Akvaristika, Biológia

Kyslík v živote rýb – pozitíva i negatíva

Hits: 11837

Autor príspevku: Róbert Toman

Pozitívne pôsobenie kyslíka na živé organizmy je všeobecne známe. Ryby potrebujú k svojmu životu kyslík rovnako ako suchozemské stavovce, hoci spôsob ich dýchania je úplne odlišný. Keďže nemajú pľúca, kyslík musí prenikať z vody do krvi priamo cez tkanivá, ktoré sú v priamom kontakte s vodou, teda cez žiabre. Kyslík, ktorý má difundovať do krvi cez žiabre musí byť samozrejme rozpustený, pretože ryby nemajú schopnosť prijímať kyslík vo forme bubliniek. Odchyt rýb, transport a ich chov v zajatí má vážne metabolické nároky v mozgu, svaloch, srdci, žiabrach a ďalších tkanivách. Všeobecne ich nazývame stres, ale fyziologická situácia je omnoho komplikovanejšia. Stres spojený s odchytom a vypustením rýb do iného prostredia môže prispieť k úmrtnosti rýb. Pochopenie energetického metabolizmu rýb a faktorov, ktoré ho ovplyvňujú sú dôležité pre správne zaobchádzanie s rybami ich ošetrenie po odchyte. Pred zhodnotením rizík, ktoré súvisia s kyslíkom vo vode a pre ich pochopenie si priblížme aspoň v krátkosti fyziologické pochody spojené s funkciou kyslíka v organizme rýb.

Energetický metabolizmus a potreba kyslíka

Energia, ktorá sa používa na zabezpečenie všetkých bunkových funkcií sa získava z adenozíntrifosfátu (ATP). Je potrebný na kontrakcie svalov, vedenie nervových impulzov v mozgu, činnosť srdca, na príjem kyslíka žiabrami atď. Ak bunka potrebuje energiu, rozpojením väzieb v ATP sa uvoľní energia. Vedľajším produktom tejto reakcie je adenozíndifosfát (ADP) a anorganický fosfát. V bunke ADP a fosfát môžu znova reagovať cez komplikované metabolické deje a tvorí sa ATP. Väčšina sladkovodných rýb potrebuje veľké množstvo kyslíka v prostredí. Tento kyslík je potrebný hlavne ako „palivo“ pre biochemické mechanizmy spojené s procesmi cyklu energie. Energetický metabolizmus, ktorý je spojený s kyslíkom je vysoko účinný a zabezpečuje trvalé dodávanie energie, ktorú potrebuje ryba na základné fyziologické funkcie. Tento metabolizmus sa označuje aeróbny metabolizmus.

Nie všetka produkcia energie vyžaduje kyslík. Bunky majú vyvinutý mechanizmus udržiavať dodávku energie počas krátkeho obdobia, keď je hladina kyslíka nízka (hypoxia). Anaeróbny alebo hypoxický energetický metabolizmus je málo účinný a nie je schopný produkovať dostatok energie pre tkanivá počas dlhého obdobia. Ryby potrebujú konštantný prísun energie. K tomu potrebujú stále a dostatočné množstvo kyslíka. Nedostatok kyslíka rýchlo zbavuje ryby energie, ktorú potrebujú k životu. Ryby sú schopné plávať nepretržite na dlhé vzdialenosti bez únavy v značnej rýchlosti. Tento typ plávania ryby využívajú pri normálnom plávaní a na dlhé vzdialenosti. Svaly, ktoré sa na tomto pohybe podieľajú, využívajú veľké množstvo kyslíka na syntézu energie. Ak majú ryby dostatok kyslíka, nikdy sa neunavia pri dlhodobom plávaní. Rýchle, prudké a vysoko intenzívne plávanie trvá normálne iba niekoľko sekúnd, prípadne minút a končí fyzickým stavom vyčerpania. Tento typ plávania využívajú ryby pri love, migrácii proti prúdu alebo pri úteku. Tento typ pohybu úplne vyčerpá energetické zásoby. Obnova môže trvať hodiny, niekedy aj dni, čo závisí na prístupnosti kyslíka, trvaní rýchleho plávania a stupni vyčerpania energetických zásob. Ak sa napríklad ryba, ktorá bola pri odchyte úplne zbavená energie, umiestni do inej nádrže, potrebuje množstvo kyslíka a pokojné miesto, kde by obnovila zásoby energie. Ak sa však umiestni do nádoby, kde je málo kyslíka, nedokáže obnoviť energiu a skôr či neskôr hynie. Nie nedostatok kyslíka zabíja rybu, ale nedostatok energie a neschopnosť obnoviť energetické zásoby. Je jasné, že to sú podmienky, ktoré extrémne stresujú ryby.

Faktory ovplyvňujúce obnovu energie

Spolu so stratou energetických zásob počas rýchleho plávania narastá v tkanivách a krvi hladina laktátu. Keďže sa jedná o kyselinu, produkuje ióny vodíka, ktoré znižujú pH tkanív a dodávanie energie do bunky. Tiež zvyšuje vyplavovanie dôležitých metabolitov z bunky, ktoré sú potrebné pri obnove energie. Vylučovanie laktátu a obnova normálnej funkcie buniek môže trvať od 4 do 12 hodín. Pri tomto procese hrá dôležitú úlohu veľkosť tela, teplota vody, tvrdosť a pH vody a dostupnosť kyslíka.

Veľkosť tela – existuje pozitívna korelácia medzi anaeróbnym energetickým metabolizmom a potrebou energie. Väčšie ryby teda potrebujú viac energie na rýchle plávanie. To spôsobuje vyšší výdaj energie a dlhší čas obnovy

Teplota vody – vylučovanie laktátu a iných metabolitov výrazne ovplyvňuje teplota vody. Väčšie zmeny teploty výrazne ovplyvňujú schopnosť rýb obnoviť energetické zásoby. Je preto potrebné sa vyvarovať veľkým zmenám teploty, ktoré znižujú schopnosť obnovy energie.

Tvrdosť vody – zníženie tvrdosti vody má dôležitý účinok na metabolizmus a acidobázickú rovnováhu krvi. Väčšina prác sa zaoberala vplyvom na morské druhy a nie je úplne jasné, či sú tieto výsledky prenosné aj na sladkovodné ryby. Keď sú sladkovodné ryby stresované, voda preniká cez bunkové membrány, hlavne žiabier a krv je redšia. Toto zriedenie krvi zvyšuje nároky na udržiavanie rovnováhy solí v organizme, čiže udržiavanie osmotickej rovnováhy. Viac sa dočítate nižšie.

pH vody – v kyslejšom prostredí sú ryby schopné obnoviť energiu rýchlejšie. Vyššie pH tento proces výrazne spomaľuje, čo je rizikové pre druhy vyžadujúce vyššie pH, ako napr. africké cichlidy jazier Malawi a Tanganika.

Regulácia osmotického tlaku – udržiavanie rovnováhy solí stresovaných rýb

Regulácia hladiny solí je základom života. Štruktúra a funkcia bunky úzko súvisí s vodou a látok v nej rozpustených. Ryba používa značnú energiu na kontrolu zloženia vnútrobunkových a mimobunkových tekutín. U rýb táto osmoregulácia spotrebuje asi 25 – 50% celkového metabolického výdaja, čo je pravdepodobne najviac spomedzi živočíchov. Mechanizmus, ktorý ryby využívajú na udržiavanie rovnováhy solí je veľmi komplikovaný a extrémne závislý na energii. Pretože účinnosť anaeróbneho energetického metabolizmu je iba na úrovni 1/10 energetického metabolizmu v prostredí bohatom na kyslík, energetická potreba pre osmoreguláciu tkanív nie je možná iba anaeróbnym energetickým metabolizmom. Rýchly pokles hladiny ATP v bunke spôsobuje spomalenie až zastavenie funkcie bunkových iónových púmp, ktoré regulujú pohyb solí cez bunkovú membránu. Prerušenie činnosti iónovej pumpy spôsobuje stratu rovnováhy iónov v bunke a dochádza k riziku smrti bunky a ryby.

