2006, 2007, 2008, 2009, 2011, 2012, 2013, 2014, Akvaristika, Časová línia, Divoké živorodky, Farebné živorodky, Príroda, Ryby, Živočíchy, Živorodky

Živorodky – ryby mnohých akvaristov v minulosti aj v súčasnosti

Hits: 40193

Kto z akvaristov sa nestretol so živorodkami? Asi nikto. Každý, kto choval rybičky sa stretol so živorodkami, dokonca o nich zväčša niečo počuli aj neakvaristi. V predstave väčšiny populácie sú živorodky predovšetkým mečovky a gupky – červené rybičky, také s peknými chvostmi. Skutočnosť je však samozrejme omnoho bohatšia. Živorodky predstavujú podľa môjho názoru akýsi spojovací článok v komunikácii medzi tými, ktorí sa zaoberajú akvaristikou a ktorí nie. Zastávajú výsadné postavenie vďaka tomu, že sú „známe“. Dúfam, že svojím príspevkom obohatím poznatky najmä tých, ktorí pod termínom živorodky vidia iba úzky profil druhov. Živorodky sú úžasná skupina aj z hľadiska biologického aj z hľadiska chovateľského. Živorodky sa vyskytujú v južnej časti Severnej Ameriky, v Strednej a v Južnej Amerike a malá časť z nich v Juhovýchodnej Ázii. Niektoré druhy žijú v brakických vodách, dokonca priamo v mori pri ústiach riek. Napr. Poecilia reticulata bola nájdená aj na voľnom mori v pobrežných oblastiach.

Taxonómia

Názov živorodky, ktorý sa bežne používa pre označenie týchto rýb je nepresný a skupina rýb nazvaná „živorodky“ je umelo vytvorená – nemá jasné taxonomické odôvodnenie. Predstavujú štyri čeľade: Goodeidae, Anablepidae, Poeciliidae (patriace do radu Cyprinodontiformes) a Hemiramphidae (patriace medzi Beloniformes). Medzi tzv. živorodkami totiž nájdeme pomerne dosť druhov, ktoré sa živorodosťou nevyznačujú. V taxonómii tejto skupiny je aj v súčasnosti veľký pohyb, možno aj preto, lebo ide pravdepodobne o evolučne mladú skupinu. Živorodky sú príbuzné kaprozúbkam. Samotná živorodosť je hodnotená evolučne ako vysoký stupeň vývoja. Veď stačí si uvedomiť, ktoré skupiny organizmov sa vyznačujú rovnakou schopnosťou – okrem iného aj človek rozumný – Homo sapiens – teda my sami. Systematika živorodiek je opísaná podrobne ďalej v článku.

Farebné živorodky

Pre účely jednoznačného oddelenia a jasného pochopenia som si dovolil označiť bežne ponúkané druhy živorodiek ako živorodky farebné. Všetko sú to druhy vyšľachtené, ktoré vo svojej domovine vyzerajú inak. Najznámejšie druhy sú (na konci článku sa nachádza prehľad niektorých rodov):

  • Poecilia latipinna Lesueur, 1821 – živorodka širokoplutvá,
  • Poecilia reticulata Peters, 1859 – gupka dúhová,
  • Poecilia sphenops Valenciennes, 1946 – živorodka ostroústa,
  • Poecilia velifera Regan, 1914 – živorodka veľkoplutvá,
  • Xiphophorus helleri Heckel, 1848 – mečovka mexická,
  • Xiphophorus maculatus Günther, 1866 – plata škvrnitá,
  • Xiphophorus variatus Meek, 1904 – plata pestrá.

Okrem týchto rozšírených rýb sem patrí veľa iných krásnych druhov. V tejto súvislosti treba povedať, že to, čo je rozšírené v našich akváriách, sa už len vzdialene podobá na ryby žijúce v prírode – to sa týka najmä druhu Poecilia reticulata.

Divoké živorodky

Termínom divoké, prípadne prírodné živorodky označíme také, ktorých vzhľad sa blíži ku stavu v prírode. Malo by ísť o čistú a neprešľachtenú formu. Prax je trochu komplikovanejšia, totiž niektoré druhy ako napr. Poecilia wingei, ale aj iné, sa stále označujú za divoké druhy, ale ich populácia medzi chovateľmi môže byť už označená za akváriovú formu. Niektoré druhy sa bohužiaľ už skrížili v rukách akvaristov, najmä s Poecilia reticulata, prípadne došlo ku zmene správania – napr. u Girardinus falcatus, kde došlo k tolerancii voči narodeným jedincom iného druhu, čo divoká G. falcatus netoleruje. V našich nádržiach samozrejme menia divoké druhy aj svoje sfarbenie, ale stále predstavujú krásne rybičky. Niektoré druhy, napokon aj známe endlerky (už spomínaná P. wingei), patria medzi ohrozené druhy. Niektoré z nich ako Characodon audax sa pravdepodobne už v prírode nevyskytujú. Najznámejšie druhy: Poecilia wingei Kempkes, Isbrücker, 2005 – predtým Poeclia endleri, endlerka, Poecilia reticulata Peters, 1859, Girardinus metallicus Poey, 1854, Limia nigrofasciata Regan, 1913, Xenotoca eiseni Rutter, 1896, Xiphophorus nezahualcoyotl Rauchenberger, Kallman, Morizot, 1990.

Biológia

Oplodňovanie živorodkám zabezpečuje špeciálny orgán, ktorý vznikol zrastením lúčov ritnej plutvy – gonopódium, v prípade čeľade Goodeidae a živorodých zástupcov Hemiramphidae ide o andropódium. Andropódium vzniklo trochu iným spôsobom. Gonopódium sa vyvíja počas dospievania. Morfológia gonopódia je rozlišovacím znakom. Tzv. oplodnením do zásoby sa vyznačujú poecilidy. Ide zvyčajne o 3-4 vrhy, avšak bol popísaný prípad 11 vrhov bez ďalšieho oplodnenia. Ide o to, že samček oplodní samičku, no spermie v jej tele prežívajú určité časové obdobie. Čiže, ak samček oplodní samičku, ta je schopná produkovať potomstvo teoreticky aj bez samca a to počas dosť dlhého časového obdobia.

Chov

Živorodkám Severnej a Strednej Ameriky vyhovuje voda polotvrdá, až tvrdá, minimálna hodnota pre chov je 4 °dGH, optimum je zhruba medzi 10 – 15 °dGH. Maximálna hodnota sa odporúča 25 °dGH. Tvrdšia voda nie je vhodná pre chov najmä Poecilia reticulata – vápnik im neprospieva. Za vhodné pH pre živorodky považujem hodnoty od 6 po 8.5, v prírode sa vyskytujú živorodky zväčša vo vodách s pH nad 7.5. Niektorí chovatelia odporúčajú pridávať do vody soľ – keď ide o bežné druhy ako mečovky, gupky, molinézie, ktoré sú z oblastí, kde je koncentrácia solí vyššia. Odporúčaná dávka soli:

  • Poecilia sphenops – polievková lyžica na 10 litrov vody
  • Poecilia reticulata – polievková lyžica na 20 litrov vody
  • Xiphophorus helleri, X. maculatus, X. variatus – polievková lyžica na 40 litrov vody

Ak sa rozhodneme soľ pridávať, je vhodné ryby na ňu privyknúť postupne. Soľ sama pôsobí aj preventívne voči chorobám, nutná však nie je, ja osobne momentálne nesolím. Aj tu platí, že je treba, aby chovateľ na rybách videl, či sú v dobrom stave a podľa toho riešil situáciu.

Ako raritu uvediem v súvislosti so soľou, že niektorí chovatelia morských rýb si účelovo chovajú gupky ako potravu, pričom ich privykajú na slanú vodu – majú totiž záujem, aby gupky prípadne mohli spolu s morskými rybami žiť aj dlhšie ako trvá jedno kŕmenie. O živorodkách je známe, že značne zaťažujú vodu svojimi výkalmi, preto je nutná silnejšia filtrácia, pravidelná výmena vody a odkaľovanie. Ako dlhoročný chovateľ živorodiek považujem za vhodné pestovať vodné rastliny spolu so živorodkami tak, aby pokrývali celé dno. Čím budeme mať v nádrži väčšie množstvo rastlín, tým menej starostí nám budú spôsobovať výkaly rýb. Na tie treba tiež brať ohľad pri výbere prípadných vhodných spoločníkov v akváriu. Pomerne zaužívaný názor o nenáročnosti živorododiek je skreslený. Najviac tým, že nároky sú v prvom rade druhovo špecifické. Okrem toho šľachtené formy, najmä albinotické, sú veľmi chúlostivé. Vezmem si príklad gupiek – áno kedysi ich chov nepredstavoval väčší problém, aj sa akvaristom veľmi produktívne množili, dnes je však situácia iná – odchovať dnes gupky je neľahká záležitosť. Pre chov živorodiek sa odporúča pre väčšinu druhov kombinácia pohlaví 1:5 v prospech samičiek. V každom prípade je vhodné, aby samičiek bolo viac.

Ak by som mal odporučiť aké ryby sa hodia spolu do chovu so živorodkami, tak sa dostanem do pomerne ťažkej situácie. Mečovky mexické, gupky dúhové, väčšie druhy divoké ako napr. rod Xenotoca by som odporučil chovať s panciernikmi, malými druhmi amerických cichlíd, prípadne s kaprovitými druhmi ako je rod Barbus, Brachydanio. V prípade chovu malých druhov je situácia ešte ťažšia – hodia sa americké tetry, pancierniky rodov Corydoras, Brochis, drobné kaprovité ryby ako Boraras, prípadne rod Badis čeľade Badidae. Divoké živorodky je vhodné chovať monodruhovo – pre každý druh zvláštna nádrž. Vzhľadom na veľkosť rýb nádrž nemusí byť ani veľmi veľká, často stačí 50 litrová. Ak napr. nemáte dostatok akvárií, prípadne chcete experimentovať, tak je možné kombinovať a divoké živorodky chovať aj vo viacdruhových nádržiach. Pritom je však žiaduce dbať na to, aby sme vybrali do spoločného akvária druhy, ktoré sa spolu nekrížia. V každom prípade nie je vhodné podporovať chov napr. divokej formy Poecilia reticulata spolu so šľachtenou formou, prípadne kombináciu Poecilia wingei spolu s Poecilia reticulata v akejkoľvek forme.

Kŕmenie

Živorodky, ktoré sa bežne vyskytujú v obchodoch, ale aj v nádržiach akvaristov, sú dosť výrazne farebné. Aj z toho vyplýva, že musia odniekiaľ získať farbivo, aby zostali také krásne, farebné. Preto nemožno povedať, že by boli živorodky nenáročné na kŕmenie. Ak si chceme zachovať nádherné farby a kondíciu rýb, musíme dobre kŕmiť. Odporúčam najmä cyklop, rastlinné zložky – napr. špenát, šalát, ktorý je dostupný iste každému. Veľmi vhodné je kŕmiť živou potravou, spomenul by som najmä drozofily, ktoré sú veľmi vďačne prijímané väčšími druhmi. Samozrejme kŕmiť môžeme aj žiabronôžkou, mikrami, grindalom, nálevníkom, dafniou, koretrou, atď.. V prípade, že odchovávame mladé, platia podobné pravidlá, ako pri odchove iných rýb, len sú ešte znásobené – je veľmi vhodné kŕmiť mlaď aj šesť-krát za deň, vtedy naozaj rastie ako z vody.

