Akvaristika, Technika, Údržba

Údržba akvária

Hits: 34559

Keď sme si zaobstarali akvárium, je treba sa oňho starať. Nie je to komplet, ktorý sa raz pripraví a potom existuje sám. Každé akvárium potrebuje od človeka určité vstupy – energiu, ktorú je nutné vynaložiť na zachovanie života v ňom. Niektoré zásahy sú nutné z hľadiska funkcie, niektoré sú viac-menej estetické. Medzi vybavenie na údržbu by som zaradil: sieťky, hadice, hadičky, drôtenku, odkaľovací zvon, vedrá, nožnice. Vodu je treba z času načas vymeniť. Akvárium totiž nedokáže zabezpečiť celý kolobeh látok, niektoré musia byť z neho odoberané, iné pridávané. Nie je tomu ako v prírode, kde je vo vodných tokoch, jazerách a moriach neustály prietok, ktorý prináša nové živiny, a spracované odnáša. Existujú síce aj prietokové komplexy, ale nie sú bežné a nedosahujú samozrejme prirodzené rozmery. V takom prípade môžeme hovoriť o eliminácii pravidelných výmen vody. Dá sa to nazvať kontinuálnou výmenou vody. Vráťme sa však do bežného stavu. Ako často treba vymieňať a aké množstvo závisí od veľmi veľa faktorov. Ak mám na mysli bežné akvárium radové akvaristu, bežná výmena by nemala presiahnuť tretinu objemu nádrže. Voda sa vymieňa za vodu čistú, prípadne upravenú – napr. osmózou. V prípade ak vám voda pení, voda je špinavá alebo organicky silne znečistená. Čistá voda nepení. Penenie sa môže až pri filtrácii.

Farba vody v akváriu by mala byť hnedožltá až zelená. Aj číra priezračná čistá voda je niekedy znakom vysokého obsahu škodlivých dusitanov. Sklo sa vplyvom osvetlenia a denného svetla zariasi. Je možné, že vám ho prísavníky, slimáky „čistia“, napriek tomu je sklá nutné očistiť. Napr. drsnejšou hubkou na riad, bankomatovou kartou alebo mäkkou drôtenkou. Vždy dajme dozor nato, aby sa nám do týchto nástrojov nedostal substrát z dna. Pretože aj malé zrnko štrku dokáže účninne doškrabať sklo. Magnetickú škrabka a žiletka majú nevýhodou v tom, že sklo ľahko doškriabu. Vodný kameň sa ľahko odstráni mäkká drôtenka. Ak chceme a môžeme použiť chémiu, tak sa hodí kyselina fosforečná prípadne ocot. Silnejšie kyseliny sú príliš silné pre naše ruky. Napr. pomocou handričky. Aj vtedy pomôže abrazívna drôtenka. Krycie sklo sa rovnako ľahko čistí drôtenkou. Čelné sklo spredu odporúčam čistiť čistou vodou dvoma handrami – jednou na mokré a druhovu na suché čistenie – leštenie.

Vnútorné filtre je potrebné čistiť pomerne často. Ako často, závisí od mnohých faktorov. Každý akvarista sa musí naučiť odhadnúť správny čas, ale dá sa povedať, že priemerná doba by v normálnom spoločenskom akváriu, ktoré nie je prerybnené mohla, činiť 1 týždeň. V prípade, že filter nasal do seba toľko častíc, že je doslova nasatý na trubku v ňom, je ho treba ihneď vyčistiť. Pozor, pretože filter dokážu upchať aj vežovky malajské. Raz za čas je nutné vyčistiť aj lopatky čerpadla, celé zariadenie filtra premyť pod vodou, vykefovať, vyrajbať jednotlivé časti. Filtračný molitan vnútorného filtra je lepšie neumývať pod tečúcou vodou vodovodnej siete, ale vo vode, ktorú predtým zlejem z nádrže. Vodovodná voda by mohla ublížiť baktériám, ktoré sú v molitane. Pokiaľ umyjeme filtračnú náplň vodou z akvária, prípadne vodou neobsahujúcou nežiaduce plyny, zachováme filter funkčný. V inom prípade sa baktérie v ňom zdecimujú. Pokiaľ dávate do akvária nový molitan, trochu ho zašpiňte pomocou inej vložky z už zabehaného filtra, alebo ho aspoň napustite vodou zo staršieho akvária. V prípade vonkajšieho filtra stačí filtračný molitan menej často. Na začiatku častejšie, neskôr občas. Rovnako aj filtračnú vatu a ostatné časti filtra. Vonkajší filter je výhodný z hľadiska údržby, po jeho zakúpení je nutné sa oň viac starať, ale nie sú ojedinelé prípady, kedy akvarista čistil molitan po roku a všetko bolo v poriadku. Optimálna veľkosť všetkých filtrov a ich zložiek závisí od záťaže nádrže, jej veľkosti. O ohrievač sa netreba osobitne starať, akurát by som ho raz začas očistil od rias, napr. mäkkou drôtenkou. V prípade, že vodu vymieňame, odkaľujeme, je vhodnejšie ohrievač odpojiť elektrickú sieť, najmä ak vymieňame väčšie množstvo. V takom prípade sa môže stať, že časť ohrievača (najmä so silnejším príkonom) je silne rozpálená a po doplnení obyčajne studenšej vody môže prasknúť. To či je odkaľovanie nutné je individuálne. Záleží od množstva rýb, ich charakteru, filtrácie, vzduchovania a spotreby rastlín. Ak sa vám detrit – rozkladajúce sa exkrementy rýb a nespotrebovaného krmiva rozmáha, pristúpte k odkaľovaniu. Sú na to určené zvony, ktoré sú na zakončené širším hrdlom, ktoré vedie to užšej časti, na ktorú, alebo do ktorej sa vkladá hadica. Prípadne môžete odkaliť akvárium aj samotnou hadicou, ale obyčajne je to dosť nepraktické, pretože hrubšou hadicou vtiahnete aj štrk a piesok, a menšou hadicou zase operácia trvá neúmerne dlho. Samotný detrit je samozrejme do určitej miery žiaduci, za predpokladu, že pestujeme rastliny. Pretože rastliny detrit spotrebúvajú a menia ho na rastlinnú hmotu – je to vlastne ich potrava. Ak máme v nádrži čierne stmavnuté plocha dna, je už detrit v deficite kyslíka a dávno sme ho mali odkaliť. Ak vám dobre rastú vodné rastliny, je nutné ich z času na čas preriediť. Prípadne očistiť od rias – mechanicky, chémiu dôrazne neodporúčam, presadiť, inak zoradiť. Rastliny sa zastrihávajú. Ak napr. chceme vytvoriť koberec z vodných rastlín, je dobré na začiatku strihať viac. Hnilé, zažltnuté listy je treba z akvária odstraňovať. Menšie rastliny je dobré sadiť pinzetami. Pri zastrihávaní odporúčam ostré nožničky. Pri koreňoch odstrihnite radšej viac, staré korene aj tak najskôr zhnijú a samotný tento proces hnitia nie je žiaduci.