Sladkovodné aj morské ryby trvalo čelia nutnosti iónovej a osmotickej regulácie. Sladkovodné ryby, ktorých koncentrácia iónov v tkanivách je omnoho vyššia ako vo vode, musia regulovať príjem a stratu vody cez priepustné epiteliálne tkanivá a močom. Tieto ryby produkujú veľké množstvo moču, ktorého denné množstvo tvorí 20% hmotnosti tela. Obličky rýb sú vysoko účinné v odstraňovaní vody z tela a sú takisto účinné aj v zadržiavaní solí v tele. Zatiaľ čo veľmi malé množstvo soli preniká do moču, väčšina osmoregulačných dejov sa zabezpečuje žiabrami. Sodík je hlavný ión tkanív. Transport sodíka cez bunkovú membránu je vysoko závislý na energii a umožňuje ho enzým Na/K-ATP-áza. Tento enzým sa nachádza v bunkovej membráne a využíva energiu, ktorú dodáva ATP na prenos sodíka jedným smerom cez bunkovú membránu. Draslík sa pohybuje opačným smerom. Tento proces umožňuje svalovú kontrakciu, poskytuje elektrochemický gradient potrebný na činnosť srdca a umožňuje prenos všetkých signálov v mozgu a nervoch. Väčšina osmoregulácie u rýb sa deje v žiabrach a funguje nasledovne: Čpavok sa tvorí ako odpadový produkt metabolizmu rýb. Keď sú ryby v pohybe, tvoria väčšie množstvo čpavku a ten sa musí vylúčiť z krvi. Na rozdiel od vyšších živočíchov, ryby nevylučujú čpavok močom. Čpavok a väčšina dusíkatých odpadových látok prestupuje cez membránu žiabier (asi 80 – 90%). Čpavok sa vymieňa pri prechode cez membránu žiabier za sodík. Takto sa znižuje množstvo čpavku v krvi a zvyšuje sa jeho koncentrácia v bunkách žiabier. Naopak, sodík prechádza z buniek žiabier do krvi. Aby sa nahradil sodík v bunkách žiabier a obnovila sa rovnováha solí, bunky žiabier vylúčia čpavok do vody a vymenia ho za sodík z vody. Podobným spôsobom sa vymieňajú chloridové ióny za bikarbonát. Pri dýchaní je vedľajší produkt CO2 a voda. Bikarbonát sa tvorí, keď CO2 z bunkového dýchania reaguje s vodou v bunke. Ryby nemôžu, na rozdiel od suchozemských živočíchov, vydýchnuť CO2 a miesto toho sa zlučuje s vodou a tvorí sa bikarbonátový ión. Chloridové ióny sa dostávajú do bunky a bikarbonát von z bunky do vody. Týmto spôsobom sa zamieňa vodík za sodík, čím sa napomáha kontrole pH krvi.

Tieto dva mechanizmy výmeny iónov sa nazývajú absorpcia a sekrécia a vyskytujú sa v dvoch typoch buniek žiabier, respiračných a chloridových. Chloridové bunky vylučujú soli, sú väčšie a vyvinutejšie u morských druhov rýb. Respiračné bunky, ktoré sú potrebné pre výmenu plynov, odstraňovanie dusíkatých odpadových produktov a udržiavanie acidobázickej rovnováhy, sú vyvinutejšie u sladkovodných rýb. Sú zásobované arteriálnou krvou a zabezpečujú výmenu sodíka a chloridov za čpavok a bikarbonát. Tieto procesy sú opäť vysoko závislé na prístupnosti energie. Ak nie je dostatok energie na fungovanie iónovej pumpy, nemôže dochádzať k ich výmene a voda „zaplaví“ bunky difúziou a to spôsobí smrť rýb.

Dôsledky nedostatku kyslíka v procese osmoregulácie

Len niekoľko minút nedostatku kyslíka, membrána buniek mozgu stráca schopnosť kontrolovať rovnováhu iónov a uvoľňujú sa neurotransmitery, ktoré urýchľujú vstup vápnika do bunky. Zvýšená hladina vápnika v bunkách spúšťa množstvo degeneratívnych procesov, ktoré vedú k poškodeniu nervovej sústavy a k smrti. Tieto procesy zahŕňajú poškodenie DNA, dôležitých bunkových proteínov a bunkovej membrány. Tvoria sa voľné radikály a oxid dusitý, ktoré poškodzujú bunkové organely. Podobné procesy sa dejú aj v iných orgánoch (pečeň, svaly, srdce a krvné bunky). Ak sa dostane do bunky vápnik, je potrebné veľké množstvo energie na jeho odstránenie kalciovými pumpami, ktoré vyžadujú ATP. Ďalší dôsledok hypoxie je uvoľňovanie hormónov z hypofýzy, z ktorých u rýb prevažuje prolaktín. Uvoľnenie tohto hormónu ovplyvňuje priepustnosť bunkovej membrány v žiabrach, koži, obličkách, čreve a ovplyvňuje mechanizmus transportu iónov. Jeho uvoľnenie napomáha regulácii rovnováhy vody a iónov znižovaním príjmu vody a zadržiavaním dôležitých iónov, hlavne Na+ a Cl-. Tým pomáha udržiavať rovnováhu solí v krvi a v tkanivách a bráni nabobtnaniu rýb vodou.

Najväčšia hrozba pre sladkovodné ryby je strata iónov difúziou do vody, skôr než vylučovanie nadbytku vody. Hoci regulácia rovnováhy vody môže mať význam, je sekundárna vo vzťahu k zadržiavaniu iónov. Prolaktín znižuje osmotickú priepustnosť žiabier zadržiavaním iónov a vylučovaním vody. Zvyšuje tiež vylučovanie hlienu žiabrami, čím napomáha udržiavať rovnováhu iónov a vody tým, že zabraňuje prechodu molekúl cez membránu. U rýb, ktoré boli stresované chytaním, prudkým plávaním, sa z tkanív odčerpáva energia a trvá niekoľko hodín až dní, kým sa jej zásoby obnovia. Anaeróbny energetický metabolizmus nie je schopný to zabezpečiť v plnej miere a je potrebné veľké množstvo kyslíka. Ak je ho nedostatok, vedie to k úhynu rýb. Nemusia však uhynúť hneď. Rovnováha solí sa nemôže zabezpečiť bez dostatku kyslíka.

Potreba kyslíka

Kyslík je hlavným faktorom, ktorý ovplyvňuje prežitie rýb v strese. Nie teplota vody ani hladina soli. Predsa však je teplota hlavný ukazovateľ toho, koľko kyslíka vo vode je pre ryby dostupného a ako rýchlo ho budú môcť využiť. Maximálne množstvo rozpusteného kyslíka vo vode sa označuje hladina saturácie. Táto klesá so stúpaním teploty. Napr. pri teplote 21°C je voda nasýtená kyslíkom pri jeho koncentrácii 8,9 mg/l, pri 26°C je to pri koncentrácii 8 mg/l a pri 32°C len 7,3 mg/l. Pri vyšších teplotách sa zvyšuje metabolizmus rýb a rýchlejšie využívajú aj kyslík. Koncentrácia kyslíka pod 5 mg/l pri 26°C môže byť rýchlo smrteľná.