Rozmnožovanie

Živorodky sa rozmnožujú zväčša pomerne ľahko a ochotne aj v spoločenskej nádrži. Tento fakt je pravdepodobne aj príčinou rozšírenia ich chovu. Rodia živé mláďatá, ktoré sú schopné samostatne existovať hneď po narodení. Doba gravidity je zhruba štyri týždne, samozrejme nie u každého druhu je to špecifické, niektoré druhy rodia 1-2 mladé denne počas rodenia potomstva. Niektoré druhy, jedince sú kanibali, a svoje potomstvo si požierajú, iné nie. Prípadne ak dôjde v pôrodu v spoločnosti iných rýb, nie je vzácnosťou, ak samička porodí mladé, svoje mláďatá si nevšíma, ale tie „vyzbierajú“ práve okolité ryby. Zaujímavý je aj fakt, že často rodiaca samička si počas pôrodu mladé nevšíma, len čo však pôrod skončí, začne sa hon na výživnú potravu – alebo aspoň sa zmení vzťah matky a potomstva. Moje skúsenosti hovoria, že tieto pudy ovplyvňuje to, ako sa ryby v svojom prostredí cítia, akú potravu dostávajú. Ak sa cítia dobre, dostanú kvalitnú výživu, najlepšie aj živú, tak sa odmenia pokojným nažívaním si mladých, dospelých aj práve narodených jedincov.

Spôsob akým dochádza ku rodeniu a vôbec otázka živorodosti je zaujímavá. Poeciliidae majú v tele oplodnené ikry a len tesne pred pôrodom sa ikry otvoria a z tela samičky vychádzajú už malé napodobeniny dospelcov. Ostatné čeľade sa nevyznačujú takouto ovovivipariou, mladé v tele matky u nich nie sú v ikernatých obaloch. Pozoruhodné je, že samica je schopná si uchovať spermie od samca do zásoby – mimo čeľade Goodeidae. Bol zaznamenaný prípad, kedy samička Gambusia affinis porodila 11 krát bez prítomnosti samca. V prípade, že už oplodnenú samičku oplodní nejaký samec opäť, prednosť pre nové potomstvo má nový genetický materiál, nie ten, ktorý sa už v tele samičky nachádza. Narodený poter živorodiek je veľký – je oveľa väčší ako poter ikernatých rýb. Najskôr ale rastie pomalšie ako u ikernačiek, po mesiaci sa však rozbehne. Rozdiely však závisia od chovateľových skúseností a možností. Pri komerčnom chove farebných živorodiek sa často používajú metódy ako optimalizovať množstvo mladých. Samice sa umiestňujú do rôznych košov, pôrodničiek. Tieto pomôcky mechanicky izolujú samice – potenciálne požierače narodených rybičiek, čím sa dosiahne vyšší počet rýb.

U živorodiek je známy funkčný hermafroditizmus. Pokusne boli izolované samičky Poecilia reticulata 24 hodín po narodení. Po dosiahnutí pohlavnej dospelosti porodili niektoré z nich napriek prísne oddelenému chovu mláďatá. Tieto fenotypové samičky boli vyšetrené histologicky, pričom sa zistilo, že u nich súčasne fungujú pohlavné žľazy oboch pohlaví. Vďaka tomuto obojpohlavnému usporiadaniu je možné rozmnožovanie samičiek neoplodnených samčekom – tzv. partenogenéza. (Dokoupil, 1981). S rozmnožovaním úzko súvisí téma šľachtenia – výberového chovu, kríženia. Platy, mečovky, moly majú rôzne formy, no najťažšie udržateľnými sú gupky. Moly (molly) – molinézie je výraz pre druhy rodu Poecilia, okrem P. reticulata. Z bežných druhov to sú: Poecilia latipinna, Poecilia sphenops, Poecilia velifera

Existuje mnoho tvarových aj farebných variantov, najmä u druhu Poecilia reticulata. V prípade deformovaných jedincov, nežiaducich foriem, odporúčam tieto z chovu vyradiť. Problémy pri chove z hľadiska šľachtenia – napr. pri množení blackmoll – čiernej formy Poecilia sphenops sa nám môže stať, že potomstvo nebude celé čierne ako rodičia. Prejavuje sa tú čiastočný návrat do divokej formy – genetický materiál pôvodnej formy z prírody má silnú váhu. Niektoré jedince budú ako forma calico – akoby postriekané čiernym farbivom. Veľa takýchto jedincov získa farbu po celom tele až v dospelosti. V každom prípade, občas je vhodné pri šľachtení občerstviť chov o jedinca z iného prostredia, napr. od známeho chovateľa, z obchodu apod. – a to sa týka všetkých živorodiek a všetkých rýb vôbec. Pri šľachtení je dôležité, či je znak recesívny, alebo dominantný. Ak chce sa niekto vážne zaoberať chovom farebných živorodiek a chce svoje rybičky vystavovať, je vhodné aby mal informácie z genetiky. Napr. ak je znak dominantný, jeho dedenie sa v zásade dedí aj pri krížení s jedincom bez tohto znaku. Ak je znak recesívny, musíme nájsť pre jeho zachovanie jedinca, ktorý nesie rovnaký znak.

Ustálenosť populácie dostaneme najskôr po tretej generácii, kedy sa požadovaný znak vyskytuje a ak sú potomkovia zdraví a rodia sa živí a sú samozrejme plodní. Obzvlášť niektoré krížence je veľký problém udržať v ustálenej forme. Krížia sa mnohé aj v prírode. Platy Xiphophorus maculatus, X. variatus, X. helleri sa často krížia medzi sebou, čím vzniká množstvo variantov. Napr. blackmolla Poecilia sphenops je pravdepodobne výsledkom šľachtenia divokej formy P. sphenops, P. latipinna a P. velifera. Tvar a sfarbenie najmä gupiek Poecilia reticulata je veľmi variabilné, preto zachovanie jednotlivých variet je veľmi náročne na skúsenosti chovateľa a na priestor, pretože takéto šľachtenie vyžaduje množstvo nádrží. Samičky dlhochvostých foriem majú na chvostovej plutve kresbu, krátkochvosté sú bez farby, no na samičke zväčša nie je vôbec vidieť o akú formu ide – aj o to je ťažšie šľachtiť gupky ako platy, mečovky, molly. Preto nám logika káže zamerať sa na samčeky. Základné – súťažné tvary gupiek sú tieto: vlajka, lýra, rýľ, ihla, šerpa, dva mečíky, kruh, vejár, dolný mečík, horný mečík, plamienok, triangel. V prípade ak chcete dosiahnuť úspech na výstave, je vhodné chovať ryby v nádrži s dnom a rastlinami. V rámci živorodiek sa usporadúvajú súťažné výstavy – súťaže, na ktorých sa dodržujú predpísané štandardy, v týchto kategóriách: Poecilia reticulata, a Xipho-Molly. Sú štandarde pre: Poecilia sphenops, Poecilia velifera, Poecilia latipinna, Xiphophorus helleri, Xiphophorus maculatus, Xiphophorus variatus. Popri farebných živorodkách sa občas vystavujú aj už vyššie spomínané divoké živorodky. Príklad z bodovacieho lístka pre Poecilia reticulata. Za telo je maximum 28 bodov, z toho 8 za dĺžku, 8 za tvar a 12 za farbu. Chrbtová plutva sa hodnotí 23 bodmi, z toho 5 za dĺžku, 8 za tvar a 10 za farbu. Chvostová plutva môže získať 44 bodov: 10 za dĺžku, 20 za tvar a 14 za farbu. Vitalita sa hodnotí 5 bodmi.

Správanie

Živorodky sa zdržujú prevažne v strednej a vrchnej časti vodného stĺpca. V ich správaní sú zaznamenané modely sociálnej hierarchie podobnej niektorým cicavcom, v ktorej dominuje alfa samec. V prípade jeho odchodu, dôjde k jeho nahradeniu. Agresívnejšie správanie môžeme pozorovať len u samcov mečoviek – Xiphophorus helleri. Pri ich chove je vhodné chovať buď jedného samca, alebo aspoň piatich, aby sa agresivita rozložila. Tento prípad je obdobný ako pri chove afrických cichlíd rodu Tropheus. Iným zaujímavým správaním sa vyznačuje dravý druh Belonesox belizamus, ktorý sa pári spôsobom, ktorý je veľmi rýchly, pretože dvojnásobne väčšia samica má snahu menšieho samca zožrať.

Choroby

Bohužiaľ aj živorodky trpia chorobami – staré známe zdravý ako rybička iste nevymyslel akvarista. Spomeniem krátko niektoré najčastejšie choroby:

  • ichtioftirióza – známa krupička spôsobená nálevníkom Ichthyophthirius multifilis. Liečba – soľným kúpeľom, pomocou FMC apod.
  • bakteriálny rozpad plutiev – veľká pliaga najmä u šľachtených gupiek. Spôsobujú ho baktérie Pseudomonas, Aeromonas a iné. Liečiť možno Acriflavínom.
  • mykobakterióza – tuberkulóza rýb –  brušná vodnateľnosť, prípade silné vychudnutie – prepadnutie bruška. Je spôsobená baktériou Mycobacterium. Je veľmi ťažko liečiteľná, vhodnejšie je napadnuté jedince odstrániť. Ako liečivo môžeme skúsiť použiť metronidazol – entizol.