Use Facebook to Comment on this Post

Akvaristika, Biológia, Príroda

Riasy a sinice

Hits: 23159

Riasy

Chcel by som zdôrazniť, že riasy sú rastliny. Nepatria medzi Magnoliophyta ako väčšina dostupných vodných rastlín, ale medzi nižšie rastliny – Algae – riasy. Platí zväčša, že tam kde sa darí riasam, darí sa obyčajne aj vodným rastlinám. Riasy patria do akvária, snažiť sa zabrániť, aby sme ich v akváriu vôbec nemali je nerovný boj a v konečnom dôsledku aj zbytočný. Najznámejšie sú zelené riasyChlorophyta a červené riasy Rhodophyta. Sú však napr.aj hnedé riasyPhaephyceae, rozsievkyBacillariophyceae. Medzi známe druhy patrí Chlorella – jednobunková riasa schopná do zelena totálne “ zafarbiť“ celú nádrž. Z červených rias napr. Audouinella. Sú to samozrejme ako aj vyššie rastliny asimilátory hmoty, obdobným spôsobom viažu kyslík, a tvoria organickú hmotu. Prúdenie vody vplýva aj na riasy. Známej čiernej štetinkovej riase sa darí pri silnom prúdení, často ju nájdeme v najmä na filtri, pri jeho výpuste. Pri nadbytku svetla vznikajú zelené riasy, pri nedostatku svetla hnedé riasy.