Vzduch a kyslík vo vode – môže aj škodiť. Pri chove cichlíd sa často chovateľ snaží zabezpečiť maximálne prevzdušnenie vody veľmi silným vzduchovaním. Niektorí chovatelia využívajú možnosti prisávania vzduchu pred vyústením vývodu interného alebo externého filtra, iní používajú samostatné vzduchové kompresory, ktorými vháňajú vzduch do vody cez vzduchovacie kamene s veľmi jemnými pórmi. Oba spôsoby vzduchovania sú schopné vytvoriť obrovské množstvo mikroskopických bubliniek. Veľkosť bublín kyslíka alebo vzduchu môže významne zmeniť chémiu vody, stupeň prenosu plynov a koncentráciu rozpustených plynov. Riziko poškodenia zdravia a úhynu rýb vzniká najmä pri transporte v uzavretých nádobách, do ktorých sa vháňa vzduch alebo kyslík pod tlakom. Určité riziko však vzniká aj pri nadmernom jemnom vzduchovaní v akváriách. Mikroskopické bublinky plynu sa môžu prilepiť na žiabre, skrely, kožu a oči a spôsobovať traumu a plynovú embóliu. Poškodenie žiabier a plynová embólia negatívne ovplyvňujú zdravie rýb a prežívateľnosť, obmedzujú výmenu plynov pri dýchaní a vedú k hypoxii, zadržiavaniu CO2 a respiračnej acidóze. Čistý kyslík je účinné oxidovadlo. Mikroskopické bublinky obsahujúce čistý kyslík sa môžu prichytiť na lístky žiabier, vysušujú ich, dráždia, oxidujú a spôsobujú chemické popálenie jemného epiteliálneho tkaniva. Ak voda vyzerá mliečne zakalená s množstvom miniatúrnych bublín, ktoré sa prilepujú na skrely a žiabre alebo na vnútorné steny nádoby, je potrebné tieto podmienky považovať za potenciálne toxické a všeobecne nezdravé pre ryby. Ak je pôsobenie plynu v tomto stave dlhšie trvajúce a parciálny tlak kyslíka sa pohybuje okolo 1 atmosféry (namiesto 0,2 atm., ako je vo vzduchu), šanca prežitia pre ryby klesá. Stlačený vzduch je vhodný, ak sa dopĺňa kontinuálne v rozmedzí bezpečnej koncentrácie kyslíka, ale pôsobením stlačeného vzduchu alebo dodávaného pod vysokým parciálnym tlakom vo vode, môžu ryby prestať dýchať, čím sa zvyšuje koncentrácia CO2 v ich organizme. To môže viesť k zmenám acidobázickej rovnováhy (respiračnej acidózy) v organizme rýb a zvyšovať úhyn. Čistý stlačený kyslík obsahuje 5-násobne vyšší obsah kyslíka ako vzduch. Preto je potreba jeho dodávania asi 1/5 pri čistom kyslíku oproti zásobovaniu vzduchom. Veľmi malé bubliny kyslíka sa rozpúšťajú rýchlejšie než väčšie, pretože majú väčší povrch vzhľadom k objemu, ale každá plynová bublina potrebuje na rozpustenie vo vode dostatočný priestor. Ak tento priestor chýba alebo je nedostatočný, mikrobubliny môžu zostať v suspenzii vo vode, prichytávajú sa k povrchom predmetov vo vode alebo pomaly stúpajú k hladine.

Mikroskopické bublinky plynu sa rozpúšťajú vo vode rýchlejšie a dodávajú viac plynu do roztoku než väčšie bubliny. Tieto podmienky môžu presycovať vodu kyslíkom, ak množstvo bubliniek plynu tvorí „hmlu“ vo vode a zostávajú rozptýlené (v suspenzii) a kyslík s vysokým tlakom môže byť toxický kvôli tvorbe voľných radikálov. Mikroskopické vzduchové bublinky môžu tiež spôsobiť plynovú embóliu. Arteriálna plynová embólia a emfyzém tkanív môžu byť reálne a tvoria nebezpečenstvo najmä pri transporte živých rýb. Je preto potrebné sa vyhnúť suspenzii plynových bublín v transportnej vode. Problém arteriálnej plynovej embólie počas transportu vzniká aj preto, že ryby nemajú možnosť sa potopiť do väčšej hĺbky (ako to robia ryby vypustené do jazera), kde je vyšší tlak vody, ktorý by rozpustil jemné bublinky v obehovom systéme. Dva kľúčové body zlepšujú pohodu veľkého počtu odchytených a stresovaných rýb pri transporte:

Zvýšiť parciálny tlak O2 nad nasýtenie stlačeným kyslíkom a dodanie dosť veľkých bublín, aby unikli povrchom vody. Vzduch tvorí najmä dusík a mikroskopické bublinky dusíka tiež môžu prilipnúť na žiabre. Bublinky akéhokoľvek plynu prichytené na žiabre môžu ovplyvniť dýchanie a narušiť zdravie rýb. Ak sa transportujú ryby vo vode presýtenej bublinkami, vzniká pravdepodobnosť vzniku hypoxie, hyperkarbie, respiračnej acidózy, ochorenia a smrti.

Zvýšiť slanosť vody na 3-5 mg/l. Soľ (stačí aj neiodidovaná NaCl) je vhodná pri transporte rýb. V strese ryby strácajú ióny a toto môže byť pre ne viac stresujúce. Energetická potreba transportu iónov cez membrány buniek môže predstavovať významnú stratu energie vyžadujúcu ešte viac kyslíka. Transport rýb v nádobách, ktoré obsahujú hmlu mikroskopických bublín, môžu byť nebezpečná pre transportované ryby zvyšovaním možnosti oneskorenej smrti po vypustení. Ryby transportované v akoby mliečne zakalenej vode sú stresované, dochádza k ich fyzickému poškodeniu, zvyšuje sa citlivosť k infekciám, ochoreniu a úhyn po vypustení po transporte. Po vypustení rýb, ktoré prežili prvotný toxický vplyv kyslíka, po transporte môžu byť kvôli poškodeným žiabram citlivejšie na rôzne patogény a následne sa môže vyskytovať zvýšený úhyn počas niekoľkých dní až týždňov po transporte. Veľmi prevzdušnená voda neznamená prekysličená. Veľmi prevzdušnená voda je často presýtená plynným dusíkom, ktorý môže spôsobiť ochorenie. Mikroskopické bublinky obsahujúce najmä dusík, môžu spôsobiť emfyzém tkanív pri transporte, podobne, ako je tomu u potápačov.