Systematika živorodiek

Trieda: Actinopterygii, rad: Beloniformes, čeľaď: Hemiramphidae – polozobánky, rod:

  • Arrhamphus Günther, 1866 – živorodý čiastočne
  • Dermogenys Kuhl, van Hasselt in van Hasselt, 1823
  • Hemirhamphodon Bleeker, 1866
  • Hyporhamphus Gill, 1859 – živorodý čiastočne
  • Nomorhamphus Weber, de Beaufort, 1922
  • Zenarchopterus Gill, 1864 – živorodý čiastočne

Rad Cyprinodontiformes, čeľaď Anablepidae, rod:

  • Arrhamphus Günther, 1866 – živorodý čiastočne
  • Anableps Scopoli, 1777
  • Jenynsia Günther, 1866
  • Oxyzygonectes Fowler, 1916 – nie je živorodý

Čeľaď Poecilidae, rody:

  • Arrhamphus Günther, 1866 – živorodý čiastočne
  • Alfaro Meek, 1912
  • Alloheterandria Hubbs, 1924
  • Aplocheilichthys Bleeker, 1863
  • Belonesox Kner, 1860
  • Brachyrhaphis Regan, 1913
  • Carlhubbsia Whitley, 1951
  • Cnesterodon Garman, 1895
  • Diphyacantha Henn, 1916
  • Fluviphylax Whitley, 1965
  • Gambusia Poey, 1854
  • Girardinus Poey, 1854
  • Heterandria Agassiz, 1853
  • Heterophallus Regan, 1914
  • Hylopanchax Poll, Lambert, 1965 – nie je živorodý
  • Hypsopanchax Myers, 1924 – nie je živorodý
  • Laciris Huber, 1982 – nie je živorodý
  • Lamprichthys Regan, 1911 – nie je živorodý
  • Limia Poey, 1854
  • Micropoecilia Hubbs, 1926
  • Mollienesia Lesueur, 1821
  • Neoheterandria Henn, 1916
  • Pamphorichthys Regan, 1913 – nie je živorodý
  • Pantanodon Myers, 1955 – nie je živorodý
  • Phallichthys Hubbs, 1924
  • Phalloceros Eigenmann, 1907
  • Phalloptychus Eigenmann, 1907
  • Phallotorynus Henn, 1916
  • Plataplochilus Ahl, 1928 – nie je živorodý
  • Poecilia Bloch, Schneider, 1801
  • Poeciliopsis Regan, 1913
  • Priapella Regan, 1913
  • Priapichthys Regan, 1913
  • Procatopus Boulenger, 1904 – nie je živorodý
  • Pseudopoecilia Regan, 1913
  • Quintana Hubbs, 1934
  • Scolichthys Rosen, 1967
  • Tomeurus Eigenmann, 1909
  • Xenodexia Hubbs, 1950
  • Xiphophorus Heckel, 1848

Čeľaď Goodeidae, rod:

  • Arrhamphus Günther, 1866 – živorodý čiastočne
  • Allodontichthys Hubbs, Turner, 1939
  • Alloophorus Hubbs, Turner, 1939
  • Allotoca Hubbs, Turner, 1939
  • Ameca Miller, Fitzsimmons, 1971
  • Ataeniobius Hubbs, Turner, 1939
  • Crenichthys Hubbs, 1932 – fosílny druh
  • Empetrichthys Gilbert, 1893 – fosílny druh
  • Girardinichthys Bleeker, 1860
  • Goodea Jordan, 1880
  • Hubbsina de Buen, 1940
  • Chapalichthys Meek, 1902
  • Characodon Günther, 1866
  • Ilyodon Eigenmann, 1907
  • Neoophorus Hubbs, Turner, 1939
  • Skiffia Meek, 1902
  • Xenoophorus Hubbs, Turner, 1939
  • Xenotaenia Turner, 1946
  • Xenotoca Hubbs, Turner, 1939
  • Zoogoneticus Meek, 1902
Ilustratívny prehľad niektorých druhov jednotlivých rodov

Rod Xiphophorus

  • Xenotoca Hubbs, Turner, 1939
  • Xiphophorus alvarezi Rosen, 1960
  • X. andersi Meyer, Schartl, 1980
  • X. birchmanni Lechner, Radda, 1987
  • X. clemenciae Alvarez, 1959
  • X. continens Rauchenberger, Kallman, Morozot, 1990
  • X. cortezi Rosen, 1960
  • X. couchianus Girard, 1859
  • X. evelyenae Rosen, 1960
  • X. gordoni Miller, Minckley, 1963
  • X. helleri Heckel, 1848
  • X. kosszanderi Meyer, Wischnath, 1981
  • X. maculatus Günther, 1866
  • X. malinche Rauchenberger, Kallman, Morizot, 1990
  • X. mayae Meyer, Schartl, 2002
  • X. meyeri Schartl, Schröder, 1988
  • X. milleri Rosen, 1960
  • X. mixei Kallman, Walter, Morizot, Kazianis, 2004
  • X. montezumae Jordan, Snyder, 1899
  • X. monticolus Kallman, Walter, Morizot, Kazianis, 2004
  • X. multilineatus Rauchenberger, Kallman, Morizot, 1990
  • X. nezahualcoyotl Rauchenberger, Kallman, Morizot, 1990
  • X. nigrensis Rosen, 1960
  • X. pygmaeus Hubbs, Gordon, 1943
  • X. roseni Meyer, Wischnath, 1981
  • X. signum Rosen, Kallman, 1969
  • X. variatus Meek, 1904
  • X. xiphidium Gordon, 1932

Rod Poecilia

  • Xenotoca Hubbs, Turner, 1939
  • Poecilia amazonica Garman, 1895
  • P. boesemani Poeser, 2003
  • P. butleri Jordan, 1889
  • P. catemaconis Miller, 1975
  • P. caucana Steindachner, 1880
  • P. caudofasciata Regan, 1913
  • P. chica Miller, 1975
  • P. dauli Meyer, Radda, 2000
  • P. elegans Trewavas, 1948
  • P. formosa Girard, 1859
  • P. gillii Kner, 1863
  • P. hispaniolana Rivas, 1978
  • P. koperi Poeser, 2003
  • P. kykesis Poeser, 2002
  • P. latipinna Lesueur, 1821
  • P. latipunctata Meek, 1904
  • P. mercellinoi Poeser, 1995
  • P. maylandi Meyer, 1983
  • P. mechthildae Meyer, Etzel, Bork, 2002
  • P. mexicana Steindachner, 1863
  • P. nicholsi Myers, 1931
  • P. orri Fowler, 1943
  • P. petensis Günther, 1866
  • P. reticulata Peters, 1859
  • P. salvatoris Regan, 1907
  • P. sphenops Valenciennes, 1846
  • P. sulphurara Alvarez, 1948
  • P. teresae Greenfield, 1990
  • P. vandepolli Van Ludth de Jeude, 1887
  • P. velifera Regan, 1914
  • P. vivipara Bloch, Schneider, 1801
  • P. wandae Poeser, 2003

Literatúra

  • Hieronimus Harro, 1999, Živorodky, Ján Vašut, Praha, 72 pp.
  • Dokoupil Norbert, 1981: Živorodky, Státní zemědělské nakladatelství, p. 70
  • www.aquatab.net
  • www.fishbase.org

 

Use Facebook to Comment on this Post

Akvaristika, Údržba

Úprava vody

Hits: 35428

Pri úprave vody je nutné byť obozretný. Vhodné sú vedomosti z chémie. Je nutné si uvedomiť, že bez zodpovednosti voči živým organizmom nie je etické pristupovať ku experimentom pri zmenách parametrov vody. Užitočné je oboznámiť sa s parametrami vody. Kvalitatívne všetky zmeny sa dajú vykonať miešaním s vodou iných vlastností. Meraniu parametrov vody, úprave tvrdosti, pH sa často vkladá príliš veľký význam. Ryby chované už generácie v zajatí sú často prispôsobené našim podmienkam. Nie je prvoradé, aby ryby a rastliny žili vo vode s takým pH a hodnotou tvrdosti v akej žijú v prírode, ale aby sme splnili čo najviac podmienok pre ich úspešný rozvoj. Neutápajte sa v neustálom meraní a pokusoch o zmenu. Pre bežnú akvaristickú prax sa parametre vody preceňujú.

Zvyšovanie teploty vody ohrievačom je pomerne bežné aj v iných oblastiach, nielen v akvaristike. Ďaleko ťažší problém je však ako vodu ochladzovať. Túto otázku riešia najmä akvaristi zaoberajúci sa chovom morských živočíchov. Tu sa ponúka možnosť využiť princíp peltierových článkov. Pomôže staršia mraznička, chladiarenský prístroj a šikovný majster. Druhá možnosť je nákup v obchode. Ochladzovanie vody týmto spôsobom je finančne pomerne náročné. V malom merítku je možné využiť ľad, je to však nebezpečné – pretože na rozpúšťanie ľadu je potrebné veľa energie, Ľad je pevná látka a oplýva tepelnou kapacitou – na prechod do kvapalného stavu je nutné viac energie pri rovnakom posune teplôt. Postupujme preto opatrne, aby sme nemuseli vyskúšať teplotné extrémy.

Ak chceme meniť tvrdosť vody, bežnými lacnými prostriedkami vieme zabezpečiť len jej zvýšenie. Obsah vápnika a horčíka zvýšime uhličitanom vápenatým – CaCO3, uhličitanom horečnatým – MgCO3, síranom vápenatým – CaSO4, síranom horečnatým – MgSO4, chloridom vápenatým – CaCl2. Prirodzene napr. vápencom. Avšak ak chceme dosiahnuť rýchlu zmenu musíme použiť silnejšiu koncentráciu. Napokon je dostať aj účinné komerčné preparáty, ktoré dokážu rýchlo tvrdosť zvýšiť. Pred oveľa ťažšou otázkou stojíme ak sme si zaumienili tvrdosť znížiť. Je možné použiť vyzrážanie kyselinou šťaveľovou, no rovnováha tohto procesu je malá. Ak by sme však dokázali túto vodu mechanicky veľmi jemným filtrom odfiltrovať, možno by sme dosiahli žiadaný výsledok. Varenie vody za účelom zníženia tvrdosti je veľmi neekonomické. Efekt je mizivý. Varom vyzrážame len uhličitanovú tvrdosť a to maximálne o 2.7 °dKH. Okrem toho varom ničíme aj ten kúsok života, ktorý vo vode je, preto var neodporúčam. Aktívne uhlie čiastočne znižuje tvrdosť vody, podobne niektoré druhy rastlín napr. Anacharis densa a živočíchov, najmä ulitníkov a lastúrnikov znižujú obsah Ca a Mg vo vode. Do svojich ulít sú schopné kumulovať veľké množstvo vápnika, veď sú prakticky na jeho výskyte závislé. Ampullarie dokážu vo väčšom množstvo viazať do svojich ulít pomerne značné množstvo vápnika. Naopak pri jeho nedostatku chradnú, mäkne im schránka. Rašelina znižuje takisto v malej miere tvrdosť vody. Miešanie vody mäkšej je samozrejme možné na dosiahnutie nižšej tvrdosti, funguje to lineárne. Pre reálnu prax máme v princípe nasledujúce možnosti.

Destilácia – v destilačnej kolóne sa voda zbavuje iónov. Pri destilácii dochádza ku produkcii značného množstva odpadovej vody. Používanie veľkých objemov vody je nutné, pretože pri destilácii dochádza ku veľkých teplotám, ktoré je nutné ochladzovať. Destilačná kolóna je pomerne značná investícia, používajú ju chovatelia, ktorí majú väčšie množstvo nádrží. Účinnosť destilácie je veľmi vysoká. Je nutné však povedať, že destilovaná voda nie je veľmi vhodná pre akvaristické účely. Je to voda totiž sterilná, a aj veľmi labilná. Preto je dobré túto vodu miešať. Pre tento dôvod je ideálna reverzná osmóza. Technická destilovaná voda z obchodu nie je veľmi vhodná pre akvaristov. Prevádzka samotnej destilačnej kolóny nepodlieha nijakým veľkých opotrebeniam, každopádne pri normálnom používaní nevyžaduje vysoké následné investície.

