluc­tu­ates main­ly in soft waters, whe­re the buf­fe­ring capa­ci­ty of water is lower. The pH value is also clo­se­ly rela­ted to pho­to­synt­he­sis and res­pi­ra­ti­on of aqu­atic plants. This is due to the fluc­tu­ati­on of CO2 levels in the water – plants bind CO2, and the­se chan­ges result in pH fluc­tu­ati­ons during the day, depen­ding on the avai­lab­le light, as we are refer­ring to con­di­ti­ons in the aqu­arium and not in nature.

Car­bon dioxi­de affects pH – when reac­ting with H2O, weak car­bo­nic acid is for­med – H2CO3, or con­ver­se­ly, the acid dis­so­cia­tes in an alka­li­ne envi­ron­ment. The car­bo­nic acid cyc­le is well-​known in bio­lo­gy and is one of the fun­da­men­tal pro­ces­ses of life. It is an exam­ple of buf­fe­ring capa­ci­ty. This fluc­tu­ati­on is cha­rac­te­ri­zed by a rela­ti­ve­ly lar­ge ampli­tu­de, and the chan­ge depends on the buf­fe­ring capa­ci­ty of water – prac­ti­cal­ly, the more mine­rals and sub­stan­ces capab­le of bin­ding CO2 in the water (hig­her con­duc­ti­vi­ty), the smal­ler the fluc­tu­ati­on. The level of CO2 is lower during the day (with suf­fi­cient light) than at night (with insuf­fi­cient light) – pH is hig­her during the day (alka­li­ne pha­se) than at night (more aci­dic pha­se). Simi­lar cyc­les also occur during the sea­sons – in sum­mer, during inten­se gro­wth, the­re is a lack of CO2, lea­ding to an inc­re­a­se in pH – the­se chan­ges are more obser­vab­le in nature.

pH is mea­su­red eit­her elect­ro­ni­cal­ly or through a reac­ti­on on a color sca­le, which is obvi­ous­ly much che­a­per but less accu­ra­te – tit­ra­ti­on. The con­tent of CO2 – car­bon dioxi­de – depends main­ly on the con­tent of Ca and Mg – water hard­ness and water pH, on car­bo­nic acid, and thus also on the buf­fe­ring capa­ci­ty of water. In sum­ma­ry, it depends on the bio­che­mi­cal pro­per­ties of water. The con­tent of CO2 is par­ti­cu­lar­ly impor­tant for plant gro­wth. Under nor­mal cir­cum­stan­ces, the level of car­bon dioxi­de is not so high as to thre­a­ten the life of fish. Excep­ti­ons may occur when using water from mine­ral springs, unve­ri­fied wells, mine­ral water, or app­ly­ing CO2. The level of CO2 rises with the amount of bicar­bo­na­tes – with water alka­li­ni­ty – and dec­re­a­ses with water tem­pe­ra­tu­re. In natu­re – whe­re water is not che­mi­cal­ly pure – in deep lakes and stag­nant waters with weak flow, the­re is a phe­no­me­non whe­re, from a cer­tain depth, the water has a lar­ge defi­cit of free oxy­gen (O2) – this is the dead zone for fish and hig­her plants. If I limit myself to the oxy­gen con­tent in pure water, its con­cen­tra­ti­on depends on pre­ssu­re and tem­pe­ra­tu­re. Sin­ce I assu­me that pre­ssu­re does not chan­ge much in aqu­arium prac­ti­ce, only tem­pe­ra­tu­re remains inte­res­ting for us.

Depen­ding on the tem­pe­ra­tu­re, the con­cen­tra­ti­on of oxy­gen in water is inver­se­ly pro­por­ti­onal. The war­mer the water, the less free oxy­gen it con­tains. You may have noti­ced that fish in smal­ler tanks tend to rise hig­her and bre­at­he fas­ter during hot sum­mer days. Howe­ver, this can­not be sim­pli­fied becau­se if the­re is a real oxy­gen defi­cit in the aqu­arium, the cau­se is not neces­sa­ri­ly or often just the inc­re­a­sed tem­pe­ra­tu­re – the cau­se must be sought else­whe­re, per­haps in inc­re­a­sed meta­bo­lism. The­re is a hig­her oxy­gen con­sump­ti­on due to decom­po­si­ti­on pro­ces­ses but also due to weak or inef­fi­cient fil­tra­ti­on. Pure water at 0°C con­tains 14.16 mg of oxy­gen, whi­le at a tem­pe­ra­tu­re of 30°C, it con­tains almost half – 7.53 mg.