Literatúra

Cech, J.J. Jr., Castleberry, D.T., Hopkins, T.E. 1994. Temperature and CO2 effects on blood O2 equilibria in squawfish, Ptychocheilus oregonensis. In: Can. J. Fish. Aquat. Sci., 51, 1994, 13-19.
Cech, J.J. Jr., Castleberry, D.T., Hopkins, T.E., Petersen, J.H. 1994. Northern squawfish, Ptychocheilus oregonensis, O2 consumption and respiration model: effects of temperature and body size. In: Can. J. Fish. Aquat. Sci., 51, 1994, 8-12.
Crocker, C.E., Cech, J.J. Jr. 1998. Effects of hypercapnia on blood-gas and acid-base status in the white sturgeon, Acipenser transmontanus. In: J. Comp. Physiol., B168, 1998, 50-60.
Crocker, C.E., Cech, J.J. Jr. 1997. Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. In: Env. Biol. Fish., 50, 1997, 383-389.
Crocker, C.E., Farrell, A.P., Gamperl, A.K., Cech, J.J. Jr. 2000. Cardiorespiratory responses of white sturgeon to environmental hypercapnia. In: Amer. J. Physiol. Regul. Integr. Comp. Physiol., 279, 2000, 617-628.
Ferguson, R.A, Kieffer, J.D., Tufts, B.L. 1993. The effects of body size on the acid-base and metabolic status in the white muscle of rainbow trout before and after exhaustive exercise. In: J. Exp. Biol., 180, 1993, 195-207.
Hylland, P., Nilsson, G.E., Johansson, D. 1995. Anoxic brain failure in an ectothermic vertebrate: release of amino acids and K+ in rainbow trout thalamus. In: Am. J. Physiol., 269, 1995, 1077-1084.
Kieffer, J.D., Currie, S., Tufts, B.L. 1994. Effects of environmental temperature on the metabolic and acid-base responses on rainbow trout to exhaustive exercise. In: J. Exp. Biol., 194, 1994, 299-317.
Krumschnabel, G., Schwarzbaum, P.J., Lisch, J., Biasi, C., Weiser, W. 2000. Oxygen-dependent energetics of anoxia-intolerant hepatocytes. In: J. Mol. Biol., 203, 2000, 951-959.
Laiz-Carrion, R., Sangiao-Alvarellos, S., Guzman, J.M., Martin, M.P., Miguez, J.M., Soengas, J.L., Mancera, J.M. 2002. Energy metabolism in fish tissues relaed to osmoregulation and cortisol action: Fish growth and metabolism. Environmental, nutritional and hormonal regulation. In: Fish Physiol. Biochem., 27, 2002, 179-188.
MacCormack, T.J., Driedzic, W.R. 2002. Mitochondrial ATP-sensitive K+ channels influence force development and anoxic contractility in a flatfish, yellowtail flounder Limanda ferruginea, but not Atlantic cod Gadus morhua heart. In: J. Exp. Biol., 205, 2002, 1411-1418.
Manzon, L.A. 2002. The role of prolactin in fish osmoregulation: a review. In: : Gen. Compar. Endocrin., 125, 2002, 291-310.
Milligan, C.L. 1996. Metabolic recovery from exhaustive exercise in rainbow trout: Review. In: Comp. Biochem. Physiol.,113A, 1996, 51-60.
Morgan, J.D., Iwama, G.K. 1999. Energy cost of NaCl transport in isolated gills of cutthroat trout. In: Am. J. Physiol., 277, 1999, 631-639.
Nilsson, G.E., Perez-Pinzon, M., Dimberg, K., Winberg, S. 1993. Brain sensitivity to anoxia in fish as reflected by changes in extracellular potassium-ion activity. In: Am. J. Physiol., 264, 1993, 250-253.

Use Facebook to Comment on this Post

Akvaristika, Biológia

Choroby rýb a ich liečenie

Hits: 64974

Každý asi pozná vetu: Zdravý ako ryba. Bodaj by vaše ryby boli zdravé, ale skúsenejší akvarista by sa asi tomuto porekadlu vyhol. Zárodky infekcií sa vo vode úspešne šíria a často aj neustále vyskytujú, avšak ryby samozrejme disponujú imunitným systémom, ktorý bráni prieniku choroby. Tento systém môže byť samozrejme rôznymi faktormi narušený, a tým sa budeme tu zaoberať. Chcel by som však znovu zdôrazniť, že ryby si za normálnych podmienok, ktoré by sme im mali vedieť poskytnúť, poradiť aj samé. Počas choroby ryba veľmi často v závislosti od druhu mení sfarbenie. Môže zblednúť, aj stmavnúť.

Ak sme dospeli do štádia, že sa nevyhneme dezifenkcii, vhodný je hypermangán, ocot, čistá voda, zmes soli a octu, podrobenie varu. Vyššia teplota znižuje v dlhšom časovom období kondíciu, imunitu rýb, aj keď sa v takejto vode na pohľad cítia lepšie a sú krajšie vyfarbené. Choroby rýb sú ťažšie diagnostifikovateľné a liečiteľné, najmä tie vnútorné. Vonkajšie ochorenia, ktoré sú častokrát badateľné aj voľným okom, aj keď aj medzi nimi sa nájde zopár, ktoré môžu aj napriek liečeniu kondične dobre disponovanej ryby viesť ku úhynu. Vnútorné ochorenia často zistíme prostredníctvom zmeny správania, prípadne až po úhyne. Špecializované veterinárne pracoviská sú schopné identifikovať aj z mŕtveho materiálu typ ochorenia. Pri použití liečiv je často vhodné z nádrže rastliny odstrániť, ak je to možné. Pretože liečivá rastlinám vyslovene škodia, a ich účinky sú dlhodobé. Ak to nie je možné, po skončení liečby je vhodné použiť aktívne uhlie, ktoré teoreticky dokáže niečo z nenaviazaných súčastí liečiv a produktov reakcií nimi spôsobených, viazať. Po určitom čase je nutné samozrejme aj aktívne uhlie odobrať, pretože stratí absorpčné vlastnosti. Šírenie choroby môže byť plošné, ale často krát je viazané na jediného hostiteľa – čo nám dáva možnosť zbaviť sa choroby v jej počiatku premiestnením napadnutého jedinca do inej nádrže. Ak by sa takémuto parazitu podarilo úspešne zdolať svoju svoju obeť, táto už ďalej mu nebude poskytovať živiny, a prejde resp. bude si hľadať nového kandidáta. Možno ste si všimli niekedy, že nebadane vám po jednom odchádzajú ryby v pomerne dlhom časovom úseku – je to možný následok práve takéhoto priebehu choroby.

Ichtyoftirióza – je pomerne časté ochorenie rýb, slangovo sa mu hovorí krupička. Spôsobuje ho Ichthyophthirius multifilis, ktorý patrí medzi nálevníky. Ryby sú posiate akoby „krupičkou“. Choroba preniká do akvária živou potravou, cudzou vodou, prinesenými rybami. Proti krupičke pomáha zvýšenie teploty – soľný kúpeľ opísaný nižšie. Účinne potláča krupičku aj malachitová zeleň, no tá vlastne len vylieči symptómy, samotná choroba v zárodkoch zostane, preto ju na liečenie neodporúčam, ale hodia sa liečivá na báze FMC.

Oodinióza – toto ochorenie spôsobuje Piscinoodinium pillularis.

Medzi ťažké choroby rýb, ktoré sú takmer neliečiteľné možno s istotou zaradiť mykobakteriózu – tuberkulózu rýb. Prejavuje sa najmä chorobným chudnutím, prepadnutou brušnou časťou tela, nezáujmom prijímať potravu. Je nutné poznamenať, že toto ochorenie je ako jedno z mála prenosné dotykom na človeka. Ak lekár nepríde na súvis s rybami, môže skončiť aj smrťou pacienta. Čiže v prípade tohto ochorenia, nemanipulujme s rybami rukami, zabráňme styku s postihnutou rybou.

Bakteriálny rozpad plutiev spôsobuje mikroorganizmy Pseudomonas, Aeromonas. Ide o vážnu chorobu, ktorá sa účinne lieči napr. pomocou prípravku Bactopur Direct. Tento prípravok firmy SERA zafarbuje vodu do žltozelena, dôležitejšie však je, že výrazne poškodzuje rastliny, preto pri jeho použití rastliny z akvária odstránime. Často aj napriek liečbe uhynie polovička populácie.