Reverzná osmóza – proces, pri ktorom sa využíva semipermeabilita – polopriepustnosť. Osmóza je známy proces, pri ktorom nastáva výmena látok pôsobením osmotického tlaku za predpokladu polopriepustnosti medzi dvoma sústavami. Pre vysvetlenie – nemôže dôjsť ku jednoduchej difúzii, ku zmiešaniu, pretože medzi dvoma systémami existuje hranica, prekážka. Ale vplyvom toho, že táto hranica je polopriepustná, vďaka osmotického tlaku dojde ku toku látok. Toto využíva aj reverzná osmóza, no s tým rozdielom, že pri reverznej osmóze dochádza ku odčerpaniu iónov celkom, nedochádza ku vyrovnaniu osmotického tlaku na jednej aj druhej strane. Takto získaná je vhodná pre akvaristu. Napokon ani jej účinnosť nie je taká vysoká ako pri destilácii. Voda z reverzky zvyčajne dosahuje zvyčajne 1 – 10 % pôvodnej hodnoty vodivosti. Na trhu existujú komerčne dostupné osmotické kolóny, ktoré je možné si zakúpiť. Objemovo nezaberajú tak veľa miesta ako destilačné sústavy. Oproti destilačnej sústave majú jednu veľkú nevýhodu v trvanlivosti – membrány a filtračné média osmotickej kolóny je nutné časom meniť, pretože inak reverzka prestane plniť svoju funkciu.

Iontomeničom (Ionexom) – elektrolytická úprava cez katex a anex, z ktorých jeden je záporne nabitý a priťahuje katióny a druhý kladne a priťahuje anióny. Voda prechádza týmito dvoma hlavnými časťami a ióny sa na jednotlivých častiach viažu. Tým sa dosiahne demineralizácia od iónov. Ionex by sa dal aj najľahšie zostaviť aj amatérsky. Problémom je, že katex a anex má svoju kapacitu. Časom sa musí regenerovať, aby si zachoval svoje fyzikálne vlastnosti a celý systém bol účinný. Regenerácia sa vykonáva pôsobením rôznych špecifických látok, v niektorých prípadoch kuchynskou soľou. Ako ionex (menič) na vápnik sa používa napr. permutit, wofatit, cabunit. Selektívne ióntomeniče sú určené pre elimináciu niektorých prvkov – zložiek vody. Na dusík – N je vhodný monmorillonit a clinoptiolit.

Zníženie vodivosti sa dosahuje rovnakými metódami ako je opísané pri tvrdosti vody. Zvýšenie vodivosti detto. Zdrojová voda, ktorú máme k dispozícii disponuje zväčša mierne zásaditým pH pitnej vodovodnej vody je obyčajne okolo 7.5. Pre mnoho rýb je vhodné zvýšiť kyslosť na hodnoty okolo 6.5. Máme niekoľko možností – buď zmeniť pH čisto chemicky, alebo prirodzenejšie. Zmena pH je efektívnejšia vtedy, keď voda obsahuje menej rozpustených látok. Ak obsahuje množstvo solí, zmena pH bude o niečo menšia a prípadné kolísanie tejto hodnoty bude menšie. Pôsobenie NaCl – soľ na pH vody je pre akvaristu nehodnotiteľné, pretože ide o soľ silnej zásady – NaOH a silnej kyseliny – HCl, čiže produktov zhruba rovnakej sily, čiže pH neovplyvňuje. Prakticky na pH pôsobí, ale len vďaka tomu, že aj akváriová voda je vodný roztok obsahujúci rôzne látky, s ktorými NaCl reaguje. Toto pôsobenie je však malé a ťažko predpokladateľné.

Pre zníženie pH je vhodné použitie slabej kyseliny 3-hydrogen fosforečnej – H3PO4. H3PO4 je slabá kyselina. O tom aké množstvo je nutné sa presvedčiť experimentom. Zmena pH akýmkoľvek pôsobením totiž závisí aj obsahu solí, čiastočne od teploty, tlaku. Len veľmi zhruba možno povedať, že ak chceme znížiť pH v 100 litrovej nádrži, aplikujeme H3PO4 rádovo v mililitroch. Použitie iných kyselín neodporúčam, každopádne by sa malo jednať aj z hľadiska vašej bezpečnosti o slabé kyseliny jednoduchého zloženia. H3PO4 je všeobecne používaná látka na zníženie tvrdosti. Ak použijeme H3PO4 dochádza pri tom aj ku týmto reakciám (pri uvedených reakciách je možné vápnik Ca nahradiť za horčík Mg): 2H3PO4 + 3Ca(HCO3)2 = Ca3(PO4)2 + 6H2CO3 – kyselina reaguje s dihydrogenuhličitanom vápenatým za vzniku rozpustného difosforečnanu vápenatého a slabej kyseliny uhličitej. H2CO3 je nestabilná a môže sa rozpadnúť na vodu a oxid uhličitý. Vzniknutý fosforečnan môže byť hnojivom pre ryby, sinice, alebo riasy, prípadne zdrojom fosforu pre ryby.  2H3PO4 + Ca(HCO3)2 = Ca(H2PO4)2 + 6H2CO3 – vzniká rozpustný dihydrogenfosforečnan vápenatý. H3PO4 + Ca(HCO3)2 = CaHPO4 + 2H2CO3 – vzniká nerozpustný hydrogenfosforečnan vápenatý. Ak by sme predsa len použili silné kyseliny: 2HCl + Ca(HCO3)2 = CaCl2 + 2H2CO3 – reakciou kyseliny chlorovodíkovej (soľnej) vzniká chlorid vápenatý. H2SO4 + Ca(HCO3)2 = CaSO4 + 2H2CO3 – reakciou kyseliny sírovej vzniká síran vápenatý. Ak zdrojová voda obsahuje vápenec, prejaví sa pufračná kapacita vody – uhličitan vápenatý CaCO3 totiž reaguje so vzniknutou kyselinou uhličitou za vzniku hydrogenuhličitanu, čím sa dostávame do kolobehu – vlastne do cyklu kyseliny uhličitej. Týmto spôsobom sú naše možnosti ovplyvniť pH limitované. Na určitý čas sa pH aj v takomto prípade zníži, ale nie nadlho, to závisí najmä na koncentrácii hydrogenuhličitanov (od UT) a množstva použitej kyseliny – je len samozrejmé že pufračná schopnosť má svoje limity. V prípade vysokej tvrdosti vody je účinnejšie použiť neustále pôsobenie CO2. Prirodzene sa dá znížiť pH takisto. Vhodné sú napr. jelšové šišky, zahnívajúce drevo, rašelina, výluh z rašeliny atď. Všetko závisí od poznania druhových nárokov jednotlivých rýb a rastlín. Niektoré ryby neznášajú rašelinový extrakt. Rašelinový výluh sa často používa pre výtery napr. tetrovitých rýb. Rašelina znižuje pH. Zahnívajúce drevo má svoje úskalia. Všeobecne sa však dá povedať najmä pre začínajúcich akvaristov, že použitie rôznych materiálov v akváriu nie je také nebezpečné ako si väčšina z nich myslí. Naopak, svojou dlhodobejšou a pozvoľnou činnosťou je ich účinok na zmenu pH oveľa prijateľnejší ako pri použití čistej chémie. Navyše charakter kyselín, ktoré sa lúhujú z týchto materiálov často blahodarne vplývajú aj na zdravie rýb, na rast rastlín. Humínové kyseliny, organické komplexy, cheláty a ostatné organické látky, ktoré sú často prirodzenou súčasťou našich rýb a rastlín aj v ich domovine.

Na zvýšenie pH sa používa sóda bikarbóna – NaHCO3. Čo sa však týka zvyšovanie pH, používa sa v oveľa menšej miere týmto čisto chemickým spôsobom. Prirodzeným spôsobom sa dá zvýšiť pH najlepšie substrátom. Uhličitany obsiahnuté vo vápenci, travertíne posúvajú hodnoty pH až na úroveň nad 8 úplne bežne. Veľmi jednoduchá úprava vody je použitie soli. Ak chceme dosiahnuť stálu hladinu soli, nezabúdajte soľ pri výmene a dolievaní vody dopĺňať. Soľ sa používa pre niektoré druhy rýb, predovšetkým pre brakické druhy. Brakické druhy žijú v prírode na prieniku sladkej vody a morskej, napr. v ústiach veľkých riek do mora. Aj pre niektoré živorodky sa odporúča vodu soliť. Živorodky žijú v Južnej a Severnej Amerike vo vodách stredne tvrdých. Vhodná dávka pre gupky je 2-3 polievkové lyžice soli na 40 litrov vody. Pre blackmolly – typický brakický druh ešte o niečo viac – 5 lyžíc na 40 litrov vody. Soľ môžeme použiť kuchynskú aj morskú, ktorú dostať v potravinách. Ak začíname s aplikáciou soli, buďme zo začiatku opatrný, postupujme obozretne, na soľ ryby zvykajme radšej postupne, pretože osmotický tlak je zradný. Pri náhlej zmene vodivosti spôsobenej náhlym prírastkom NaCl dôjde k negatívnemu stresu – najmä povrch – koža rýb je náchylná na poškodenie. Táto vlastnosť sa využíva pri liečbe.