From the per­spec­ti­ve of meta­bo­lism, espe­cial­ly for plants, iron – Fe, is essen­tial. Its con­tent depends on the oxi­da­ti­ve capa­ci­ty, the redox poten­tial. Iron can quick­ly oxi­di­ze to a form inac­ces­sib­le to plants. The form of iron in the aqu­arium depends on whet­her and whe­re it is bound. The­re are tests for Fe con­tent for the aqu­arium ent­hu­siast based on a simi­lar prin­cip­le to pH tests.


Was­ser – H2O ist neben der Son­ne wohl die wich­tigs­te Voraus­set­zung für das Leben. Es ist eine Ver­bin­dung von Was­sers­toff und Sau­ers­toff. Wenn wir in der Che­mie von Lösun­gen ohne wei­te­re Quali­fi­ka­ti­on spre­chen, ist klar, dass es sich um eine Lösung in Was­ser han­delt. Was­ser befin­det sich in leben­den Sys­te­men, in den Gewe­ben von Tie­ren, in Pflan­zen­ge­we­ben, in pro­ka­ry­o­tis­chen Orga­nis­men, in Bak­te­rien, in Zel­lor­ga­nel­len. In Was­ser ents­tand auch das Leben, Was­ser bie­tet Raum für Ents­te­hung. Zwis­chen Was­sers­toff und Sau­ers­toff bes­teht eine spe­zi­fis­che Bin­dung, die soge­nann­te Was­sers­toffb­rüc­ke, da Was­ser unter nor­ma­len phy­si­ka­lis­chen Bedin­gun­gen bei Raum­tem­pe­ra­tur sonst ein Gas wäre. Darüber hinaus hat Was­ser die Eigen­schaft, dass es bei einer Tem­pe­ra­tur von 4°C am dich­tes­ten” ist. Dadurch frie­ren Flüs­se, Seen und Bäche im Win­ter nicht vom Boden aus, was fata­le Fol­gen haben könn­te. Die Was­sers­toffb­rüc­ke verur­sacht auch eine wei­te­re Ano­ma­lie – der fes­te Zus­tand des Was­sers ist weni­ger dicht als im flüs­si­gen Zus­tand. Dies führt zum Rei­ßen von Flas­chen, zum Stören von Bin­dun­gen in Zel­len orga­nis­cher Mate­ria­lien bei Tem­pe­ra­tu­ren unter dem Gef­rier­punkt. Was­ser in der Natur ist jedoch nie rein. Es ent­hält immer etwas in sich. In ihr lösen sich vie­le Sub­stan­zen auf, wie ich bere­its oben ange­de­utet habe. Das Meer gef­riert bei nied­ri­ge­ren Tem­pe­ra­tu­ren als Süßwas­ser, weil es einen rela­tiv höhe­ren Ante­il an Verun­re­i­ni­gun­gen ent­hält, ins­be­son­de­re Sal­ze. Durch­schnitt­lich 3,5%. Der Gef­rier­punkt des Meer­was­sers liegt bei etwa ‑1,7°C. Che­misch rei­nes Was­ser ist ste­ril. Die Zus­tän­de des Was­sers kann auch jeder benen­nen – Eis, Was­ser, Wasserdampf.