Riasy úzko súvisia s množstvom svetla. Optimálne svetelné podmienky nie je vôbec ľahké pre náš konkrétny prípad zabezpečiť. Za najdôležitejšie považujem dosiahnuť optimálny rast vyšších rastlín. V takom prípade si vyššie rastliny poradia s konkurenčne slabším protivníkom. Riasy však dokážu reagovať na zmeny oveľa rýchlejšie ako vyššie rastliny. Riasy sa najčastejšie likvidujú mechanicky. Odporúčam drsnú hubku na riad, alebo mäkkú drôtenku. Žiletku, magnetickú škrabku neodporúčam, avšak aj v prípade hubky, či drôtenky, dajme pozor na to, aby sa nám pri čistení nedostali pod ruky kúsky štrku, ktoré účinné vedia sklo poškriabať. Najmä na čelnom skle je to najnepríjemnejšie. Biologické prostriedky proti riasam, napr. slimáky. Ale aj niektoré ryby konzumujú riasy. Najmä Poecilia shenops, Xiphophorus helleri, Gyrinocheilus aymonieri, Crossocheilus siamensis, Otocinclus, Epalzeorhynchus, Labeo, Helostoma temmincki, Ancistrus atď. Z kreviet najmä Caridina japonica, Neocaritida denticulata. Treba prihliadať na to, že pre niektoré tieto organizmy je riasa prirodzenou potravou, ale častokrát ak majú dostatok inej potravy, dávajú prednosť práve jej. Čiernu riasu žerie spoľahlivo len prísavka thajská – Gyrinocheilus aymonieri a krevetka Caridina japonica. V prírode mikroskopické riasy konzumujú malé kôrovce, takže ak je schodná cesta použiť cyklopa, vírnika na zlikvidovanie zákalu z rias, tak snáď neexistuje lepšia voľba. Riasy možno odstrániť aj pôsobením ultrafialového žiarenia. V akvaristických obchodoch je možné zakúpiť UV-lampu, ktorá funguje ako filter. Voda pri prechode je vystavovaná žiareniu, ktoré svojimi účinkami zabíja zárodky rias, pravda aj množstvo choroboplodných zárodkov. Lampa pôsobí na vodu prechádzajúcu do akvária a tým chráni vodu od rias. V prípade zákalu je možné použiť aj priame pôsobenie priameho svetla lampy na vodu – avšak v takom prípade je nutné chrániť si oči a nemať v nádrži ryby ani rastliny. Rias sa dá zbaviť aj chemickou cestou. Je to krajný spôsob, ktorý v akváriu neschvaľujem. V predajnej sieti existujú na to prostriedky, o nich sa príliš nebudem vyjadrovať. Návody sú na nich. Ako osvedčený nástroj aj proti štetinkovej riase možno označiť aj použitie Sava. Savo zriedime v pomere 1:20. Jemnolisté rastliny znesú 2-3 minúty, väčšina rastlín 3 minúty, rastliny s tuhšími listami ako Anubias, Echinodorus, Crypotocoryne 3-4 minúty. Stačí ich ponoriť do pripraveného roztoku a následne umyť v vodou. Tento postup sa aplikuje mimo akvária. Takto môžeme zbaviť rias aj štrk, kamene apod.

Medzi červené riasy – Rhodophyta patrí štetinková riasa, ktorá je takmer vždy nevítaným hosťom. Často je nazývaná aj ako čierna riasa. Vyznačuje sa chromatickou adaptáciou – svoje fotosyntetické pigmenty (sfarbenie) mení vzhľadom na momentálne svetelné podmienky. Do nádrže obyčajne infiltruje prinesenými rastlinami, vodou z inej nádrže, slimákmi, alebo aj rybami. K prenosu riasy vodou z inej nádrže by som chcel spomenúť, že k nemu môže dôjsť z hľadiska akvaristu veľmi nevinne – riasu prenesie nevdojak. Na to, aby došlo k úspešnej introdukcii postačia zárodky, spóry tejto riasy. V prípade ak tieto zárodky dostanú príležitosť, prejavia svoju životaschopnosť. Živnou pôdou sú pre ne najmä staršie listy vyšších rastlín. Taxonomicky ide o viaceré druhy napr. Audouinella, Compsopogon, Batrachospermum moniliforme, Lemanea. Skúsenosti akvaristov s ňou sú rôzne. Všeobecne môžem povedať, že sa jej darí pri prebytku živín. Napr. v letnom období sa často vyskytuje veľmi hojne, od septembra začne postupne miznúť v akváriu. Jej rast ovplyvňuje množstvo denného svetla. Darí sa jej na príliš bohatom dne. Táto riasa je obyčajne čierna, jej farba môže byť však aj tmavomodrá, tmavozelená. Prichytáva sa prakticky na všetko, na rastliny, na substrát, na schránky slimákov, na sklo akvária, narúša lep na okrajoch stien apod. Drží veľmi pevne, mechanicky je veľmi problematické ju likvidovať z povrchu rastlín. Obyčajne pri takomto pokuse odtrhneme aj kus z rastliny. Z vlastnej skúsenosti viem, že je ťažké odstrániť ju aj cirokovou kefou z tvrdého kameňa. Červené riasy, okrem Sava popísaného nižšie ničí aj meď. Ide o drastickú metódu, ktorá pripadá do úvahy v stave najvyššej núdze. Meď je silný jed aj pre niektoré druhy vyšších rastlín, ako aj živočíchy v akváriu. V prípade, že sa rozhodnete meď použiť, je bezpodmienečne nutné ryby a slimáky odloviť. Zdrojom medi môže byť napr. modrá skalica. Čiernej riasy sa dá zbaviť aj prirodzenejšou cestou. V prvom rade treba znížiť príjem živín. Jestvuje na to niekoľko možností – napr. odkaliť častejšie dno, častejšie meniť vodu, prípadne zvýšiť jej množstvo pri výmene, menej kŕmiť, menej svietiť, premiestniť akvárium na tmavšie miesto.