Soľ sa odporúča afrických jazerným cichlidám. Obsahujú pomerne vysoké koncentrácie sodíka – Na. V literatúre sa uvádza až 0.5 kg na 100 litrov vody, ja odporúčam jednu polievkovú lyžicu na 40 litrov vody. Soľ pôsobí zrejme ako transportér metabolických procesov a katalyzátor. NaCl najskôr disociuje na katión sodíka a anión chlóru. Chlór pôsobí ako dezifenkcia a sodík sa podieľa na biologických reakciách. Organické farbivá, liečivá môžeme úspešne odstrániť aktívnym uhlím, čiastočne rašelinou. Aktívne uhlie vôbec má široké pole uplatnenia. Je pomerne účinnou prevenciou voči nákaze, pretože adsorbuje na seba množstvo škodlivín. Funguje ako filter. Má takú štruktúru, že oplýva obrovským povrchom, jeden mm3 poskytuje až 100 – 150 m2 plochy. Používa sa aj v komerčne predávaných filtroch. Dokáže čiastočne znížiť aj tvrdosť vody. Treba si však uvedomiť, že jeho pôsobenie je najmä v nádržiach s rastlinami nežiaduce práve kvôli svojej adsorpčnej schopnosti. Aktívne uhlie totiž okrem iného odoberá rastlinám živiny. Samozrejme, jeho schopnosti sú vyčerpateľné – po istom čase sa kapacita nasýti a je nutné aktívne uhlie buď regenerovať, alebo vymeniť. Regenerácia je proces chemický, pre akvaristu príliš nákladný, vlastne zbytočný. Čiastočne by sa dalo regenerovať aktívne uhlie varom, ale aj to je dosť nepriechodné. Ak máme k dispozícii práškovú formu aktívneho uhlia, máme vyhrané – jeho účinnosť je prakticky najvyššia a môžeme ho teda použiť najmenší objem. Riešením je implementácia do filtra, ale aj napr. nasypanie do pančuchy a umiestnenie do nádrže. Ak sa nám časť rozptýli, nezúfajme, aktívne uhlie je neškodné, vodu nekalí. Vo vode z vodovodnej siete sa nachádzajú rôzne plynné zložky, ktoré sú určené predovšetkým pre dezifenkciu. Pre človeka sú nutnosťou, ale z hľadiska života v akvária je ich vplyv nežiaduci. Jedným z týchto plynov je všeobecne známy chlór. Je do jedovatý plyn, aj pre človeka, ktorý však v nízkych dávkach človeku neškodí a zabíja baktérie. Pitná voda ho obsahuje obyčajne 0.1 – 0.2 mg/l, maximálne do 0.5 mg/l. Chlór škodí najmä žiabram rýb. Na to, aby sme sa chlóru zbavili, je napr. odstátie vhodné. Existujú na trhu prípravky na báze thiosíranu sodného – Na2S2O3, ktoré dokážu zbaviť vody chlóru. Odstátím vody sa zbavíme chlóru približne za jeden deň. Vode len musíme dovoliť, aby plyny mali kade unikať – takže žiadne uzavreté bandasky. Čiastočne pri okamžitom napúšťaní vody, pomôže čo najdlhší transport vody v hadici. Značná časť chlóru sa takto odparí. Vo vode sa nachádzajú aj iné plyny – k dokonalému odplyneniu odstátím dôjde po štyroch dňoch. Pre výtery niektorých druhov sa používajú rôzne výluhy, napr. výluhy vodných rastlín. Tie dokážu vodu doslova pripraviť – stabilizovať, poskytnúť žiadané látky, napr. stopové látky, resp. dokáže snáď viazať prípadne škodlivejšie súčasti. Používa sa aj drevo, dub, jelša, vŕba. Hodí sa aj hnedé uhlie. Rašelina funguje ako čiastočný adsorbent. Na druhej strane vode dodáva humínové kyseliny a iné organické látky. Najmä v poslednej dobe sa využíva svetlo ultrafialové na úpravu vody. Často aj na jej sterilizáciu od choroboplodných zárodkov. Môže sa využiť aj tým spôsobom – kedy zasahuje celý objem vody – napr. v prípade akútnej choroby, no zväčša sa UV lampa používa ako filter, ktorý účinne zbavuje vodu rozličných zárodkov organizmov. Voda ošetrená dostatočne silnou UV lampou sa napr. nezariasuje. Jej použitie eliminuje mikrobiálne nákazy na minimum. UV lampy možno dostať bežne na trhu s akvaristickými potrebami. Ako silnú lampu – s akým príkonom nám určuje objem nádrže. UV lampu neodporúčam používať nepretržite.

Use Facebook to Comment on this Post

Akvaristika, Biológia, Príroda, Ryby, Živočíchy

Evolúcia rodu Tropheus v jazere Tanganika

Hits: 6983

Autor príspevku: Róbert Toman

Africké jazerá vyprodukovali ohromujúco rozličnú faunu cichlidovitých rýb. Jazero Tanganika, ktorého vek sa odhaduje na 9 – 12 miliónov rokov, je najstaršie východoafrické jazero a skrýva morfologicky, geneticky a behaviorálne najrozmanitejšiu skupinu cichlidovitých rýb. Mnoho z vyše 200 popísaných druhov sa delí do geograficky a geneticky odlišných populácií, ktoré sa líšia hlavne v ich sfarbení. Najlepším príkladom tohto javu je endemický rod Tropheus, v rámci ktorého sa popísalo 6 druhov a viac ako 70 odlišne sfarbených miestnych variantov. Okrem Tropheus duboisi, je celková morfológia v tomto rode veľmi podobná. Tropheusy sa hojne vyskytujú v hornej pobrežnej zóne vo všetkých typoch skalnatých biotopov, kde sa kŕmia riasami a skrývajú sa pred predátormi. Piesočnatým a bahnitým pobrežiam, ako aj ústiam riek sa striktne vyhýbajú. Je dokázané, že Tropheusy sa nedokážu pohybovať na väčšie vzdialenosti, najmä cez voľnú vodu, ako dôsledok ich vyhranenej špecifickosti životného prostredia a vernosti k určitému miestu a teritoriality.

Tropheus je jeden z najštudovanejších rodov jazera. Etologické štúdie Tropheus moori ukázali komplexné vzory správania sa a vysoko vyvinutú sociálnu organizáciu. Neexistuje u nich vyhranený pohlavný dimorfizmus. Obe pohlavia si chránia teritórium a na rozdiel od mnohých ďalších papuľovcov, Tropheusy tvoria dočasné páry počas rozmnožovania. Vývoj ikier a plôdika prebieha výlučne v ústach samíc. Predchádzajúce fylogeografické štúdie Tropheusov demonštrovali prekvapujúco veľké genetické rozdiely medzi populáciami. Tropheus duboisi bol opísaný ako najpôvodnejšia vetva a sedem odlišných skupín vzniklo väčšinou súčasne. Šesť z nich sa vyskytuje v individuálnych pobrežných oblastiach a jedna skupina sa sekundárne rozšírila a kolonizovala skalnaté miesta v podstate po celom jazere. Údaje získané analýzou mitochondriálnej DNA (mtDNA) ukázali, že napriek všeobecne podobnej morfológii sa môže sfarbenie rýb ohromne líšiť medzi geneticky blízko príbuznými populáciami a naopak, môže byť veľmi podobné medzi geneticky veľmi vzdialenými populáciami sesterských druhov. Tieto pozorovania sa čiastočne vysvetľujú ako dôsledok paralelnej evolúcie podobných farebných vzorov v rámci prirodzeného výberu alebo ako dôsledok priestorového kontaktu medzi dvoma geneticky odlišnými populáciami po druhotnom kontakte a následnom triedení rodu, kedy sa kríženci týchto populácií a ich potomkovia spätne krížili prednostne len s členmi jednej pôvodnej populácie.

Historické zmeny jazera

Predpokladá sa, že rýchle formovanie veľkých druhových skupín východoafrických cichlíd spôsobujú abiotické (fyzikálne) faktory, ako geologické procesy a klimatické udalosti, ako aj biologické vlastnosti šíriacich sa organizmov. Niekoľko štúdií ukázalo, že veľké kolísanie hladiny jazera malo vážny vplyv na skalnaté prostredie a druhové spoločenstvá vo východoafrických priekopových jazerách. Jazero bolo vážne ovplyvnené zmenou na suché podnebie asi pred 1,1 miliónmi rokov, čo spôsobilo pokles hladiny asi o 650 – 700 m pod súčasnú hladinu. Potom sa jazero zväčšovalo postupne do obdobia asi pred 550 000 rokmi. Ďalší pokles hladiny nastal asi pred 390 000 až 360 000 rokmi o 360 metrov, medzi 290 000 až 260 000 rokmi o 350 m a medzi 190 000 až 170 000 rokmi to bol pokles o 250 m. V najbližšej histórii poklesla hladina počas neskorého pleistocénu ľadovej doby, kedy bolo v Afrike suché podnebie. Ide o obdobie spred 40 000 – 35 000 rokmi (pokles o 160 m) a medzi 23 000 – 18 000 rokmi (pravdepodobne o 600 m). Akýkoľvek vzrast hladiny posúva pobrežnú líniu a tvoria sa nové skalnaté oblasti. Len čo vzdialenosti medzi novo formovanými oblasťami prekročia schopnosť šírenia sa jednotlivých druhov, tok génov sa preruší a hromadia sa genetické rozdiely medzi populáciami. Následný pokles hladiny môže viesť k sekundárnemu miešaniu, čo vedie k buď k zvyšujúcej sa genetickej rozdielnosti alebo príbuznosti nových druhov.

Šírenie rodu Tropheus v jazere Tanganika

Na základe genetickej analýzy sa určili 3 obdobia šírenia sa Tropheusov v jazere. Prvé obdobie prebiehalo počas stúpania hladiny v období medzi 1,1 mil. – 550 000 rokmi, druhé šírenie prebiehalo počas poklesu hladiny v období medzi 390 000 – 360 000 rokmi a tretie šírenie nastalo počas poklesu hladiny v období medzi 190 000 – 170 000 rokmi. Klimatické zmeny pred 17 000 rokmi spôsobili dramatický pokles hladiny nielen v Tanganike, ale aj v Malawi a dokonca vyschnutie jazera Viktória. Tieto udalosti synchronizovali procesy diverzifikácie cichlíd vo všetkých troch jazerách. Najdôveryhodnejšie vysvetlenie genetických vzorov Tropheusov sú tri obdobia nízkej hladiny jazera, kedy klesala hladina najmenej o 550 m, takže jazero bolo rozdelené na tri jazerá. Skupiny Tropheusov boli rozdelené do osem hlavných skupín podľa mtDNA a podľa výskytu v jednotlivých lokalitách jazera, ktoré dostali názov podľa osád na pobreží:

  • Skupina A1 (Kibwe, Kabwe, Kiti Point)
  • Skupina A2 (Kabezi, Ikola, Bilila Island, Kyeso I./Kungwe – T. „yellow“, Kala, Mpulungu)
  • Skupina A3 (Nyanza Lac – T. brichardi, Ngombe, Bemba)
  • Skupina A4 (Nvuna Island, Katoto I.)
  • Skupina B (Rutunga, Kiriza)
  • Skupina C (Kyeso II.)
  • Skupina D (Zongwe, Moba, Kibwesa – T. „Kibwesa“)
  • Skupina E (Bulu – T. polli, Bulu – T. „Kirschfleck“)
  • Skupina F (Kibwesa – T. „Kirschfleck“, Mvua I., Inangu)
  • Skupina G (Wapembe juh, Katoto II., Mvua II.)
  • Skupina H (Wapembe sever)

Na obrázku sú znázornené vzťahy medzi jednotlivými skupinami rodu Tropheus a ich lokalizácia v jazere.

Tropheus Phylog[1]

Primárne šírenie rodu Tropheus bolo podmienené silným zvýšením hladiny jazera asi pred 700 000 rokmi. Prvé dve skupiny (A a B) pochádzali z obsadenia severných častí jazera, skupina C a D vznikala na západnom pobreží centrálnej časti jazera a skupina E sa rozvíjala na východe strednej časti jazera. Skupiny F, G a H sa najpravdepodobnejšie udomácnili na juhu jazera. Treba upozorniť, že nedávno objavená ôsma skupina C v Kyeso pravdepodobne reprezentuje Tropheus annectens, pretože Kyeso je lokalizované v tesnej blízkosti typu vzoriek rýb, ktorý popísal Boulenger v roku 1990. Tieto ryby žili v blízkosti rýb, ktoré patria do skupiny A2, ktorú objavili na oboch stranách centrálnej časti jazera.