Was­ser zeich­net sich durch sei­ne Puf­fer­ka­pa­zi­tät in Abhän­gig­ke­it von den darin gelös­ten Sub­stan­zen aus. Das bede­utet, dass es vers­chie­de­ne Ein­flüs­se rela­tiv effek­tiv dämp­fen kann. Für Aqu­aria­ner ist die­se Eigen­schaft fast immer von Vor­te­il. Was­ser hat eine höhe­re Puf­fer­ka­pa­zi­tät, wenn es reich an Mine­ra­lien ist. Sub­stan­zen in der Natur lie­gen fast immer in Form von Ionen vor – sie sind also dis­so­zi­iert. Ins­be­son­de­re im Was­ser. In wel­cher Form das ges­chieht, hängt von einer Viel­zahl von Fak­to­ren ab. Was­ser ist ein­fach ein Schatz. Wir als Aqu­aria­ner ver­wen­den in der Regel Trink­was­ser aus dem Lei­tung­swas­ser. Die­ses Was­ser ist für die Aqu­aris­tik gee­ig­net, aber bei wei­tem nicht ide­al. Die wäh­rend ihres Tran­s­ports zu uns vor­ge­nom­me­nen Ände­run­gen sind für uns Men­schen unbe­denk­lich, da sie als Quel­le für die Grundf­lüs­sig­ke­it zum Trin­ken die­nen, jedoch nicht für das Leben im Aqu­arium. Heut­zu­ta­ge wird in Klä­ran­la­gen bere­its in viel gerin­ge­rem Maße Chlor zur Desin­fek­ti­on ver­wen­det, aber fris­ches Was­ser ent­hält den­noch vie­le Gase, die für unse­re Fis­che uner­wün­scht sind. Wir haben zwei Mög­lich­ke­i­ten, damit umzu­ge­hen – ent­we­der mit spe­ziel­len, im Han­del erhält­li­chen Pro­duk­ten oder durch Abset­zen las­sen. Chlor ver­duns­tet inner­halb von 2 Stun­den – abhän­gig von der Größe der Was­se­ro­berf­lä­che und ob ihr fre­ier Durch­gang ermög­licht ist. Ande­re Gase ver­duns­ten inner­halb von 2 bis 4 Tagen. Eini­ge Arten sind emp­find­li­cher, ande­re weni­ger oder prak­tisch gar nicht.

Das Ver­hal­ten der Fis­che gibt uns oft Hin­we­i­se. Tei­lwe­i­se hilft das Ein­fül­len des Was­sers mit einem lang­sa­men Strom in einem lan­gen Sch­lauch. Das hängt sch­lie­ßlich auch mit der Erhöhung der Tem­pe­ra­tur des ein­ge­füll­ten Was­sers zusam­men. Küh­le­res Was­ser ist bes­ser gee­ig­net als war­mes, wenn wir kein Was­ser haben, das durch einen Boiler erwärmt wird. Was­ser aus der Lei­tung wird ein­de­utig am häu­figs­ten ver­wen­det. Da die­ses Was­ser als Trink­was­ser ver­wen­det wird, könn­ten wir anneh­men, dass sei­ne Para­me­ter den Anfor­de­run­gen der Aqu­aris­tik ents­pre­chen soll­ten. Sch­lie­ßlich erfüllt Trink­was­ser Stan­dards, hygie­nis­che Anfor­de­run­gen. Das ist jedoch nicht ganz rich­tig, was uns passt, ist nicht immer ide­al für Fis­che. Lei­tung­swas­ser ent­hält in der Regel die­se uner­wün­sch­ten Bestandteile:

  • Chlor (gewöhn­lich 0,10,2 mg/​l) – tötet (desin­fi­ziert) Mik­ro­or­ga­nis­men ab, die einen wich­ti­gen Teil der Geme­in­schaft im Aqu­arium ausmachen,
  • Nit­ra­te – der Stan­dard erlaubt einen sehr hohen Gehalt für die Zucht eini­ger Fis­char­ten wie z.B. Trop­he­us, Apis­to­gram­ma, Ster­bai Panzerwelse,
  • Phosp­ha­te – verur­sa­chen z.B. das Wachs­tum von Algen,
  • Sch­wer­me­tal­le – haupt­säch­lich aus Roh­ren, in der Meer­was­se­ra­qu­aris­tik ist die­ses Prob­lem sehr akut,
  • Flu­ori­de,
  • Insek­ti­zi­de, Schäd­lings­be­kämp­fungs­mit­tel usw. Die­se Bes­tand­te­i­le kön­nen z.B. durch selek­ti­ve Ione­naus­taus­cher, mit­tels Umkeh­ros­mo­se eli­mi­niert werden.