Plesne – následkom nákazy, dochádza na rybách k rôznym preplesňovej nákazy. Pleseň je huba, ktorá v tomto prípade napáda pokožku rýb. Plesne sú pomerne dobre na povrchu viditeľné, niektoré sú liečiteľné Acriflavínom, FMC a podobnými prípravkami, prípadne aj soľou, no niektoré sú vážnejšie a je nutné siahnuť po silnejších prostriedkoch. Chcel by som však upozorniť, že spóry plesní môžu byť prakticky neustále prítomné vo vode, ale chorobný stav sa nemusí prejaviť. Ryby majú imunitný systém, ktorý sa za optimálnych podmienok dokáže brániť. Najmä dravšie ryby, poranené sú účinnejšie napádané plesňami, ale ak je ryba v kondícii, v krátkom čase si s ňou poradí. Preto, ak pozorujeme takéhoto jedinca, nemusíme nutne siahnuť ku liečbe, ale dajme šancu prirodzenému vývinu, zasiahnime až v prípade že sa nákaza šíri, alebo ryby sú oslabené nejakou väčšou zmenou. Náznakom prítomnosti plesňového ochorenia je obtieranie sa o podklad, o piesok, o kamene. Ak registrujeme zvýšené otieranie, zrejme ryby svrbí práve pleseň – týmto spôsobom sa jej snažia zbaviť.

Vodnatieľka – plynatosť. Pomerne vážne ochorenie, ktoré je zväčša spôsobené nesprávnou výživou. Pri podozrení podávajme menej bielkovinových zložiek a viac balastných látok. Prejav ochorenia je však postupný, čiže aj jeho doznenie trvá dlhšie obdobie.

Malawi bloat – ochorenie afrických jazerných cichlíd – venuje sa mu samostatný článok.

V prípade, že ryba trpí pokročilou formou ťažko liečiteľnej choroby, prípadne sme z nejakého iného veľmi vážneho dôvodu nútený ryby usmrcovať, mali by sme aj k tomuto problému pristupovať profesionálne a s úctou. Existuje viacero humánnych metód, ktorými môžeme vykonať rybu usmrtiť: prudkým úderom ryby o pevný podklad, ponorením do sódovky, minerálky – využijeme silný narkotizačný účinok CO2 vo vyššej koncentrácii, rýchlym prerušením chrbtice – miechy tesne za hlavou ostrým predmetom, veľmi studenou vodou, môžeme si pomôcť napr. ľadom. Liečba Pri liečbe môžeme čiastočne úspešne využiť aktívne uhlie, ktoré adsorbuje množstvo nežiaducich látok, no predovšetkým UV-lampu. Ultrafialové žiarenie má svoje využitie aj v medicíne, takže samozrejme netrvalo dlho a technické riešenie použitia UV-žiarenia nedalo na seba dlho čakať. UV-lampa sa používa buď ako filter, alebo v akútnom prípade priamo na kontaminovanú vodu. Jej účinnosť je pomerne veľká, napr. na druhy baktérii [1] ako je Bacillus megatherium, Clostridium tetami, Dysentery bacilli, Micrococcus candidus, Myxobacterium tuberculosis, Psedomonas aerugenosa, Salmonsella enteritidis, na vírusy, na nálevníka, chlorelu a mnohé iné druhy a taxóny. Veľa liečiv používaných v akvaristike je kontaktného charakteru – čiže ak narazia na vhodný objekt, viažu sa s ním. Zvyčajne sú tekuté. Preto je vhodné zabezpečiť prúdenie vody napríklad pomocou filtra, vzduchovania alebo inak a aplikovať kvapalné liečivo do celého priestoru zasiahnutého chorobou. Často som sa v praxi stretol s používaním preventívnych prostriedkov. Používajú sa špeciálne prípravky na tento účel, a častokrát aj liečivá v nižšej koncentrácii. Som zásadne proti, pretože používaním špeciálnych prípravkov oslabujeme imunitný systém našich rýb, ktoré potom pri silnejšom choroby nie sú schopné nákaze odolávať. Takéto prostriedky potláčajú prirodzenú odolnosť organizmu. Prevenciu zabezpečme iným spôsobom – správnymi podmienkami chovu, výživnou rozmanitou stravou, údržbou. Ak by som uvažoval o použití preventívnych prostriedkov, tak iba keď sú ryby v príliš stresujúcom prostredí – napr. v predajni, prípadne niekde kde dochádza k veľkým zmenám v osádke rýb, nanajvýš ak nechceme použiť pre nové ryby karanténu. V prípade použitia akýchkoľvek rozpustných liečiv musíme uvažovať o odobratí aktívneho uhlia z akvária. Pretože by liečba bola značne neúčinná – aktívne uhlie vo veľkej miere adsorbuje aj zložky obsiahnuté v liečivách. Jeho účinky je vhodné využiť po liečbe, tak ako som už spomenul na inom mieste.

Soľný kúpeľ – soľ je najmä medzi skúsenejšími akvaristami používaný prostriedok na liečenie niektorých chorôb. Napr. na odstránenie tzv. krupičky (1 polievková lyžica na 30 litrov vody) je možné soľ a zvýšenú teplotu úspešne použiť. Soľ spôsobuje zvýšenie vylučovania slizu, ktorým sa organizmus ryby bráni.

FMC – niektoré liečivá sú predávané pod rôznymi obchodnými značkami, no sú to odvodeniny od FMC. FMC má širokospektrálne pôsobenie, obsahuje tri základné zložky: formalín, malachitovú zeleň a metylénovú modrú. Je pomerne účinný voči niektorým ektoparazitom a plesniam.

Hypermangán – manganistan draselný KMnO4 sa používa napr. proti kaprivcovi, proti riasam. Pôsobí dezinfekčne, využíva sa aj v medicíne.

Trypaflavín je príbuzný acriflavínu aj proflavínu.

Proti ektoparazitom sa používa metylénová modrá a malachitová zeleň. Chemicky malachitová zeleň patrí medzi trifenylmetány.

Z ďalších liečiv to je metronidazol – entizol. Komerčne sa FMC ponúka aj pod rovnakým názvom FMC, ale aj napr. ako Multimedikal.

Aj v akvaristike sa využívajú antibiotiká: tetracyklín, streptomycín.

Karanténa Karanténa spočíva v priestorovej izolácii organizmov. Často sa v karanténe ryby liečia z nejakej choroby. Karanténa sa využíva po transporte rýb, to znamená, že ak si kúpime nové ryby môžeme využiť karanténnu nádrž. Ako zariadiť takúto nádrž? V prvom rade ide o jej veľkosť. Musí zodpovedať našim rybám. Na dno použijeme len štrk, prípadne hrubší piesok, alebo môžeme mať karanténnu nádrž bez dna. Filtrovanie, ak by sme ryby liečili by bolo problematické, pretože liečivá nepriaznivo vplývajú na mikroorganizmy v ňom. Preto by som použil len jednoduchý filter, ktorý by plnil mechanickú filtráciu – čiže stačil by vnútorný molitanový filter. Vzduchovanie by som zaviedol, nie je však nutnosťou. Osvetlenie nemusí splňovať najprísnejšie kritériá. Rastliny by som použil len plávajúce, napr. Ceratophyllum demersum, Najas apod. Do karantény sú vhodné aj ryby, ktoré boli ubité inými rybami v nádrži. Niektoré druhy rýb veľmi trpia po izolácii do karantény samotou. Najmä sociálne žijúcim rybám táto izolácia často veľmi urýchli priebeh choroby. Je to veľmi ťažko riešiteľná situácia, kedy takýto jedinci skapú skôr na následky zmeny, ako na chorobu, ktorá ich celý čas kvárila.