Morfologické analýzy ukázali, že šesť zo siedmich jedincov malo štyri lúče na análnej plutve a siedmy jedinec mal lúčov päť. Ďalších pať jedincov ulovených v Kyeso malo šesť análnych lúčov a tiež sa odlišovali v tvare úst a sfarbení od T. annectens. Je zaujímavé, že ryby odchytené v lokalite Kyeso predtým označené ako T. annectens patria do skupiny C na rozdiel od Tropheus polli (skupina E) z opačnej strany jazera, hoci majú podobnú morfológiu, počet lúčov análnej plutvy a sfarbenie.

Väčšina hlavných skupín sa rozširovala do susedných oblastí počas druhého rozšírenia asi pred 400 000 rokmi a skupiny A a D zvládli presun k protiľahlému pobrežiu centrálnej časti Tanganiky. V tomto období sa po obsadení východného pobrežia skupina A rozdelila na 4 odlišné podskupiny. Podskupiny A1 a A3 sa pravdepodobne objavili po expanzii na východe severného pobrežia. Podskupina A2 pochádzala z obsadenia severozápadného pobrežia na severe aj v strednej časti jazera, zatiaľ čo podskupina A4 pravdepodobne pochádzala z kolonizácie východnej časti južného pobrežia. Skupina D pravdepodobne obsadila veľmi krátky úsek v oblasti Cape Kibwesa, kam sa presídlili zo západnej časti južného pobrežia. To bolo možné jedine v období pred 400000 rokmi, keď klesla hladina o 550 m, pretože Tropheusy nie sú schopné sa presúvať pri zvýšení vodnej hladiny a tým aj zväčšení vzdialeností medzi skalnatými časťami jazera cez voľnú vodu. Iba pokles hladiny o 550 m postačoval na to, aby sa skalnaté dno dostalo do hĺbky asi 50 m, čím sa utvorili podmienky na presun Tropheusov.

Rozšírenie Tropheus“Kirschfleck“, ktoré patria do skupiny F na východnom pobreží centrálnej časti jazera a na sever od Kibwesa, sa zdá byť záhadné podľa súčasného rozšírenia ostatných členov tejto skupiny (F) na juhozápade okolo Cameron Bay. V oblasti Kibwesa žijú v blízkosti tri varianty Tropheusov (Tropheus polli, T.“Kibwesa“ a T.“Kirschfleck“). Predsa však vo vzorkách T.“Kirschfleck“ sa zistilo podľa mtDNA, že patrili dvom skupinám, čo naznačuje kríženie pravdepodobne pôvodných obyvateľov tejto oblasti – skupiny T. polli (E) a presídlených T. „Kirschfleck“ (F). Existujú dve alternatívy: zástupcovia skupiny F sa mohli presunúť pozdĺž západnej časti južného pobrežia až k hranici strednej časti jazera. Zostáva však nejasné, ako sa mohla skupina F presunúť cez tak širokú oblasť strmo klesajúceho pobrežia na západe južného pobrežia, ktoré v súčasnosti obývajú ryby skupiny D, bez toho aby zanechali nejakú genetickú stopu alebo menšiu populáciu. Alternatívne vysvetlenie by mohlo byť, že skupina F sa pôvodne šírila pozdĺž juhovýchodného pobrežia od Kibwesa asi po Wapembe a neskôr bola nahradená presídlenými zástupcami skupiny A, takže haplotypy (skupina alel v jednom chromozóme prenášaná z generácie na generáciu spoločne, pričom potomok dedí dva haplotypy – jeden od otca a druhý od matky) skupiny F v Kibwesa sú pozostatky pôvodne podstatne rozšírenejšej skupiny. Ďalej by k tejto hypotéze bolo možné dodať, že skupina F druhotne osídlila ich súčasné teritórium v okolí Cameron Bay na juhozápade počas hlavného obdobia stúpania hladiny jazera pred 400 000 rokmi. To by vysvetľovalo prítomnosť dvoch odlišných haplotypov v populácii v Mvua (F a G), ako následok kríženia po druhotnom kontakte so zástupcami skupiny F. Ak je táto hypotéza pravdivá, táto kolonizácia mohla úplne nahradiť predtým sa vyskytujúcu skupinu G, ktorá má v súčasnosti centrum výskytu južne od ústia rieky Lufubu. Ak berieme do úvahy fakt, že rieka Lufubu, ako tretí najväčší zdroj vody pre jazero, predstavuje vysoko stabilnú ekologickú bariéru, ktorá oddeľuje pobrežie hory Chaitika od poloostrova Inangu, potom skupina G si mohla udržiavať oblasť pôvodného rozšírenia južne od rieky Lufubu, ale bola nahradená zástupcami skupiny F v Cameron Bay po poklese hladiny.

Počas tretieho šírenia asi pred 200 000 rokmi sa šírili 3 podskupiny skupiny A pozdĺž pobrežia, kde sa pôvodne vyskytovali. Podskupina A2 sa musela premiestniť krížom cez jazero z južného okraja centrálnej časti na východné pobrežie južnej časti jazera. Podskupiny A2 a A4 sa rozšírili pozdĺž juhovýchodného pobrežia viac na juh jazera. V lokalite Wapembe na severe sa u jedného jedinca zistil haplotyp, podľa ktorého patrí do skupiny H, ktorá sa rozšírila pri primárnom šírení a všetky ďalšie jedince parili do dvoch podskupín A. Dva odlišné Tropheusy žijú v blízko príbuznom vzťahu blízko Wapembe. V Katoto, hlavnej hranici medzi skupinami A a G sa zistilo asi 50 % populácie s haplotypom skupiny G a 50% z podskupín A2 a A4. Podskupina A2 sa zistila aj v lokalite Katukula, ale táto populácia je tvorená prevažne rybami zo skupiny G.

Súhrn

Tropheusy 7 skupín nezmenili dramaticky ich rozpätie výskytu, čo môže byť kvôli stabilite ich životného prostredia, ktoré je tvorené kolmo klesajúcim pobrežím. Tieto oblasti neboli príliš ovplyvnené kolísaním hladiny jazera, pretože sa presúvali iba smerom dolu a hore pozdĺž útesov. Jedna podskupina (A2) sa zistila takmer po celom jazere a aj jedinci zo vzdialených populácií sú v úzkom vzťahu. Keďže sa zistili podobné charakteristiky rozšírenia aj iných rodov tanganických cichlíd (Eretmodus, Cyprichromis), pravdepodobne mali zmeny v jazere (klimatické a geologické) podobný vplyv na genetickú štruktúru populácií aj iných druhov.

Literatúra

Baric, S. et al.: Phylogeography and evolution of the Tanganyikan cichlid genus Tropheus based upon mitochondrial DNA saquences. J. Mol. Evol., 56, 2003, 54-68.
Cohen, A.S., Soreghan, M.R., Scholz, C.A.: Estimanting the age of formation of lakes: An example from Lake Tanganyika, East African Rift System. Geology, 21, 1993, 511-514.
Cohen, A.S. et al.: New palaeogeographic and lake-level reconstructions of Lake Tanganyika: Implications for tectonic climatic and biological evolution in a rift lake. Basin Res., 9, 1997, 107-132.
Gasse, F. et al.: Water level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature, 342, 1989, 57-59.
Sturmbauer, C.: Explosive speciation in cichlid fishes of the African Great Lakes: A dynamic model of adaptive radiation. J. Fish Biol., 53, 1998, 18-36.
Sturmbauer, C., Meyer, A.: Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature, 358, 1992, 578-581.
Sturmbauer, C. et al.: Lake level fluctuation synchronize genetic divergences of cichlid fishes in African lakes. Mol. Biol. Evol., 18, 2001, 144-154.

S použitím uvedenej literatúry spracoval: Róbert Toman

Use Facebook to Comment on this Post

Akvaristika, Biológia

Kyslík v živote rýb – pozitíva i negatíva

Hits: 11837

Autor príspevku: Róbert Toman

Pozitívne pôsobenie kyslíka na živé organizmy je všeobecne známe. Ryby potrebujú k svojmu životu kyslík rovnako ako suchozemské stavovce, hoci spôsob ich dýchania je úplne odlišný. Keďže nemajú pľúca, kyslík musí prenikať z vody do krvi priamo cez tkanivá, ktoré sú v priamom kontakte s vodou, teda cez žiabre. Kyslík, ktorý má difundovať do krvi cez žiabre musí byť samozrejme rozpustený, pretože ryby nemajú schopnosť prijímať kyslík vo forme bubliniek. Odchyt rýb, transport a ich chov v zajatí má vážne metabolické nároky v mozgu, svaloch, srdci, žiabrach a ďalších tkanivách. Všeobecne ich nazývame stres, ale fyziologická situácia je omnoho komplikovanejšia. Stres spojený s odchytom a vypustením rýb do iného prostredia môže prispieť k úmrtnosti rýb. Pochopenie energetického metabolizmu rýb a faktorov, ktoré ho ovplyvňujú sú dôležité pre správne zaobchádzanie s rybami ich ošetrenie po odchyte. Pred zhodnotením rizík, ktoré súvisia s kyslíkom vo vode a pre ich pochopenie si priblížme aspoň v krátkosti fyziologické pochody spojené s funkciou kyslíka v organizme rýb.

Energetický metabolizmus a potreba kyslíka

Energia, ktorá sa používa na zabezpečenie všetkých bunkových funkcií sa získava z adenozíntrifosfátu (ATP). Je potrebný na kontrakcie svalov, vedenie nervových impulzov v mozgu, činnosť srdca, na príjem kyslíka žiabrami atď. Ak bunka potrebuje energiu, rozpojením väzieb v ATP sa uvoľní energia. Vedľajším produktom tejto reakcie je adenozíndifosfát (ADP) a anorganický fosfát. V bunke ADP a fosfát môžu znova reagovať cez komplikované metabolické deje a tvorí sa ATP. Väčšina sladkovodných rýb potrebuje veľké množstvo kyslíka v prostredí. Tento kyslík je potrebný hlavne ako „palivo“ pre biochemické mechanizmy spojené s procesmi cyklu energie. Energetický metabolizmus, ktorý je spojený s kyslíkom je vysoko účinný a zabezpečuje trvalé dodávanie energie, ktorú potrebuje ryba na základné fyziologické funkcie. Tento metabolizmus sa označuje aeróbny metabolizmus.