Das Lei­tung­swas­ser hat in der Regel einen pH-​Wert über 7,5. Dies liegt daran, dass es kei­ne Roh­re auf­lösen oder angre­i­fen soll. Es hat unters­chied­li­che Här­teg­ra­de. Die genau­en Wer­te teilt Ihnen das ents­pre­chen­de Was­ser­werk mit (durch Roh­re und den Tran­s­port zu Ihnen nach Hau­se soll­te sich die Quali­tät nicht zu stark ändern), oder Sie kön­nen sie selbst mes­sen. In Zoohand­lun­gen gibt es vers­chie­de­ne Pro­duk­te für die­sen Zweck zu kau­fen. Fis­che aus vers­chie­de­nen Regi­onen sind an unters­chied­li­che Här­teg­ra­de ange­passt. Sie kön­nen auch in ande­ren Gewäs­sern exis­tie­ren, aber wir soll­ten ver­su­chen, uns ihnen anzu­pas­sen. Zum Beis­piel zeigt das Amazonas-​Gebiet eine sehr gerin­ge Här­te, wäh­rend das Gebiet Mexi­kos im Gegen­satz dazu rela­tiv har­tes Was­ser aufwe­ist. Indien und Sumat­ra lie­fern in der Regel wei­ches bis mit­tel­har­tes Was­ser, wäh­rend das afri­ka­nis­che Tan­gan­ji­ka har­tes Was­ser bie­tet. Dies steht im Zusam­men­hang mit den Mee­ren. Auch in ihnen gibt es eine Viel­falt an Salz­ge­hal­ten. Die Ost­see ent­hält eine ande­re Men­ge als der Atlan­tik und eine voll­kom­men ande­re als das Tote Meer. Das Was­ser in Gebir­gs­ge­bie­ten ist in der Regel weich – Gra­ni­tun­ter­grund der Kern­ge­bir­ge, wäh­rend es in Tie­fe­be­nen im Gegen­te­il här­ter ist – höhe­rer Gehalt an Kalks­te­in in den nahe­ge­le­ge­nen Ges­te­i­nen und Böden – Gips, Tra­ver­tin. Dies hängt eng mit dem geolo­gis­chen Unter­grund und den pedo­lo­gis­chen Bedin­gun­gen zusam­men. Die Här­te in der Slo­wa­kei liegt in der Regel zwis­chen 5°dH und 35°dH.

Jemand hat jedoch mög­li­cher­we­i­se einen eige­nen Brun­nen. Die­ses Was­ser kann sehr gut sein, aber las­sen Sie lie­ber eine Ana­ly­se durch­füh­ren. Wenn es nicht trink­bar ist, ist es wahrs­che­in­lich auch nicht für die Aqu­aris­tik gee­ig­net. Ide­a­les Was­ser kommt aus arte­sis­chen Brun­nen – es gibt nur sehr weni­ge davon und sie lie­fern wei­ches Was­ser von hoher Quali­tät. Ich muss nicht beto­nen, dass Brun­nen­was­ser unbe­han­del­tes Was­ser ist, daher ist es nicht not­wen­dig, es abzus­te­hen, außer viel­le­icht bei einem höhe­ren CO2-​Gehalt. Wenn Sie kei­ne Angst haben zu expe­ri­men­tie­ren, wür­de ich eher Was­ser aus Quel­len ver­wen­den, bzw. aus den obe­ren Bere­i­chen der Berg­ge­bie­te, aber auf jeden Fall in der Nähe der Quel­le und dort, wo noch kei­ne Fis­che leben. Die­ses Was­ser ist im All­ge­me­i­nen sehr gee­ig­net, beson­ders in Gebie­ten, wo Torf­mo­ore vor­han­den sind.

Regen­was­ser ist the­ore­tisch die bes­te Was­se­rqu­el­le. Aber heut­zu­ta­ge wür­de ich in Mit­te­le­uro­pa nicht emp­feh­len, Regen­was­ser zu ver­wen­den. Die Versch­mut­zung ist so groß, dass das, was auf uns fällt, oft eher nach Zit­ro­ne als nach Was­ser sch­mec­kt. In der Atmo­sp­hä­re sam­melt sich Was­ser an und ent­hält vie­le uner­wün­sch­te bis gif­ti­ge Verun­re­i­ni­gun­gen. Ver­ges­sen Sie nicht, dass die Natur kei­ne Gren­zen kennt. Auf kei­nen Fall wür­de ich, wenn Sie kei­ne Arten aus Tei­chen oder kal­ten Gewäs­sern hal­ten, emp­feh­len, Was­ser aus Tei­chen, Bächen oder Flüs­sen zu verwenden.