Zelené riasy sú ďalším typom riasy. Tzv. vodný kvet najmä v eutrofizovaných jazerách a nádržiach tvoria často mikroskopické druhy Chlorella pyrenoidosa, Volvox aureus. V našich nádržiach zvykneme hovoriť o zelenom zákale – tento môže spôsobiť práve táto riasa. V prípade takéhoto zákalu pomôžu bežné prostriedky ako výmena vody, odkalenie, ale predovšetkým totálne zatemnenie nádrže na nejaký čas. Po tomto neestetickom čine je vhodné opäť vymeniť väčšie množstvo vody. Iným častým typom je dlhá vláknitá zelená riasa napr. Pithophora, Oedogonium, Cladophora, ktorá sa pomerne ťažko odstraňuje. Azda najúčinnejšou metódou je mechanické namotanie na špajdlu, alebo podobný nástroj. Žerú ju však živorodky, Ancistrus, Crossocheilus siamensis, Gyrinocheilus aymonieri apod. Na rozdiel od štetinkovej riasy nie je tak pevne ukotvená v rastlinách, preto pri odtŕhaní dochádza ku poškodeniu rastlín len zriedkavo. Na vlasovú riasu je možné aplikovať aj kúpeľ Sava. Riasy, tvoriace malé kolónie, podobne ako hnedé riasy na listoch sú napr. Draparnaldia, Tetraspora gelatinosa, Hydrodictyon reticulatum, Euglena. Dajú sa pomerne ťažko zo skla.

Hnedé riasy – vyžadujú iné podmienky ako zelené a červené riasy. Medzi tento typ rias akvaristi zaraďujú aj rozsievky Bacillariophyceae (Diatomae). Hnedá riasa vzniká pomerne často po založení nádrže. Jej stav sa obyčajne rýchlo zredukuje a obyčajne pozvoľne zmizne. Ak je však stav trvalý, zrejme sme nášmu akváriu neposkytli dostatok svetla. Hnedé riasy sa uchycujú najmä na stenách nádrže, môžeme ich však registrovať aj na povrchu rastlín. Riešenie tejto situácie je preto pomerne jednoduché. Zlepšením osvetlenia. Niektoré druhy: Stephanodiscus bellus, Gomphonema geminatum, Hydrurus foetidus, Tabellaria ventricosa, Cymbella cistula.

Sinice

Sinice nepatria medzi rastliny, ale často sa medzi ne zaraďujú. Často sú označované za modrozelené riasy. Sú obyčajne naozaj modrozelené, čo spôsobuje farbivo fykocyanín, ale môžu byť aj hnedočierne. Riasy a vyššie rastliny patria medzi eukaryotické organizmy. Sinice sú prokaryotické organizmy. Sú príbuzné baktériám. Ich produkty metabolizmu sú škodlivé pre ryby (napokon pri vysokej koncentrácii aj pre človeka – spomeňme si napr. na zákaz kúpania na Kuchajde v Bratislave, ale aj na iných vodných plochách). Sú často mazľavej konzistencie, vyskytujú sa pri vysokej koncentrácii dusíka a fosforu. Sinice sú veľmi odolný protivník, platia pre ne rovnaké postupy, ak ich chceme eliminovať, ako v prípade rias. Niektoré druhy: Aphanizomenon gracile, Rivularia haematites, Anabaena flos-aquae, Mycrocystis auruginosa, Oscillatoria limosa.

Use Facebook to Comment on this Post

2007, Akvaristické akcie, Časová línia, Chovateľské reportáže, Reportáže

Produktové školenie firmy SERA

Hits: 3481

Firma Aqua World, nemecká SERA a česká SERA usporiadala 18.11.2007 odborný seminár spojený s prednáškou Hynka Dařbujána. Seminár sa konal v priestoroch hotela Kotva vo Veľkom Bieli. Bol určený majiteľom, vedúcim predajní a personálu ZOO predajní s pokročilými skúsenosťami a znalosťami. Zúčastnilo sa ho približne 40-50 záujemcov. Seminár prebiehal cca od 10:00 a končil po 17 hodine. O účastníkov bolo dobre postarané, dostali sme občerstvenie, obed, preklad z nemčiny bol zabezpečený. Prekladal Ing. Oldřich Šimeček z českej SERY a Ing. Ján Kolc z firmy AQUA WORLD. Z nášho klubu sme sa zúčastnili traja Petrovia 🙂 – Benčúrik, Neubauer a ja. Rád by som vám popísal zopár informácií, ktoré sa mi zdali užitočné. Prednášajúcimi boli Dieter Untergasser – vedecký poradca spoločnosti SERA GmbH a Ing. Hynek Dařbuján – odborník na cichlidy a morskú akvaristiku. S týmito témami a v tomto poradí: Dieter Untergasser – Osvedčené riešenia častých problémov vedecky podložené, Hynek Dařbuján – Cesta po jazere Tanganika a novinky medzi cichlidami, Dieter Untergasser – Liečenie, vrátane nových prípravkov, poskytnutie vlastných skúseností z testovania. Dieter Untergasser bol výborne pripravený, rozprával o širokej palete výrobkov, ktoré SERA produkuje, od krmív až po liečivá, výluhy a iné prípravky upravujúce vodu. Priznám sa, že som čakal ďaleko viac chvály na výrobky „svojej“ firmy, ale toho som sa nedočkal. Pán Untergasser mal pripravené aj pomôcky, na ktorých demonštroval účinky niektorých výrobkov na úpravu vody – napr. „Toxivecu“. Okrem iného som sa dozvedel, že SERA poskytuje najkompletnejšiu sadu krmív pre jednotlivé druhy rýb. Zistil som, že SERA krmivá označené značkou FD sú krmivá lyofilizované, čiže sušené silným mrazom. Možno aj vy poznáte Aquatan. Ja sám ho občas používam, keď prenášam ryby, a stretol som sa s tým aj v niektorých akvaristických predajniach. Ryby sú po ňom pokojnejšie. Aquatan viaže ťažké kovy, chlór vo vode, chráni pokožku rýb, pôsobí proti stresu rýb tým že vplýva na ich nervovú sústavu. Avšak viacerým akvaristom vadil zápach Aquatanu po vitamíne B. Nový Aquatan tento zápach už nemá.