Nie všetka produkcia energie vyžaduje kyslík. Bunky majú vyvinutý mechanizmus udržiavať dodávku energie počas krátkeho obdobia, keď je hladina kyslíka nízka (hypoxia). Anaeróbny alebo hypoxický energetický metabolizmus je málo účinný a nie je schopný produkovať dostatok energie pre tkanivá počas dlhého obdobia. Ryby potrebujú konštantný prísun energie. K tomu potrebujú stále a dostatočné množstvo kyslíka. Nedostatok kyslíka rýchlo zbavuje ryby energie, ktorú potrebujú k životu. Ryby sú schopné plávať nepretržite na dlhé vzdialenosti bez únavy v značnej rýchlosti. Tento typ plávania ryby využívajú pri normálnom plávaní a na dlhé vzdialenosti. Svaly, ktoré sa na tomto pohybe podieľajú, využívajú veľké množstvo kyslíka na syntézu energie. Ak majú ryby dostatok kyslíka, nikdy sa neunavia pri dlhodobom plávaní. Rýchle, prudké a vysoko intenzívne plávanie trvá normálne iba niekoľko sekúnd, prípadne minút a končí fyzickým stavom vyčerpania. Tento typ plávania využívajú ryby pri love, migrácii proti prúdu alebo pri úteku. Tento typ pohybu úplne vyčerpá energetické zásoby. Obnova môže trvať hodiny, niekedy aj dni, čo závisí na prístupnosti kyslíka, trvaní rýchleho plávania a stupni vyčerpania energetických zásob. Ak sa napríklad ryba, ktorá bola pri odchyte úplne zbavená energie, umiestni do inej nádrže, potrebuje množstvo kyslíka a pokojné miesto, kde by obnovila zásoby energie. Ak sa však umiestni do nádoby, kde je málo kyslíka, nedokáže obnoviť energiu a skôr či neskôr hynie. Nie nedostatok kyslíka zabíja rybu, ale nedostatok energie a neschopnosť obnoviť energetické zásoby. Je jasné, že to sú podmienky, ktoré extrémne stresujú ryby.

Faktory ovplyvňujúce obnovu energie

Spolu so stratou energetických zásob počas rýchleho plávania narastá v tkanivách a krvi hladina laktátu. Keďže sa jedná o kyselinu, produkuje ióny vodíka, ktoré znižujú pH tkanív a dodávanie energie do bunky. Tiež zvyšuje vyplavovanie dôležitých metabolitov z bunky, ktoré sú potrebné pri obnove energie. Vylučovanie laktátu a obnova normálnej funkcie buniek môže trvať od 4 do 12 hodín. Pri tomto procese hrá dôležitú úlohu veľkosť tela, teplota vody, tvrdosť a pH vody a dostupnosť kyslíka.

Veľkosť tela – existuje pozitívna korelácia medzi anaeróbnym energetickým metabolizmom a potrebou energie. Väčšie ryby teda potrebujú viac energie na rýchle plávanie. To spôsobuje vyšší výdaj energie a dlhší čas obnovy

Teplota vody – vylučovanie laktátu a iných metabolitov výrazne ovplyvňuje teplota vody. Väčšie zmeny teploty výrazne ovplyvňujú schopnosť rýb obnoviť energetické zásoby. Je preto potrebné sa vyvarovať veľkým zmenám teploty, ktoré znižujú schopnosť obnovy energie.

Tvrdosť vody – zníženie tvrdosti vody má dôležitý účinok na metabolizmus a acidobázickú rovnováhu krvi. Väčšina prác sa zaoberala vplyvom na morské druhy a nie je úplne jasné, či sú tieto výsledky prenosné aj na sladkovodné ryby. Keď sú sladkovodné ryby stresované, voda preniká cez bunkové membrány, hlavne žiabier a krv je redšia. Toto zriedenie krvi zvyšuje nároky na udržiavanie rovnováhy solí v organizme, čiže udržiavanie osmotickej rovnováhy. Viac sa dočítate nižšie.

pH vody – v kyslejšom prostredí sú ryby schopné obnoviť energiu rýchlejšie. Vyššie pH tento proces výrazne spomaľuje, čo je rizikové pre druhy vyžadujúce vyššie pH, ako napr. africké cichlidy jazier Malawi a Tanganika.

Regulácia osmotického tlaku – udržiavanie rovnováhy solí stresovaných rýb

Regulácia hladiny solí je základom života. Štruktúra a funkcia bunky úzko súvisí s vodou a látok v nej rozpustených. Ryba používa značnú energiu na kontrolu zloženia vnútrobunkových a mimobunkových tekutín. U rýb táto osmoregulácia spotrebuje asi 25 – 50% celkového metabolického výdaja, čo je pravdepodobne najviac spomedzi živočíchov. Mechanizmus, ktorý ryby využívajú na udržiavanie rovnováhy solí je veľmi komplikovaný a extrémne závislý na energii. Pretože účinnosť anaeróbneho energetického metabolizmu je iba na úrovni 1/10 energetického metabolizmu v prostredí bohatom na kyslík, energetická potreba pre osmoreguláciu tkanív nie je možná iba anaeróbnym energetickým metabolizmom. Rýchly pokles hladiny ATP v bunke spôsobuje spomalenie až zastavenie funkcie bunkových iónových púmp, ktoré regulujú pohyb solí cez bunkovú membránu. Prerušenie činnosti iónovej pumpy spôsobuje stratu rovnováhy iónov v bunke a dochádza k riziku smrti bunky a ryby.

Sladkovodné aj morské ryby trvalo čelia nutnosti iónovej a osmotickej regulácie. Sladkovodné ryby, ktorých koncentrácia iónov v tkanivách je omnoho vyššia ako vo vode, musia regulovať príjem a stratu vody cez priepustné epiteliálne tkanivá a močom. Tieto ryby produkujú veľké množstvo moču, ktorého denné množstvo tvorí 20% hmotnosti tela. Obličky rýb sú vysoko účinné v odstraňovaní vody z tela a sú takisto účinné aj v zadržiavaní solí v tele. Zatiaľ čo veľmi malé množstvo soli preniká do moču, väčšina osmoregulačných dejov sa zabezpečuje žiabrami. Sodík je hlavný ión tkanív. Transport sodíka cez bunkovú membránu je vysoko závislý na energii a umožňuje ho enzým Na/K-ATP-áza. Tento enzým sa nachádza v bunkovej membráne a využíva energiu, ktorú dodáva ATP na prenos sodíka jedným smerom cez bunkovú membránu. Draslík sa pohybuje opačným smerom. Tento proces umožňuje svalovú kontrakciu, poskytuje elektrochemický gradient potrebný na činnosť srdca a umožňuje prenos všetkých signálov v mozgu a nervoch. Väčšina osmoregulácie u rýb sa deje v žiabrach a funguje nasledovne: Čpavok sa tvorí ako odpadový produkt metabolizmu rýb. Keď sú ryby v pohybe, tvoria väčšie množstvo čpavku a ten sa musí vylúčiť z krvi. Na rozdiel od vyšších živočíchov, ryby nevylučujú čpavok močom. Čpavok a väčšina dusíkatých odpadových látok prestupuje cez membránu žiabier (asi 80 – 90%). Čpavok sa vymieňa pri prechode cez membránu žiabier za sodík. Takto sa znižuje množstvo čpavku v krvi a zvyšuje sa jeho koncentrácia v bunkách žiabier. Naopak, sodík prechádza z buniek žiabier do krvi. Aby sa nahradil sodík v bunkách žiabier a obnovila sa rovnováha solí, bunky žiabier vylúčia čpavok do vody a vymenia ho za sodík z vody. Podobným spôsobom sa vymieňajú chloridové ióny za bikarbonát. Pri dýchaní je vedľajší produkt CO2 a voda. Bikarbonát sa tvorí, keď CO2 z bunkového dýchania reaguje s vodou v bunke. Ryby nemôžu, na rozdiel od suchozemských živočíchov, vydýchnuť CO2 a miesto toho sa zlučuje s vodou a tvorí sa bikarbonátový ión. Chloridové ióny sa dostávajú do bunky a bikarbonát von z bunky do vody. Týmto spôsobom sa zamieňa vodík za sodík, čím sa napomáha kontrole pH krvi.

Tieto dva mechanizmy výmeny iónov sa nazývajú absorpcia a sekrécia a vyskytujú sa v dvoch typoch buniek žiabier, respiračných a chloridových. Chloridové bunky vylučujú soli, sú väčšie a vyvinutejšie u morských druhov rýb. Respiračné bunky, ktoré sú potrebné pre výmenu plynov, odstraňovanie dusíkatých odpadových produktov a udržiavanie acidobázickej rovnováhy, sú vyvinutejšie u sladkovodných rýb. Sú zásobované arteriálnou krvou a zabezpečujú výmenu sodíka a chloridov za čpavok a bikarbonát. Tieto procesy sú opäť vysoko závislé na prístupnosti energie. Ak nie je dostatok energie na fungovanie iónovej pumpy, nemôže dochádzať k ich výmene a voda „zaplaví“ bunky difúziou a to spôsobí smrť rýb.

Dôsledky nedostatku kyslíka v procese osmoregulácie

Len niekoľko minút nedostatku kyslíka, membrána buniek mozgu stráca schopnosť kontrolovať rovnováhu iónov a uvoľňujú sa neurotransmitery, ktoré urýchľujú vstup vápnika do bunky. Zvýšená hladina vápnika v bunkách spúšťa množstvo degeneratívnych procesov, ktoré vedú k poškodeniu nervovej sústavy a k smrti. Tieto procesy zahŕňajú poškodenie DNA, dôležitých bunkových proteínov a bunkovej membrány. Tvoria sa voľné radikály a oxid dusitý, ktoré poškodzujú bunkové organely. Podobné procesy sa dejú aj v iných orgánoch (pečeň, svaly, srdce a krvné bunky). Ak sa dostane do bunky vápnik, je potrebné veľké množstvo energie na jeho odstránenie kalciovými pumpami, ktoré vyžadujú ATP. Ďalší dôsledok hypoxie je uvoľňovanie hormónov z hypofýzy, z ktorých u rýb prevažuje prolaktín. Uvoľnenie tohto hormónu ovplyvňuje priepustnosť bunkovej membrány v žiabrach, koži, obličkách, čreve a ovplyvňuje mechanizmus transportu iónov. Jeho uvoľnenie napomáha regulácii rovnováhy vody a iónov znižovaním príjmu vody a zadržiavaním dôležitých iónov, hlavne Na+ a Cl-. Tým pomáha udržiavať rovnováhu solí v krvi a v tkanivách a bráni nabobtnaniu rýb vodou.

Najväčšia hrozba pre sladkovodné ryby je strata iónov difúziou do vody, skôr než vylučovanie nadbytku vody. Hoci regulácia rovnováhy vody môže mať význam, je sekundárna vo vzťahu k zadržiavaniu iónov. Prolaktín znižuje osmotickú priepustnosť žiabier zadržiavaním iónov a vylučovaním vody. Zvyšuje tiež vylučovanie hlienu žiabrami, čím napomáha udržiavať rovnováhu iónov a vody tým, že zabraňuje prechodu molekúl cez membránu. U rýb, ktoré boli stresované chytaním, prudkým plávaním, sa z tkanív odčerpáva energia a trvá niekoľko hodín až dní, kým sa jej zásoby obnovia. Anaeróbny energetický metabolizmus nie je schopný to zabezpečiť v plnej miere a je potrebné veľké množstvo kyslíka. Ak je ho nedostatok, vedie to k úhynu rýb. Nemusia však uhynúť hneď. Rovnováha solí sa nemôže zabezpečiť bez dostatku kyslíka.