Einer der grund­le­gen­den und wich­ti­gen Para­me­ter für Aqu­aria­ner ist die Was­ser­här­te. Sie bes­timmt die Mög­lich­ke­i­ten, die uns bei erfolg­re­i­cher Fisch- und Pflan­zen­zucht zur Ver­fügung ste­hen. Die Här­te bes­timmt den Gehalt an Calcium- und Mag­ne­sium­sal­zen (Ca + Mg). Die Defi­ni­ti­on der per­ma­nen­ten Här­te wird haupt­säch­lich durch Sul­fa­te – SO42‑, Chlo­ri­de – Cl– und Nit­ra­te – NO32- bes­timmt. Die Car­bo­nat­här­te (manch­mal auch als tem­po­rä­re bez­e­ich­net) wird durch den Gehalt an Car­bo­na­ten – CO32- und Hyd­ro­gen­car­bo­na­ten – HCO3– bes­timmt. Die­se kön­nen jedoch auch an ande­re Kati­onen als Cal­cium oder Mag­ne­sium gebun­den sein – am häu­figs­ten an Natrium – Na. Die Gesamt­här­te ist die Sum­me aus Car­bo­nat­här­te und per­ma­nen­ter Här­te. In der Pra­xis mes­sen Mes­sun­gen in der Regel die Gesamt­här­te und die Car­bo­nat­här­te. Da Hyd­ro­gen­car­bo­na­te auch in einer ande­ren Ver­bin­dung als mit Ca, Mg vor­lie­gen kön­nen, wie ich im vor­he­ri­gen Absatz erwähnt habe, ergibt die Sum­me aus Car­bo­nat­här­te und per­ma­nen­ter Här­te nicht immer den gle­i­chen Wert wie die Gesamt­här­te. Aus die­sem Grund wird oft nur die Car­bo­nat­här­te ange­ge­ben oder die Leit­fä­hig­ke­it des Was­sers als Para­me­ter ver­wen­det. Die Ein­he­it der Här­te ist mg/​l – was jedoch fast immer direkt in dKH und dGH oder in deuts­che Här­teg­ra­de – °N umge­rech­net wird. Aqu­aria­ner mes­sen die Här­te in der Regel mit kom­mer­ziell erhält­li­chen Pro­duk­ten, die auf Tit­ra­ti­on basie­ren. Dabei kommt es zu einer Far­bän­de­rung der Lösung durch orga­nis­che Farb­stof­fe wie Met­hy­lo­ran­ge oder Met­hyl­rot. Gemes­sen wird in Trop­fen – die z.B. 1 °N reprä­sen­tie­ren. Ins­be­son­de­re Car­bo­nat­här­te und Gesamt­här­te. Berech­nung der Härte:

  • dKH – Carbonathärte
  • dNKH – per­ma­nen­te Härte
  • dGH – Gesamt­här­te; 1°dGH = 10 mg/​l CaO oder 14 mg MgO = 7.143 mg/​l Ca = 17.8575 mg/​l CaCO3 = 0.179 mol/​l CaCO3, ansons­ten 1 mmol/​l = 56.08 mg CaO/​l