Literatúra [1] Malawi Cichlid Homepage

Use Facebook to Comment on this Post

Akvaristika, Biológia, Príroda, Ryby, Živočíchy

Správanie rýb

Hits: 31046

Správanie rýb môže každý z nás pozorovať. Svojím správaním vlastne ryby s nami komunikujú. Keďže nedokážeme zachytiť ich prípadné zvukové prejavy, nemáme inú možnosť. Ak sa niečo dozvieme o ich správaní, budeme vedieť im lepšie pomôcť, pomôže nám to v odhade ich kondície, vo fyziologických potrebách apod. Preto sa posnažím predostrieť vám zopár svojich postrehov. Celkové správanie rýb je druhovo špecifické, napr. labyrintky sú za bežných podmienok pokojné, tetrovité sú často hejnové, spoločenské typy. Niektoré ryby svoj životný priestor nachádzajú v rôznych častiach vodného stĺpca. Sumčeky obývajú prevažne dno, tetry plávajú v strede akvária, dánia v hornej časti, mrenky prakticky v celom vodnom stĺpci. Ryby sa z času na čas otierajú o pevný podklad. V prípade, že túto aktivitu zvýšia, zrejme nepôjde o sociálne správanie, ale o vznikajúcu, prípadne už jestvujúcu plesňovú alebo inú nákazu napádajúcu povrch tela.

V prípade, že máme v nádrži príliš malý počet rýb, môžu sa správať vyľakane a bojazlivo. Situácia závisí od stavby akvária – dekorácie, rozmiestnenia rastlín, ich veľkosti, morfológie, veľkosti akvária, no samozrejme aj od okolitých rýb. V takom prípade je zrejme vhodné zasiahnuť, zvýšiť počet úkrytov (niekedy ale aj znížiť, alebo zmeniť), nechať viac zarásť nádrž, prípadne šetrnejšie zapínať osvetlenie, znížiť tok filtra, vzduchovania, alebo jednoducho zvýšiť počet rýb v akváriu. Pozor však, niektoré druhy rýb sú vyslovenie bojazlivé, prípadne sa vyznačujú viac-menej nočným životom – napr. viaceré druhy sumcovitých.

Ryby aj rastliny reagujú na svetlo viac-menej pozitívne. Rastliny fotosyntetizujú a dýchajú, prípadne sa obracajú za svetlom atď. Ryby počas dostatku svetla intenzívne plávajú, vykonávajú väčšinu aktivít. Svetelné šoky neznášajú, preto niektorí akvaristi používajú stmievače – takýmto spôsobom zmierňujú prípadný náhly prísun svetla. Imituje sa tým východ a západ slnka. Každopádne pomôže, ak umelé osvetlenie zapneme ešte pre zotmením. Horší prípad totiž je náhly prísun svetla, ako jeho náhly nedostatok. Pomôže aj to, ak najprv zapneme stolnú lampu mimo akvária (slabší zdroj svetla), prípadne luster, a nakoniec samotné svetlo nad akváriom. Na náhly nárast svetla reagujú ryby podráždene – prudko začnú plávať, niektoré druhy sa snažia vyskočiť, vtedy môže dôjsť k úrazu spôsobeného dekoráciou. Ryby nie sú síce schopné zatvoriť oči, ale v noci spia. Zjavne to závisí na množstve svetla – oveľa viac ako na zachovaní prirodzeného striedania napr. 12 hodinového cyklu. Čiže, tým že svietime viac než je prirodzené, resp. nepravidelne, ryby unavujeme, pretože ich nútime nespať. Drvivá väčšina druhov mení v noci aj svoje sfarbenie – stráca sa kontrast, farebnosť, celkovo obyčajne ryba stmavne.

Je zaujímavé ako sa ryby budia. Je známe, že mnohé druhy sa skoro ráno trú. Niektoré druhy sa zobúdzajú veľmi rýchlo, iné naopak veľmi ťažko. Ľahko to môžeme vypozorovať počas noci, keď zrazu zasvietime. Živorodky, tetry, mrenky nám zakrátko potom ožijú, pričom skalárom, ostatným cichlidám prebúdzanie bude trvať oveľa dlhšie – akoby neochotne. Správanie rýb ovplyvňuje aj ročné obdobie. My to len veľmi ťažko vieme napodobniť. V prírode často dochádza k rozmnožovaniu na konci obdobia sucha, ryby sa často vyvíjajú počas prvých dní dažďového obdobia. Pre väčšinu druhov je najprirodzenejšia doba na trenie v zajatí jar. Vtedy je aj ich hormonálna aktivita pohlavných funkcií na najvyššej úrovni. Treba si uvedomiť, že druhy, ktoré chováme sú z tropických a subtropických oblastí, kde nie sú ročné obdobia ako u nás. Preto, ak chceme byť dôsledný, dbajme na túto skutočnosť.

V prírode je častá promiskuita, niektoré druhy sú však verné – tvoria páry na celý život. Tento jav je častý u amerických cichlíd. Počas obdobia párenia, ktoré môže byť časovo ohraničené, ale nemusí sa ryby samozrejme správajú inak. Často menia aj svoje sfarbenie. V tomto období je jasnejšie, krajšie, najmä samec sa snaží ukázať pred samičkou v plnej kráse. Napr. samce gupiek Poecilia reticulata prenasledujú samičky často hodiny a hodiny. Každopádne správanie počas párenia, a snažiace sa o získanie priazne je sprevádzané zníženou obozretnosťou voči nebezpečenstvu, samce sú často krát akoby v tranze, trepú celým telom, najmä plutvami, neustále získavajú vhodnejší pozíciu pre oči vyhliadnutej samičky, resp. pre viacero samíc. Doslova sa predbiehajú v predvádzaní, na obdiv vystavujú čo najviac. Samotný rozmnožovací akt takisto prebieha rôzne. Napr. samička po neustálom prenasledovaní vypúšťa ikry do voľnej vody a samec reaguje vylučovaním spermií rovnako do voľného priestoru. Ikry môžu ryby lepiť na listy, na kamene, do vrchnú stranu kvetináča zospodu, fantázií sa medze nekladú. Avšak vrátim sa k správaniu – niektoré druhy sa pred vypustením pohlavných buniek priblížia k sebe, bruškami sa dotknú a vtedy nastane prudké trhnutie, počas ktorého dôjde k oplodneniu. Alebo samček prehodí časť svojho tela cez samičku, nastane prudké trhnutie a situácia je podobná.

Pri rozmnožovaní papuľovcov pozorujeme z nášho pohľadu orálny sex. Samička pri ňom vypúšťa ikry, samec vypúšťa spermie, obaja tieto produkty naberajú do úst, samec ich napokon obyčajne prenechá samičke. Pomenovaním papuľovce sa označujú druhy, ktoré držia svoje potomstvo v ústnej dutine – v papuľke. Nepatria sem len cichlidy, ale aj niektoré bojovnice. Zaujímavé správanie – prejav džentlmenstva pozorujeme u bojovníc, o ktorých je známe, že samce zvádzajú neľútostné boje. Avšak bojovnica pomocou labyrintu dýcha atmosférický kyslík, a keď počas takéhoto boja naňho doľahne biologická potreba, boj na chvíľu utíchne a sok úplne akceptuje svojho protivníka, keď sa ide na hladinu nadýchnuť. Potom boj pokračuje.