Najviac ma zaujali štyri výrobky: Toxivec, Phosvec, Siporax a Protazol. Toxivec je prípravok, ktorý odstraňuje škodlivé látky z vody ako napr. amónium, dusičnany, chlór, chloramín, ťažké kovy, liečivá. Phosvec je určený na odstránenie fosfátov z vody – prebytok fosfátov je príčinou rastu rias. Účinkuje tak, že vytvorí zrazeninu (zákal), ktorý sa odstráni filtráciou. 500 g Phosvec granulátu viaže až 12 500 mg fosfátov. Siporax je vysoko porézny samočistiaci materiál vhodný do biofiltra ako filtračné médium. Jeden liter siporaxu poskytne 270 m2 plochy pre nitrifikačné baktérie. Siporaxové valčeky sú zo skla, preto sú chemicky neutrálne. Protazol je prípravok proti jednobunkovým kožným parazitom – napr. proti krupičke. Účinná látka preniká bunkovou stenou parazita. Protazol vodu nefarbí.

ammonia, amónium, anti-unicellular skin parasites, Aqua World, Aqutan, biofilter, Cesta po jazere Tanganika a novinky medzi cichlidami, chlór, chloramín, chloramine, chlorine, choroby rýb, Dieter Untergasser, diseases of marine fish, dusičnany, excess algae, feed, filter media, filtračné médium, fish disease, fish doctor, fosfáty, healing fish, heavy metals, Hynek Dařbuján, including new products, Ján Kolc, Journey to Lake Tanganyika, Kotva, kožné parazity, krmivá, krmivo, krupička, liečenie rýb, liečivá, market Mpulungu, meal, news among cichlid, nitrate, nitrification space, odborný seminár, odstránenie fosfátov z vody, odstránenie škodlivých látok z vody, Oldřich Šimeček, Osvedčené riešenia častých problémov vedecky podložené, penetration through the cell wall, penetration through the cell wall of the parasite, pharmaceuticals, phosphates, Phosvec, Phosvec granulát, Phosvec granules, pollutants in water, porézny materiál, porous material, poskytnutie vlastných skúseností z testovania, prebytok rias, prenikanie cez bunkovú stenu parazita, prienik cez bunkovú stenu, priestor pre nitrifikáciu, priestor pre nitrifikačné baktérie, prípravok proti jednobunkovým kožným parazitom, Protazol, providing their own experience of testing, removal of phosphates from water, removing pollutants from water, rybací doktor, rybí doktor, samočistiaci materiál, self-cleaning material, seminar, SERA, Siporax, siporaxové valčeky, skin parasites, škodlivé látky vo vode, školenie, space for nitrification bacteria, ťažké kovy, Toxivec, training, treatment, Veľký Biel, vrátane nových prípravkov, seminár

Prednáška Hynka Dařbujána bola zaujímavá a navyše vtipne podaná. Prostredníctvom nej sme sa pozreli do sveta, ktorý je od nášho veľmi vzdialený, exotický. Hynek sa vyjadril aj tom, že Tanganika nie je práve najbezpečnejší región. Centrá obchodu, prístavy a asi všetko tam nielen vypadá inak ako u nás, ale často je to aj veľmi rozdielne od našich predstáv. Darmo, Tanganika je iná kultúra. Hynek spomenul, že by sa rád na toto jazero ešte vrátil, tak nech mu to vyjde :-). Seminár zakončil Untergasser školením o liečivách a chorobách. Jeho rozprávanie bolo veľmi podrobné. Na Internete dokonca môžete pána Untergassera nájsť pod pomenovaním „rybí doktor“.

Use Facebook to Comment on this Post

Akvaristika, Biológia, Príroda, Ryby, Živočíchy

Evolúcia rodu Tropheus v jazere Tanganika

Hits: 6970

Autor príspevku: Róbert Toman

Africké jazerá vyprodukovali ohromujúco rozličnú faunu cichlidovitých rýb. Jazero Tanganika, ktorého vek sa odhaduje na 9 – 12 miliónov rokov, je najstaršie východoafrické jazero a skrýva morfologicky, geneticky a behaviorálne najrozmanitejšiu skupinu cichlidovitých rýb. Mnoho z vyše 200 popísaných druhov sa delí do geograficky a geneticky odlišných populácií, ktoré sa líšia hlavne v ich sfarbení. Najlepším príkladom tohto javu je endemický rod Tropheus, v rámci ktorého sa popísalo 6 druhov a viac ako 70 odlišne sfarbených miestnych variantov. Okrem Tropheus duboisi, je celková morfológia v tomto rode veľmi podobná. Tropheusy sa hojne vyskytujú v hornej pobrežnej zóne vo všetkých typoch skalnatých biotopov, kde sa kŕmia riasami a skrývajú sa pred predátormi. Piesočnatým a bahnitým pobrežiam, ako aj ústiam riek sa striktne vyhýbajú. Je dokázané, že Tropheusy sa nedokážu pohybovať na väčšie vzdialenosti, najmä cez voľnú vodu, ako dôsledok ich vyhranenej špecifickosti životného prostredia a vernosti k určitému miestu a teritoriality.