Potreba kyslíka

Kyslík je hlavným faktorom, ktorý ovplyvňuje prežitie rýb v strese. Nie teplota vody ani hladina soli. Predsa však je teplota hlavný ukazovateľ toho, koľko kyslíka vo vode je pre ryby dostupného a ako rýchlo ho budú môcť využiť. Maximálne množstvo rozpusteného kyslíka vo vode sa označuje hladina saturácie. Táto klesá so stúpaním teploty. Napr. pri teplote 21°C je voda nasýtená kyslíkom pri jeho koncentrácii 8,9 mg/l, pri 26°C je to pri koncentrácii 8 mg/l a pri 32°C len 7,3 mg/l. Pri vyšších teplotách sa zvyšuje metabolizmus rýb a rýchlejšie využívajú aj kyslík. Koncentrácia kyslíka pod 5 mg/l pri 26°C môže byť rýchlo smrteľná.

Vzduch a kyslík vo vode – môže aj škodiť. Pri chove cichlíd sa často chovateľ snaží zabezpečiť maximálne prevzdušnenie vody veľmi silným vzduchovaním. Niektorí chovatelia využívajú možnosti prisávania vzduchu pred vyústením vývodu interného alebo externého filtra, iní používajú samostatné vzduchové kompresory, ktorými vháňajú vzduch do vody cez vzduchovacie kamene s veľmi jemnými pórmi. Oba spôsoby vzduchovania sú schopné vytvoriť obrovské množstvo mikroskopických bubliniek. Veľkosť bublín kyslíka alebo vzduchu môže významne zmeniť chémiu vody, stupeň prenosu plynov a koncentráciu rozpustených plynov. Riziko poškodenia zdravia a úhynu rýb vzniká najmä pri transporte v uzavretých nádobách, do ktorých sa vháňa vzduch alebo kyslík pod tlakom. Určité riziko však vzniká aj pri nadmernom jemnom vzduchovaní v akváriách. Mikroskopické bublinky plynu sa môžu prilepiť na žiabre, skrely, kožu a oči a spôsobovať traumu a plynovú embóliu. Poškodenie žiabier a plynová embólia negatívne ovplyvňujú zdravie rýb a prežívateľnosť, obmedzujú výmenu plynov pri dýchaní a vedú k hypoxii, zadržiavaniu CO2 a respiračnej acidóze. Čistý kyslík je účinné oxidovadlo. Mikroskopické bublinky obsahujúce čistý kyslík sa môžu prichytiť na lístky žiabier, vysušujú ich, dráždia, oxidujú a spôsobujú chemické popálenie jemného epiteliálneho tkaniva. Ak voda vyzerá mliečne zakalená s množstvom miniatúrnych bublín, ktoré sa prilepujú na skrely a žiabre alebo na vnútorné steny nádoby, je potrebné tieto podmienky považovať za potenciálne toxické a všeobecne nezdravé pre ryby. Ak je pôsobenie plynu v tomto stave dlhšie trvajúce a parciálny tlak kyslíka sa pohybuje okolo 1 atmosféry (namiesto 0,2 atm., ako je vo vzduchu), šanca prežitia pre ryby klesá. Stlačený vzduch je vhodný, ak sa dopĺňa kontinuálne v rozmedzí bezpečnej koncentrácie kyslíka, ale pôsobením stlačeného vzduchu alebo dodávaného pod vysokým parciálnym tlakom vo vode, môžu ryby prestať dýchať, čím sa zvyšuje koncentrácia CO2 v ich organizme. To môže viesť k zmenám acidobázickej rovnováhy (respiračnej acidózy) v organizme rýb a zvyšovať úhyn. Čistý stlačený kyslík obsahuje 5-násobne vyšší obsah kyslíka ako vzduch. Preto je potreba jeho dodávania asi 1/5 pri čistom kyslíku oproti zásobovaniu vzduchom. Veľmi malé bubliny kyslíka sa rozpúšťajú rýchlejšie než väčšie, pretože majú väčší povrch vzhľadom k objemu, ale každá plynová bublina potrebuje na rozpustenie vo vode dostatočný priestor. Ak tento priestor chýba alebo je nedostatočný, mikrobubliny môžu zostať v suspenzii vo vode, prichytávajú sa k povrchom predmetov vo vode alebo pomaly stúpajú k hladine.

Mikroskopické bublinky plynu sa rozpúšťajú vo vode rýchlejšie a dodávajú viac plynu do roztoku než väčšie bubliny. Tieto podmienky môžu presycovať vodu kyslíkom, ak množstvo bubliniek plynu tvorí „hmlu“ vo vode a zostávajú rozptýlené (v suspenzii) a kyslík s vysokým tlakom môže byť toxický kvôli tvorbe voľných radikálov. Mikroskopické vzduchové bublinky môžu tiež spôsobiť plynovú embóliu. Arteriálna plynová embólia a emfyzém tkanív môžu byť reálne a tvoria nebezpečenstvo najmä pri transporte živých rýb. Je preto potrebné sa vyhnúť suspenzii plynových bublín v transportnej vode. Problém arteriálnej plynovej embólie počas transportu vzniká aj preto, že ryby nemajú možnosť sa potopiť do väčšej hĺbky (ako to robia ryby vypustené do jazera), kde je vyšší tlak vody, ktorý by rozpustil jemné bublinky v obehovom systéme. Dva kľúčové body zlepšujú pohodu veľkého počtu odchytených a stresovaných rýb pri transporte:

Zvýšiť parciálny tlak O2 nad nasýtenie stlačeným kyslíkom a dodanie dosť veľkých bublín, aby unikli povrchom vody. Vzduch tvorí najmä dusík a mikroskopické bublinky dusíka tiež môžu prilipnúť na žiabre. Bublinky akéhokoľvek plynu prichytené na žiabre môžu ovplyvniť dýchanie a narušiť zdravie rýb. Ak sa transportujú ryby vo vode presýtenej bublinkami, vzniká pravdepodobnosť vzniku hypoxie, hyperkarbie, respiračnej acidózy, ochorenia a smrti.

Zvýšiť slanosť vody na 3-5 mg/l. Soľ (stačí aj neiodidovaná NaCl) je vhodná pri transporte rýb. V strese ryby strácajú ióny a toto môže byť pre ne viac stresujúce. Energetická potreba transportu iónov cez membrány buniek môže predstavovať významnú stratu energie vyžadujúcu ešte viac kyslíka. Transport rýb v nádobách, ktoré obsahujú hmlu mikroskopických bublín, môžu byť nebezpečná pre transportované ryby zvyšovaním možnosti oneskorenej smrti po vypustení. Ryby transportované v akoby mliečne zakalenej vode sú stresované, dochádza k ich fyzickému poškodeniu, zvyšuje sa citlivosť k infekciám, ochoreniu a úhyn po vypustení po transporte. Po vypustení rýb, ktoré prežili prvotný toxický vplyv kyslíka, po transporte môžu byť kvôli poškodeným žiabram citlivejšie na rôzne patogény a následne sa môže vyskytovať zvýšený úhyn počas niekoľkých dní až týždňov po transporte. Veľmi prevzdušnená voda neznamená prekysličená. Veľmi prevzdušnená voda je často presýtená plynným dusíkom, ktorý môže spôsobiť ochorenie. Mikroskopické bublinky obsahujúce najmä dusík, môžu spôsobiť emfyzém tkanív pri transporte, podobne, ako je tomu u potápačov.

Literatúra

Cech, J.J. Jr., Castleberry, D.T., Hopkins, T.E. 1994. Temperature and CO2 effects on blood O2 equilibria in squawfish, Ptychocheilus oregonensis. In: Can. J. Fish. Aquat. Sci., 51, 1994, 13-19.
Cech, J.J. Jr., Castleberry, D.T., Hopkins, T.E., Petersen, J.H. 1994. Northern squawfish, Ptychocheilus oregonensis, O2 consumption and respiration model: effects of temperature and body size. In: Can. J. Fish. Aquat. Sci., 51, 1994, 8-12.
Crocker, C.E., Cech, J.J. Jr. 1998. Effects of hypercapnia on blood-gas and acid-base status in the white sturgeon, Acipenser transmontanus. In: J. Comp. Physiol., B168, 1998, 50-60.
Crocker, C.E., Cech, J.J. Jr. 1997. Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. In: Env. Biol. Fish., 50, 1997, 383-389.
Crocker, C.E., Farrell, A.P., Gamperl, A.K., Cech, J.J. Jr. 2000. Cardiorespiratory responses of white sturgeon to environmental hypercapnia. In: Amer. J. Physiol. Regul. Integr. Comp. Physiol., 279, 2000, 617-628.
Ferguson, R.A, Kieffer, J.D., Tufts, B.L. 1993. The effects of body size on the acid-base and metabolic status in the white muscle of rainbow trout before and after exhaustive exercise. In: J. Exp. Biol., 180, 1993, 195-207.
Hylland, P., Nilsson, G.E., Johansson, D. 1995. Anoxic brain failure in an ectothermic vertebrate: release of amino acids and K+ in rainbow trout thalamus. In: Am. J. Physiol., 269, 1995, 1077-1084.
Kieffer, J.D., Currie, S., Tufts, B.L. 1994. Effects of environmental temperature on the metabolic and acid-base responses on rainbow trout to exhaustive exercise. In: J. Exp. Biol., 194, 1994, 299-317.
Krumschnabel, G., Schwarzbaum, P.J., Lisch, J., Biasi, C., Weiser, W. 2000. Oxygen-dependent energetics of anoxia-intolerant hepatocytes. In: J. Mol. Biol., 203, 2000, 951-959.
Laiz-Carrion, R., Sangiao-Alvarellos, S., Guzman, J.M., Martin, M.P., Miguez, J.M., Soengas, J.L., Mancera, J.M. 2002. Energy metabolism in fish tissues relaed to osmoregulation and cortisol action: Fish growth and metabolism. Environmental, nutritional and hormonal regulation. In: Fish Physiol. Biochem., 27, 2002, 179-188.
MacCormack, T.J., Driedzic, W.R. 2002. Mitochondrial ATP-sensitive K+ channels influence force development and anoxic contractility in a flatfish, yellowtail flounder Limanda ferruginea, but not Atlantic cod Gadus morhua heart. In: J. Exp. Biol., 205, 2002, 1411-1418.
Manzon, L.A. 2002. The role of prolactin in fish osmoregulation: a review. In: : Gen. Compar. Endocrin., 125, 2002, 291-310.
Milligan, C.L. 1996. Metabolic recovery from exhaustive exercise in rainbow trout: Review. In: Comp. Biochem. Physiol.,113A, 1996, 51-60.
Morgan, J.D., Iwama, G.K. 1999. Energy cost of NaCl transport in isolated gills of cutthroat trout. In: Am. J. Physiol., 277, 1999, 631-639.
Nilsson, G.E., Perez-Pinzon, M., Dimberg, K., Winberg, S. 1993. Brain sensitivity to anoxia in fish as reflected by changes in extracellular potassium-ion activity. In: Am. J. Physiol., 264, 1993, 250-253.

Use Facebook to Comment on this Post