Ioni­sie­rung – Leit­fä­hig­ke­it – Mineralisierung

Um die viel­fäl­ti­ge­re Quali­tät der ein­zel­nen Ele­men­te anzus­pre­chen, möch­te ich in die­sem Abschnitt anknüp­fen. Die Här­te drüc­kt nur das aus, was ihre Defi­ni­ti­on bie­tet. Die Rea­li­tät ist jedoch nicht so schwarz-​weiß. Was­ser in der Natur und auch in Ihrem Aqu­arium ent­hält auch ande­re Ele­men­te, die es wert sind, beach­tet zu wer­den. Es geht nicht nur um Ca und Mg. Es gibt auch P, Na, K, Fe, S, orga­nis­che Che­la­te, Humin­sä­u­ren, usw. Eini­ge von ihnen kön­nen durch die Leit­fä­hig­ke­it gemes­sen und spe­zi­fi­ziert wer­den. Dies ist eine kom­ple­xe­re Dars­tel­lung der Rea­li­tät als beim Mes­sen der Här­te. Ein anschau­li­ches Beis­piel für den Unters­chied zwis­chen Här­te und Leit­fä­hig­ke­it ist das Was­ser des Ama­zo­nas. Die­ses ent­hält nur Spu­ren von Ca und Mg, ent­hält jedoch rela­tiv vie­le Ionen. Auch wenn es sich um Was­ser mit prak­tisch null Här­te han­delt, han­delt es sich bei wei­tem nicht um demi­ne­ra­li­sier­tes Was­ser. Es ist daher ein Feh­ler, wenn wir für eine bes­timm­te Art Was­ser mit null Här­te vor­be­re­i­ten, das kei­ne Ionen ent­hält – zum Beis­piel durch Des­til­la­ti­on. Ein sol­ches Was­ser ist prak­tisch ste­ril. Auch die Ioni­sie­rung kön­nen wir bee­in­flus­sen. Unse­re Fis­che sind manch­mal einem Schock aus­ge­setzt, der auch durch eine Ände­rung der Leit­fä­hig­ke­it besch­rie­ben wer­den könn­te. Wenn wir zum Beis­piel eine größe­re Men­ge Was­ser aus­taus­chen – kann es unter bes­timm­ten Umstän­den zu einem deut­li­chen Rück­gang oder Ans­tieg der Kon­zen­tra­ti­on von Stof­fen in Form von Ionen kom­men. Oder wenn wir zum Beis­piel NaCl anwen­den – kann dies zu einer Bes­chä­di­gung der Haut der Fis­che füh­ren – zur Störung des sch­le­i­mi­gen Schut­züber­zugs der Fis­che. Manch­mal ist dies erwün­scht, z. B. basie­rend auf dem Hei­lungs­pro­zess eines soge­nann­ten Salzbades.

Die Leit­fä­hig­ke­it wird in µS – Mik­ro­sie­mens ange­ge­ben und kann mit einem Leit­fä­hig­ke­its­mess­ge­rät gemes­sen wer­den. Das Wort Leit­fä­hig­ke­it sagt uns, dass es sich um eine Dars­tel­lung des Ionen­ge­halts han­delt. Ein Syno­nym in die­sem Zusam­men­hang ist das Wort Mine­ra­li­sie­rung, obwohl die­se drei Beg­rif­fe unters­chied­li­che Din­ge ausd­rüc­ken. Was­ser zeigt von Natur aus eine Dis­so­zia­ti­on in Ionen – H3O+ und OH- – dies wird durch die Dis­so­zia­ti­on­skons­tan­te besch­rie­ben – der Vor­gang wird als Was­ser­pro­to­ly­se bez­e­ich­net – durch die che­misch rei­ne Was­ser ein elek­tris­cher Lei­ter wird. Aber Was­ser in der Natur ent­hält vie­le Ionen, was sei­ne elek­tris­chen Eigen­schaf­ten erheb­lich verän­dert. Ins­be­son­de­re Orga­nis­men, die im Was­ser leben, ein­sch­lie­ßlich Fis­che, rea­gie­ren darauf sehr emp­find­lich. Der Unters­chied zwis­chen dem Gehalt an Mine­ra­lien und Ionen kann durch die elek­tris­chen Eigen­schaf­ten der Kom­po­nen­ten erk­lärt wer­den. Mine­ra­lien sind auch in neut­ra­ler Form im Was­ser gelöst, wenn auch in gerin­ge­rer Men­ge. Die meis­ten Bes­tand­te­i­le leben­der Sys­te­me sind volls­tän­dig oder oft in natür­li­chen Sub­stra­ten in Ionen dis­so­zi­iert. Der pH-​Wert – der pon­dus hyd­ro­ge­nii – ist ein Para­me­ter, der als nega­ti­ver deka­dis­cher Loga­rith­mus der Kon­zen­tra­ti­on von Was­sers­toff H3O+ defi­niert ist. Er bewegt sich im Bere­ich von 0 bis 14. Sei­ne Dars­tel­lung ist loga­rith­misch, was berück­sich­tigt wer­den muss – Was­ser mit einem pH-​Wert von 6 und einem pH-​Wert von 8 ist sehr unters­chied­lich. Die Kon­zen­tra­ti­on der basis­chen Grup­pe OH- ist im loga­rith­mis­chen Ausd­ruck eine Ergän­zung zur Zahl 14, dh wenn das Was­ser einen pH-​Wert von 6 hat, bet­rägt die Kon­zen­tra­ti­on von H3O+ 10 – 6 mol.dm‑3 und die von OH- bet­rägt 10 – 8 mol.m‑3. Wenn das Was­ser einen pH-​Wert von 7 hat, sagen wir, dass es neut­ra­les Was­ser ist, ein pH-​Wert unter 7 ist sau­res Was­ser, über 7 ist alka­lis­ches Was­ser (alka­lisch). Ein pH-​Wert von 8 bede­utet beis­piel­swe­i­se, dass Was­ser bei 25 °C eine H3O+-Konzentration von 10 – 8 mol.dm‑3 und eine OH – Kon­zen­tra­ti­on von 10 – 6 mol.m‑3 hat.