Tropheus je jeden z najštudovanejších rodov jazera. Etologické štúdie Tropheus moori ukázali komplexné vzory správania sa a vysoko vyvinutú sociálnu organizáciu. Neexistuje u nich vyhranený pohlavný dimorfizmus. Obe pohlavia si chránia teritórium a na rozdiel od mnohých ďalších papuľovcov, Tropheusy tvoria dočasné páry počas rozmnožovania. Vývoj ikier a plôdika prebieha výlučne v ústach samíc. Predchádzajúce fylogeografické štúdie Tropheusov demonštrovali prekvapujúco veľké genetické rozdiely medzi populáciami. Tropheus duboisi bol opísaný ako najpôvodnejšia vetva a sedem odlišných skupín vzniklo väčšinou súčasne. Šesť z nich sa vyskytuje v individuálnych pobrežných oblastiach a jedna skupina sa sekundárne rozšírila a kolonizovala skalnaté miesta v podstate po celom jazere. Údaje získané analýzou mitochondriálnej DNA (mtDNA) ukázali, že napriek všeobecne podobnej morfológii sa môže sfarbenie rýb ohromne líšiť medzi geneticky blízko príbuznými populáciami a naopak, môže byť veľmi podobné medzi geneticky veľmi vzdialenými populáciami sesterských druhov. Tieto pozorovania sa čiastočne vysvetľujú ako dôsledok paralelnej evolúcie podobných farebných vzorov v rámci prirodzeného výberu alebo ako dôsledok priestorového kontaktu medzi dvoma geneticky odlišnými populáciami po druhotnom kontakte a následnom triedení rodu, kedy sa kríženci týchto populácií a ich potomkovia spätne krížili prednostne len s členmi jednej pôvodnej populácie.

Historické zmeny jazera

Predpokladá sa, že rýchle formovanie veľkých druhových skupín východoafrických cichlíd spôsobujú abiotické (fyzikálne) faktory, ako geologické procesy a klimatické udalosti, ako aj biologické vlastnosti šíriacich sa organizmov. Niekoľko štúdií ukázalo, že veľké kolísanie hladiny jazera malo vážny vplyv na skalnaté prostredie a druhové spoločenstvá vo východoafrických priekopových jazerách. Jazero bolo vážne ovplyvnené zmenou na suché podnebie asi pred 1,1 miliónmi rokov, čo spôsobilo pokles hladiny asi o 650 – 700 m pod súčasnú hladinu. Potom sa jazero zväčšovalo postupne do obdobia asi pred 550 000 rokmi. Ďalší pokles hladiny nastal asi pred 390 000 až 360 000 rokmi o 360 metrov, medzi 290 000 až 260 000 rokmi o 350 m a medzi 190 000 až 170 000 rokmi to bol pokles o 250 m. V najbližšej histórii poklesla hladina počas neskorého pleistocénu ľadovej doby, kedy bolo v Afrike suché podnebie. Ide o obdobie spred 40 000 – 35 000 rokmi (pokles o 160 m) a medzi 23 000 – 18 000 rokmi (pravdepodobne o 600 m). Akýkoľvek vzrast hladiny posúva pobrežnú líniu a tvoria sa nové skalnaté oblasti. Len čo vzdialenosti medzi novo formovanými oblasťami prekročia schopnosť šírenia sa jednotlivých druhov, tok génov sa preruší a hromadia sa genetické rozdiely medzi populáciami. Následný pokles hladiny môže viesť k sekundárnemu miešaniu, čo vedie k buď k zvyšujúcej sa genetickej rozdielnosti alebo príbuznosti nových druhov.

Šírenie rodu Tropheus v jazere Tanganika

Na základe genetickej analýzy sa určili 3 obdobia šírenia sa Tropheusov v jazere. Prvé obdobie prebiehalo počas stúpania hladiny v období medzi 1,1 mil. – 550 000 rokmi, druhé šírenie prebiehalo počas poklesu hladiny v období medzi 390 000 – 360 000 rokmi a tretie šírenie nastalo počas poklesu hladiny v období medzi 190 000 – 170 000 rokmi. Klimatické zmeny pred 17 000 rokmi spôsobili dramatický pokles hladiny nielen v Tanganike, ale aj v Malawi a dokonca vyschnutie jazera Viktória. Tieto udalosti synchronizovali procesy diverzifikácie cichlíd vo všetkých troch jazerách. Najdôveryhodnejšie vysvetlenie genetických vzorov Tropheusov sú tri obdobia nízkej hladiny jazera, kedy klesala hladina najmenej o 550 m, takže jazero bolo rozdelené na tri jazerá. Skupiny Tropheusov boli rozdelené do osem hlavných skupín podľa mtDNA a podľa výskytu v jednotlivých lokalitách jazera, ktoré dostali názov podľa osád na pobreží:

  • Skupina A1 (Kibwe, Kabwe, Kiti Point)
  • Skupina A2 (Kabezi, Ikola, Bilila Island, Kyeso I./Kungwe – T. „yellow“, Kala, Mpulungu)
  • Skupina A3 (Nyanza Lac – T. brichardi, Ngombe, Bemba)
  • Skupina A4 (Nvuna Island, Katoto I.)
  • Skupina B (Rutunga, Kiriza)
  • Skupina C (Kyeso II.)
  • Skupina D (Zongwe, Moba, Kibwesa – T. „Kibwesa“)
  • Skupina E (Bulu – T. polli, Bulu – T. „Kirschfleck“)
  • Skupina F (Kibwesa – T. „Kirschfleck“, Mvua I., Inangu)
  • Skupina G (Wapembe juh, Katoto II., Mvua II.)
  • Skupina H (Wapembe sever)

Na obrázku sú znázornené vzťahy medzi jednotlivými skupinami rodu Tropheus a ich lokalizácia v jazere.

Tropheus Phylog[1]

Primárne šírenie rodu Tropheus bolo podmienené silným zvýšením hladiny jazera asi pred 700 000 rokmi. Prvé dve skupiny (A a B) pochádzali z obsadenia severných častí jazera, skupina C a D vznikala na západnom pobreží centrálnej časti jazera a skupina E sa rozvíjala na východe strednej časti jazera. Skupiny F, G a H sa najpravdepodobnejšie udomácnili na juhu jazera. Treba upozorniť, že nedávno objavená ôsma skupina C v Kyeso pravdepodobne reprezentuje Tropheus annectens, pretože Kyeso je lokalizované v tesnej blízkosti typu vzoriek rýb, ktorý popísal Boulenger v roku 1990. Tieto ryby žili v blízkosti rýb, ktoré patria do skupiny A2, ktorú objavili na oboch stranách centrálnej časti jazera.

Morfologické analýzy ukázali, že šesť zo siedmich jedincov malo štyri lúče na análnej plutve a siedmy jedinec mal lúčov päť. Ďalších pať jedincov ulovených v Kyeso malo šesť análnych lúčov a tiež sa odlišovali v tvare úst a sfarbení od T. annectens. Je zaujímavé, že ryby odchytené v lokalite Kyeso predtým označené ako T. annectens patria do skupiny C na rozdiel od Tropheus polli (skupina E) z opačnej strany jazera, hoci majú podobnú morfológiu, počet lúčov análnej plutvy a sfarbenie.

Väčšina hlavných skupín sa rozširovala do susedných oblastí počas druhého rozšírenia asi pred 400 000 rokmi a skupiny A a D zvládli presun k protiľahlému pobrežiu centrálnej časti Tanganiky. V tomto období sa po obsadení východného pobrežia skupina A rozdelila na 4 odlišné podskupiny. Podskupiny A1 a A3 sa pravdepodobne objavili po expanzii na východe severného pobrežia. Podskupina A2 pochádzala z obsadenia severozápadného pobrežia na severe aj v strednej časti jazera, zatiaľ čo podskupina A4 pravdepodobne pochádzala z kolonizácie východnej časti južného pobrežia. Skupina D pravdepodobne obsadila veľmi krátky úsek v oblasti Cape Kibwesa, kam sa presídlili zo západnej časti južného pobrežia. To bolo možné jedine v období pred 400000 rokmi, keď klesla hladina o 550 m, pretože Tropheusy nie sú schopné sa presúvať pri zvýšení vodnej hladiny a tým aj zväčšení vzdialeností medzi skalnatými časťami jazera cez voľnú vodu. Iba pokles hladiny o 550 m postačoval na to, aby sa skalnaté dno dostalo do hĺbky asi 50 m, čím sa utvorili podmienky na presun Tropheusov.