Drvivá väčšina druhov rýb sa nestará o svoje potomstvo po akte oplodnenia. No z druhov, ktoré tak činia, väčšinou sa v prvej fáze stará o potomstvo samička, neskôr preberá zodpovednosť skôr samica. Avšak často sa pri afrických papuľovcoch stane, že rodičovský inštinkt im vydrží len počas doby, kým ma samička mladé v papuli, najmä pri malawských druhoch. Tanganické cichlidy a predovšetkým americké cichlidy majú vyššiu potrebu po odchovaní potomstva. Často svoje mladé držia v papuli, niekedy ich vypustia a znovu naberú, jednak ich učia prežiť, jednak tak robia, dokiaľ ich vládzu vôbec udržať. Názorným príkladom je rod Neolamprologus, ktorý urputne bráni svoje potomstvo voči votrelcom. Neuveriteľne bojovne sa dokáže správať voči neškodným prísavníkom. Zaujímavým správaním pri ochrane vlastného potomstva pri princeznách (Neolamprologus brichardi). U nich je známe, že svoje potomstvo dokážu nielen úspešne brániť, ale dokonca starší potomkovia pomáhajú niekedy brániť mladšie potomstvo. Sám som bol neraz svedkom pomerne komického javu, kedy 0.5 cm jedince spomínanej Neolamprologus brichardi zastrašovali 10 – 20 cm jedince iných druhov, čím pomáhali najmä rodičom chrániť ešte menšie druhy. Tento jav nepozorujem, keď chovám princezny v samostatnej nádrži. Avšak aj v nej pozorujem jav, ktorý popisujem na inom mieste. Keď totiž princezny dospejú, dokážu sa až fyzicky likvidovať veľmi úspešne.

Ak si kladiete logickú otázku, prečo mečovky, platy, tetry, aj cichlidy si často svoje potomstvo požierajú a následne sa znovu vrhajú do rozmnožovania, tak vedzte že je tomu tak pretože akvárium poskytuje iba malý životný priestor. Keď porodí živorodka v prírode, alebo keď sa vypudia ikry, resp. rozpláva plôdik, vo vodnom toku, v jazere je dostatok priestoru na to, aby sa ikry, ryby v tom objeme stratili – zachránili. V akváriu sú ich možnosti obmedzené.

Rivalita medzi rybami existuje. Väčšinou sa jedná o vnútrodruhovú, ale nie je neznáma ani medzidruhová. Jestvujú medzi rybami neznášanlivé druhy, ktoré neznesú pri sebe v akváriu nikoho. Všeobecne sa za takéto považujú mäsožravé pirane. Na samotné pirane je v ich domovine vyvíjaný tiež predačný tlak. Domáci majú väčší rešpekt pred inými druhmi ako sú pirane. Aj v akváriu sú ale druhy, s ktorými sú schopné pirane existovať za určitých podmienok. V prvom rade nesmú byť hladné, z čoho vyplýva že sa rozhodujú podľa dostupnosti potravy, ak jej majú dostatok, dokážu nažívať s bežnými druhmi rýb. Vhodné sú napr. Astronotusy, Hemichromisy. Náznaky rivality, konkurencie môžeme vidieť aj pri mierumilovných druhoch. Často sa snáď aj z komerčných dôvodov označujú niektoré druhy za druhy takzvane spoločenské – myslí sa tým, že ich bojovnosť medzi sebou je minimálna. Zaradil by som sem napr. dánia, kardinálky, neónky, gupky, mečovky, blackmolly, guramy. Iné druhy sú viac neznášanlivé, iné menej. Ako som spomínal na inom mieste – napr. niektoré americké cichlidy sú neznášanlivé voči všetkým, aj voči svojmu druhu, aj voči iným druhom. Naopak u veľa afrických cichlíd sa rivalita prejavuje najmä v rámci jedného druhu. Typickým príkladom sú Tropheusy.. Niekedy sa však stane, že samca niektorého druhu si vezmú ostatné druhy na paškál viaceré jedince a tento jedinec má, ak si to nevšimneme, zrejme zrátané. Napokon ak nejaká ryba dostane týmto spôsobom zabrať, je možné že sa stane apatickou – až do takej miery, že ďalšie útoky rezignovane znáša – vlastne čaká na smrť ubitím – nedokáže sa brániť. Boje medzi sebou zvádzajú ryby o potomstvo, o potravu, o priestor atď. Prejavy sú rôzne, od miernych až po surové nekompromisné. Takéto správanie je závislé aj od veku, čím sú ryby staršie, tým tolerujú menej. Napr. Neolamprologus brichardi je druh, ktorý je priam rodinným vzorom v mladom veku, no ako mladé princezné dospievajú, začnú sa u nich prejavovať nevraživosť. Doslova likvidačné správanie.

Na to, aby sa agresivita medzi jedincami znížila, je vhodné zvýšenie množstva úkrytov. Pre africké cichlidy platí, že agresivitu napr. rodov Tropheus, Pseudotropheus eliminuje väčšie množstvo jedincov rovnakého druhu. Toto množstvo však musí byť dostatočné, pretože inak je možné, že docielime opak. Pre Tropheusy je odporúčaný minimálny počet, desať chovaných jedincov v jednom akváriu. Dôležitý je aj pomer pohlaví, odporúčaný je v tomto prípade tri samce ku siedmim samiciam. Pre mbuna cichlidy odporúčam kombináciu jeden samce na dve – tri samice. V prípade nedostatku priestoru hrozí najmä u niektorých väčších druhov prílišná agresivita – kombinácia dvoch samcov akar modrých s jednou samicou je v malom priestore nežiaduca, podobne ako kombinácia dvoch samíc akar a jedného samca. Napr. aj na prvý pohľad mierumilovné samce mečovky mexickej, dokážu medzi sebou vytvárať prísnu hierarchiu, v ktorej prípadné slabšie jedince sú utláčané. U niektorých druhov existuje sociálna hierarchia, kde je pánom dominantný samec, prípadne dominantná samica. U druhov, kde je silný prejav vonkajšieho pohlavného dimorfizmu, môže napriek tomu vyvolať fakt, že samce sú často sfarbené ako samice. Ak však dominantný samec prestane existovať v prítomnosti predtým recesívnych samcov, môže sa stať, že naraz sa zrazu sfarbí aj niekoľko ďalších samcov. Situácia sa môže neskôr zopakovať, keď si opäť vybojuje nejaký samec výsadnú dominanciu, a „nedovolí“ ostatným samcom byť vyfarbenými ako samce. Pri rozmnožovaní sa stáva, že dominantný samec sa trie s niekoľkými samicami, no ostatné samce ostávajú bokom.

Teritorialitou sa prejavuje aj u rýb. Teritorialita je jav, kedy organizmus sa viac zaujíma o určitý životný priestor, ktorý prípadne často háji. Teritorialita sa často prejaví veľmi negatívne aj v akváriu, kde je často málo priestoru. Pre uzavretý priestor to môže skončiť tragicky. Značnou teritorialitou sa prejavujú skôr druhy veľkých jazier a mohutných tokov, často cichlidy. Svoje vybrané teritórium dokážu brániť veľmi vehementne. Veľkosť teritória závisí aj od konkurencie iných jedincov, môže zaberať jeden kameň, jednu ulitu, ale aj celé akvárium. Ak sa nejakému jedincovi podarí obsadiť teritórium, je vo veľkej výhode. Všeobecne sa dá povedať, že jedince pridané do spoločenstva akvária neskôr si ťažšie nachádzajú svoje miesto, a to aj v prípade že sú silné. Ak chceme teritórium narušiť, stačí často zmeniť stavebné prvky v akváriu – dekoráciu, presadiť rastliny, premiestniť techniku. Často stačí presunúť kameň, pridať nový kameň, to závisí od konkrétneho prípadu. Aj malá zmena často celkom zmení správanie, čo vlastne dokazuje silnú teritorialitu rýb. Samozrejme niektoré druhy sa takto prejavujú menej, alebo vôbec, iné viac. Bojovnice, resp. samce bojovníc Betta splendens si svoje nároky obhajujú veľmi vehementne. V nádrži, kde nie je pre viac samcov dostatok životného priestoru nie je miesto pre viac samcov. Na to aby kondícia našich bojovníc bola čo najlepšia, aby plutvy krásne vynikali, alebo na to aby sme mohli pozorovať správanie sa bojovníc, vezmime zrkadlo a nastavme ho samcovi bojovnice. Tento bude hroziť svojmu domnelému sokovi, aj naňho zrejme zaútočí.