Die meis­ten Fis­che benöti­gen sau­res Was­ser, der pH-​Wert liegt im Bere­ich von 6,2 bis 6,8. Es gibt jedoch Arten, die sich bei einem pH-​Wert von 5 oder sogar über 8 nor­mal ver­meh­ren kön­nen. Der pH-​Wert ist eng mit der Ammo­niak­kon­zen­tra­ti­on und dem Sticks­toffk­re­is­lauf ver­bun­den. Bei hohem pH-​Wert ist Ammo­niak im Was­ser in einer viel gefähr­li­che­ren Form als in sau­rer Umge­bung. Der pH-​Wert ste­igt nachts aufg­rund der Atmung der Pflan­zen. Der pH-​Wert sch­wankt haupt­säch­lich in wei­chen Gewäs­sern, wo die Puf­fer­ka­pa­zi­tät des Was­sers gerin­ger ist. Der pH-​Wert steht auch im Zusam­men­hang mit der Pho­to­synt­he­se und der Atmung von Was­serpf­lan­zen. Dies wird durch die Sch­wan­kung des CO2-​Gehalts im Was­ser verur­sacht – Pflan­zen bin­den CO2, und die­se Verän­de­run­gen füh­ren zu pH-​Schwankungen im Lau­fe des Tages bzw. zu Sch­wan­kun­gen abhän­gig vom ver­füg­ba­ren Licht, da wir die Bedin­gun­gen im Aqu­arium und nicht in der Natur meinen.

Koh­len­di­oxid wir­kt sich auf den pH-​Wert aus – bei der Reak­ti­on mit H2O ents­teht sch­wa­che Koh­len­sä­u­re – H2CO3, oder umge­ke­hrt dis­so­zi­iert die Säu­re in einer basis­chen Umge­bung. Der Koh­len­sä­u­re­zyk­lus ist in der Bio­lo­gie sehr bekannt und gehört zu den grund­le­gen­den Lebens­pro­zes­sen. Es ist ein Beis­piel für die Puf­fer­ka­pa­zi­tät. Die­se Sch­wan­kung zeich­net sich durch eine ziem­lich gro­ße Ampli­tu­de aus, und die Ände­rung hängt von der Puf­fer­ka­pa­zi­tät des Was­sers ab – prak­tisch, je mehr Mine­ra­le und Stof­fe in der Lage sind, CO2 zu bin­den, des­to gerin­ger ist die Sch­wan­kung. Der CO2-​Gehalt ist tag­süber (bei aus­re­i­chen­dem Licht) nied­ri­ger als nachts (bei Licht­man­gel) – der pH-​Wert ist tag­süber höher (alka­lis­che Pha­se) als nachts (säu­re­re Pha­se). Ähn­li­che Zyk­len tre­ten auch wäh­rend der Jah­res­ze­i­ten auf – im Som­mer kommt es bei inten­si­vem Wachs­tum zu einem CO2-​Mangel und damit zu einem Ans­tieg des pH-​Werts – die­se Ände­run­gen sind jedoch eher in der Natur zu beobachten.