Rozšírenie Tropheus“Kirschfleck“, ktoré patria do skupiny F na východnom pobreží centrálnej časti jazera a na sever od Kibwesa, sa zdá byť záhadné podľa súčasného rozšírenia ostatných členov tejto skupiny (F) na juhozápade okolo Cameron Bay. V oblasti Kibwesa žijú v blízkosti tri varianty Tropheusov (Tropheus polli, T.“Kibwesa“ a T.“Kirschfleck“). Predsa však vo vzorkách T.“Kirschfleck“ sa zistilo podľa mtDNA, že patrili dvom skupinám, čo naznačuje kríženie pravdepodobne pôvodných obyvateľov tejto oblasti – skupiny T. polli (E) a presídlených T. „Kirschfleck“ (F). Existujú dve alternatívy: zástupcovia skupiny F sa mohli presunúť pozdĺž západnej časti južného pobrežia až k hranici strednej časti jazera. Zostáva však nejasné, ako sa mohla skupina F presunúť cez tak širokú oblasť strmo klesajúceho pobrežia na západe južného pobrežia, ktoré v súčasnosti obývajú ryby skupiny D, bez toho aby zanechali nejakú genetickú stopu alebo menšiu populáciu. Alternatívne vysvetlenie by mohlo byť, že skupina F sa pôvodne šírila pozdĺž juhovýchodného pobrežia od Kibwesa asi po Wapembe a neskôr bola nahradená presídlenými zástupcami skupiny A, takže haplotypy (skupina alel v jednom chromozóme prenášaná z generácie na generáciu spoločne, pričom potomok dedí dva haplotypy – jeden od otca a druhý od matky) skupiny F v Kibwesa sú pozostatky pôvodne podstatne rozšírenejšej skupiny. Ďalej by k tejto hypotéze bolo možné dodať, že skupina F druhotne osídlila ich súčasné teritórium v okolí Cameron Bay na juhozápade počas hlavného obdobia stúpania hladiny jazera pred 400 000 rokmi. To by vysvetľovalo prítomnosť dvoch odlišných haplotypov v populácii v Mvua (F a G), ako následok kríženia po druhotnom kontakte so zástupcami skupiny F. Ak je táto hypotéza pravdivá, táto kolonizácia mohla úplne nahradiť predtým sa vyskytujúcu skupinu G, ktorá má v súčasnosti centrum výskytu južne od ústia rieky Lufubu. Ak berieme do úvahy fakt, že rieka Lufubu, ako tretí najväčší zdroj vody pre jazero, predstavuje vysoko stabilnú ekologickú bariéru, ktorá oddeľuje pobrežie hory Chaitika od poloostrova Inangu, potom skupina G si mohla udržiavať oblasť pôvodného rozšírenia južne od rieky Lufubu, ale bola nahradená zástupcami skupiny F v Cameron Bay po poklese hladiny.

Počas tretieho šírenia asi pred 200 000 rokmi sa šírili 3 podskupiny skupiny A pozdĺž pobrežia, kde sa pôvodne vyskytovali. Podskupina A2 sa musela premiestniť krížom cez jazero z južného okraja centrálnej časti na východné pobrežie južnej časti jazera. Podskupiny A2 a A4 sa rozšírili pozdĺž juhovýchodného pobrežia viac na juh jazera. V lokalite Wapembe na severe sa u jedného jedinca zistil haplotyp, podľa ktorého patrí do skupiny H, ktorá sa rozšírila pri primárnom šírení a všetky ďalšie jedince parili do dvoch podskupín A. Dva odlišné Tropheusy žijú v blízko príbuznom vzťahu blízko Wapembe. V Katoto, hlavnej hranici medzi skupinami A a G sa zistilo asi 50 % populácie s haplotypom skupiny G a 50% z podskupín A2 a A4. Podskupina A2 sa zistila aj v lokalite Katukula, ale táto populácia je tvorená prevažne rybami zo skupiny G.

Súhrn

Tropheusy 7 skupín nezmenili dramaticky ich rozpätie výskytu, čo môže byť kvôli stabilite ich životného prostredia, ktoré je tvorené kolmo klesajúcim pobrežím. Tieto oblasti neboli príliš ovplyvnené kolísaním hladiny jazera, pretože sa presúvali iba smerom dolu a hore pozdĺž útesov. Jedna podskupina (A2) sa zistila takmer po celom jazere a aj jedinci zo vzdialených populácií sú v úzkom vzťahu. Keďže sa zistili podobné charakteristiky rozšírenia aj iných rodov tanganických cichlíd (Eretmodus, Cyprichromis), pravdepodobne mali zmeny v jazere (klimatické a geologické) podobný vplyv na genetickú štruktúru populácií aj iných druhov.

Literatúra

Baric, S. et al.: Phylogeography and evolution of the Tanganyikan cichlid genus Tropheus based upon mitochondrial DNA saquences. J. Mol. Evol., 56, 2003, 54-68.
Cohen, A.S., Soreghan, M.R., Scholz, C.A.: Estimanting the age of formation of lakes: An example from Lake Tanganyika, East African Rift System. Geology, 21, 1993, 511-514.
Cohen, A.S. et al.: New palaeogeographic and lake-level reconstructions of Lake Tanganyika: Implications for tectonic climatic and biological evolution in a rift lake. Basin Res., 9, 1997, 107-132.
Gasse, F. et al.: Water level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature, 342, 1989, 57-59.
Sturmbauer, C.: Explosive speciation in cichlid fishes of the African Great Lakes: A dynamic model of adaptive radiation. J. Fish Biol., 53, 1998, 18-36.
Sturmbauer, C., Meyer, A.: Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature, 358, 1992, 578-581.
Sturmbauer, C. et al.: Lake level fluctuation synchronize genetic divergences of cichlid fishes in African lakes. Mol. Biol. Evol., 18, 2001, 144-154.

S použitím uvedenej literatúry spracoval: Róbert Toman

Use Facebook to Comment on this Post