Úloha učenia nie je u rýb až tak vyvinutá ako u cicavcov, prípadne u vtákov, ale existuje. Ryby napodobňujú staršie jedince. Počas životného cyklu rýb sa prejavujú aj nacvičovaním rôznych situácií – súbojov, rozmnožovacieho správania. Svoju úlohu iste hrá inštinkt. Ryby nám dokážu predviesť aj svoje geneticky vpečatené rituály, ktorými sa snažia zaliečať svojim partnerom, alebo v ktorých predvádzajú svoju silu pre sokom. Tieto prejavy sú najsilnejšie u druhov, ktorých sociálne správanie je výraznejšie. Dodnes sa nevie dostatočne vysvetliť, ako sa dokážu napr. neónky červené v jedinom momente “ dohodnúť“ a zmeniť smer plávania. Napokon aj mnohé morské druhy žijúce v skupinách.

Drvivá väčšina druhov úplne samozrejme reaguje pri prenose v sieťke veľmi negatívne. Je to úplne pochopiteľné, z ich pohľadu im ide o život. No ak rybám poskytneme oporu v podobu našej ruky, dokážu sa skôr upokojiť. Možno ste si niekedy všimli ako chovateľ chytá ryby lyžičkou, alebo rukou. Pre rybu je to v každom prípade tolerantnejšie. Zrejme nereagujú len na samotnú mechanickú podporu, ale snáď aj na teplo ľudskej ruky, možno aj na iné fyzikálne, možno aj chemické vlastnosti takéhoto prenosu. Veľakrát som takto prenášal najmä samičky afrických cichlíd.

Niektoré druhy správania

Hejnovitosť – mnoho druhov rýb sa vyznačuje takýmto sociálnym správaním. Iste ste v televízii videli ako sa obrovské kvantá rýb zoskupujú a v priebehu okamihu reagujú – menia smer. V malom merítku to môžeme pozorovať aj v našom akváriu. Najmä ak chováte nejaké tetrovité ryby, napr. pravé neónky, aj tetry neónové sú typické hejnové druhy. Tento jav sa stupňuje s početnosťou spoločenstva – 5 neóniek sa bude chovať inak, ako 200 jedincov.

Samostatnosť – druhy rýb, ktoré žijú viac-menej samostatne, prípadne v pároch. Takýchto druhov je najviac. Úzko to súvisí s teritorialitou.

Ukrývanie – počas svojich bežných chovateľských činností som mal možnosť porovnať rôzne správanie rýb pri tak bežnom úkone ako je chytanie rýb sieťkou. Väčšina druhov rýb ak vložíme do vody sieťku sa správa pomerne vystrašene a zbrklo. Len málo druhov svoj útek vykonáva cieľavedomejšie. V týchto situáciách sa občas stane, že nám ryby vyskakujú z akvária. Iným prípadom je správanie sa mbuna cichlíd. Sú to druhy, ktoré žijú v skalách afrického jazera Malawi. Tieto sa snažia schovať do svojho prirodzeného prostredia – do skál. Ostatné ryby majú tendenciu sa schovať maximálne za filter, ale mbuna cichlidy sa schovajú šikovnejšie. Dokážu sa schovať pod pomerne malý kameň. Vy tesne okolo nich neustále prechádzate, ale ryba, ktorá je pod svojím úkrytom pomerne pokojne čaká. Ak má priestor a nik ju neatakuje, čaká na odoznenie obavy – na vytiahnutie sieťky. Toto správanie je často zreteľné aj v predajni. Považujem to za prejav inteligencie. Možno sa už aj vám stalo, že ste sa snažili chytiť podobne rybu v nádrži plnej úkrytov a po hodine ste to vzdali. Inak reagujú ryby aj na farbu sieťky. Bežne sa používajú sieťky zelené, biele a čierne. Za najvhodnejšie považujem sieťky zelené. Biele a čierne sú príliš kontrastné. No aj na takto sfarbené sieťky si dokážu ryby zvyknúť. Ak však nie sú na napr. bielu sieťku zvyknuté, je pravdepodobné, že sa tejto výraznejšej sieťky budú báť viac.

 

Use Facebook to Comment on this Post

2010, 2011, Časová línia, Dokumenty, Dokumenty v čase, Piešťanské dokumenty, Slovenské dokumenty

Dušičky a sviatok Všetkých svätých

Hits: 6607

Kresťanský sviatok Všetkých svätých pripadá na 1. november. 2. november prislúcha Spomienke na všetkých verných zosnulých – Dušičkám. Latinsky In commemoratione omnium fidelium defunctorum (Wikipedia.cz). V oba tieto dni častejšie navštevujeme cintoríny, hroby zdobíme kvetmi, vencami, zapaľujeme sviečky na pamiatku. Je to symbol viery na večný život (Vlk). Spomienkou na našich zosnulých blízkych im vzdávame úctu a vyjadrujeme, že ostávajú žiť v našich srdciach (teraz.sk). Na východe sa od 4. storočia slávi sviatok všetkých mučeníkov (Wikipedia CZ). Slávnosť Všetkých svätých vychádza z historickej udalosti zasvätenia rímskeho Pantheónu Panne Márii a všetkým svätým mučeníkom 13. mája 609 (katolik.cz). V 8. storočí sa v Írsku a Anglicku začal sláviť sviatok Všetkých svätých 1. novembra, v Ríme od 9. storočia (Wikipedia CZ). 1. novembra snáď z dôvodu, že Ketli začínali v tento deň nový rok (katolik.cz). Obyvateľstvo keltského pôvodu sa v noci z 31. októbra na 1. novembra a druidi lúčili s letom patriacim bohyni života a vítali vládu kniežaťa smrti Samhaina, ktorý vládol zime (teraz.sk). Pamiatka všetkých zosnulých (Dušičky) je spomienkou na zosnulých. Modlitba za zomretých patrí ku najstarším kresťanským tradíciám a spomienka na mŕtvých je súčasťou každej omše. Pamiatka sa objavuje po roku 998 vo francúzskom benediktínskom kláštore Cluny. Od roku 1915, kedy v prvej svetovej vojne zahynulo veľké množstvo ľudí, môžu kňazi celebrovať v tento deň tri omše. V minulosti sa na niektorých dedinách českého a moravského vidieka pieklo zvláštne pečivo nazývané „dušičky“, ktorým sa obdarovávali pocestní, žobráci a chudobní (katolik.cz). Sviatok All hallow even znamená doslovne predvečer všetkých svätých. Z neho vznikol najmä v USA s obľubou slávený sviatok Halloween. Jeho pôvod je spájaný s keltským sviatkom Samhain (čítaj „souin“, „sauin“). V tento deň mohol aj živý človek navštíviť podsvetie. Kelti zvykli chystať pre duše pohostenie. Celý rituál mal zaistiť obyvateľom domu pokoj od zlých duchov a ochranu dobrými duchmi. Masky stríg a oheň mali pomôcť zahnať démonov viesť dobré duše do ríše smrti. Írska legenda hovorí o Jackovi O`Laternovi, ktorý bol opilec, ktorého nebo odvrhlo pre podlé správanie. Peklo ho však nesmelo prijať, pretože od diabla podvodom dostal špeciálny sľub. Jeho duch odvtedy putuje po celom svete s lampášom z tekvice. Takto vznikol zvyk dávať na okná a rímsy tekvice. Ľudia veria, že Jack si vezme svetlo a ochráni ich pred zlými duchmi (diva.sk).

Odkazy

Use Facebook to Comment on this Post