Der pH-​Wert wird ent­we­der elek­tro­nisch gemes­sen oder durch eine Reak­ti­on in einer Farb­ska­la bes­timmt, was natür­lich ein viel bil­li­ge­res, aber unge­nau­e­res Werk­ze­ug ist – die Tit­ra­ti­on. Der Gehalt an Koh­len­di­oxid – Koh­len­di­oxid – hängt haupt­säch­lich vom Gehalt an Ca und Mg ab – von der Was­ser­här­te und vom pH-​Wert des Was­sers, von der Koh­len­sä­u­re und damit auch von der Puf­fer­ka­pa­zi­tät des Was­sers. Zusam­men­fas­send kann gesagt wer­den, dass es von den bio­che­mis­chen Eigen­schaf­ten des Was­sers abhängt. Der CO2-​Gehalt ist beson­ders wich­tig für das Pflan­zen­wachs­tum. Unter nor­ma­len Umstän­den ist der Gehalt an Koh­len­di­oxid nicht so hoch, dass er das Leben der Fis­che gefä­hr­det. Eine Aus­nah­me kann die Ver­wen­dung von Was­ser aus Mine­ra­lqu­el­len oder nicht über­prüf­ten Brun­nen, Mine­ra­lwas­ser oder die Anwen­dung von CO2 sein. Der CO2-​Gehalt ste­igt mit der Men­ge an Car­bo­na­ten – mit der Alka­li­tät des Was­sers – und sinkt mit der Was­ser­tem­pe­ra­tur. In der Natur – wo das Was­ser natür­lich nicht che­misch rein ist – kommt es ins­be­son­de­re in tie­fen Seen und ste­hen­den Gewäs­sern mit sch­wa­cher Strömung zu einem Phä­no­men, bei dem ab einer bes­timm­ten Tie­fe Sau­ers­toff (O2) im Was­ser in gro­ßen Men­gen fehlt – dies ist eine tote Zone für Fis­che und höhe­re Pflan­zen. Wenn wir uns auf den Sau­ers­toff­ge­halt in rei­nem Was­ser besch­rän­ken, hängt sei­ne Kon­zen­tra­ti­on vom Druck und von der Tem­pe­ra­tur ab. Da ich anneh­me, dass sich der Druck in der Aqu­aris­tikp­ra­xis kaum ändert, ble­ibt die Tem­pe­ra­tur für uns interessant.

Die Sau­ers­toff­kon­zen­tra­ti­on in Was­ser nimmt indi­rekt mit der Tem­pe­ra­tur ab. Je wär­mer das Was­ser ist, des­to weni­ger fre­ier Sau­ers­toff ist ent­hal­ten. Mög­li­cher­we­i­se haben Sie bere­its bemer­kt, dass Fis­che wäh­rend hei­ßer Som­mer­ta­ge, ins­be­son­de­re in kle­i­ne­ren Tanks, bei erhöh­ten Tem­pe­ra­tu­ren höher an die Oberf­lä­che ste­i­gen und schnel­ler atmen. Es ist jedoch nicht mög­lich, dies zu vere­in­fa­chen, da ein Sau­ers­toff­man­gel im Aqu­arium nicht nur auf eine erhöh­te Tem­pe­ra­tur zurück­zu­füh­ren ist – die Ursa­che muss ander­swo gesucht wer­den. Eher im erhöh­ten Stof­fwech­sel. Es kommt zu einem höhe­ren Sau­ers­toff­verb­rauch durch Zer­set­zungs­pro­zes­se. Aber auch aufg­rund einer sch­wa­chen oder inef­fi­zien­ten Fil­tra­ti­on. Rei­nes Was­ser bei 0°C ent­hält 14,16 mg Sau­ers­toff, bei 30°C nur etwa die Hälf­te – 7,53 mg.

In Bez­ug auf den Stof­fwech­sel, ins­be­son­de­re von Pflan­zen, ist Eisen – Fe sehr wich­tig. Sein Gehalt hängt von der Oxi­da­ti­ons­fä­hig­ke­it und dem Redo­xpo­ten­zial ab. Eisen kann sehr schnell in eine für Pflan­zen unzu­gän­gli­che Form oxi­diert wer­den. Es gilt, was ich zu Beginn erwähnt habe. Eisen ist im Aqu­arium, aber in wel­cher Form es vor­liegt, hängt davon ab, ob und wo es gebun­den ist. Es gibt auch Tests für den Eisen­ge­halt, die auf einem ähn­li­chen Prin­zip wie pH-​Tests basie­ren, die für die Bedürf­nis­se von Aqu­aria­nern ent­wic­kelt wurden.

Use Facebook to Comment on this Post