Farebné živorodky, Príroda, Ryby, TOP, Živočíchy, Živorodky

Poecilia reticulata

Hits: 31557

Poecila reticulata Peters, 1859 patrí do podčeľade Poecilinae, do čeľade Poecillidae, radu , triedy Actinopterigii. Synonymá:  Peters, 1859;  De Filippi, 1861;  Günther, 1866; Girardinus guppii Günther, 1866;  Jordan et Gilbert, 1883;  Jordan, 1887; Acanthophacelus reticulatus Eigenmann, 1907;  Eigenmann, 1910;  Boulenger, 1912;  Boulenger, 1912;  Langer, 1913;  Regan, 1913;  Milewski, 1920. Slovenský názov je živorodka dúhová. Používa sa aj pomenovanie je Patrí medzi . Je to všeobecne známy druh akváriových rýb. Aj u nás sa zrejme s národným názvom  stretol asi každý dospelý človek. Často sa im komolí meno na  a podobne, a to aj medzi odborníkmi – čo len naznačuje ich veľkú popularitu. Iným častým názvom pre  je pávie očko. Toto krásne pomenovanie má pôvod v prírodnej forme P. reticulata, ktorá má na tele farebne obrúbenú tmavú škvrnu, orientovanú zväčša k hornému okraju chvostovej plutvy. 

Pôvodné rozšírenie je vo Venezuele, dnes jej areál zasahuje východnú Amazóniu, Venezuelu, , severnú Brazíliu a Guayanu – povodie Orinoka a takisto dnes  nájdeme napr. v Austrálii, na Kube, na Havaji, v juhovýchodnej Ázii, vo východnej a južnej Afrike, v Južnej Amerike až po USA na severe, v Rusku, v južnom Španielsku, Grécku, Taliansku, Česku a  nevynímajúc. Kompletnejší zoznam eviduje FishBase. [1] Druh P. reticulata sa prispôsobil svojmu prostrediu a začína stále viac prejavovať pôvodná prírodná forma. Keď porovnám divoké  z Venezuely a  chytené v Brazílii, tak vidím jasné presadzovanie pôvodnej genetickej výbavy. Divoká  zase raz víťazí. Gupky sa nachádzajú tam kde je teplá , obyčajne v termálnych prameňoch. Viem, že sa nachádzajú v areáli Slovnaftu, počul som o viacerých iných výskytoch a viem, že sú v termálnych jazierkach v Piešťanoch.

Samček v prírode dosahuje 3,5 cm, samička 6 cm [2]. Žijú priemerne 8 – 12 mesiacov. P. reticulata sa vyznačuje veľkým pohlavným dimorfizmom. Samček je oveľa farebnejší, vzrastom menší, štíhlejší a má Gonopódium je pohlavným orgánom a je modifikáciou 3 až 5 lúča ritnej plutvy. Samička je oválnejšia, v dospelosti väčšia, ritnú plutvu má normálnu a má škvrnu gravidity v brušnej časti tela. Základná farba oboch pohlaví je sivá. Gupka je veľmi priateľská ryba zväčša plávajúca v strednej a dolnej časti akvária. Ak chováte veľké množstvo gupiek v jednej nádrži, tak sa  združujú v celom vodnom stĺpci. V prípade, že kŕmite tak, že ruku máte v akváriu,  vám zvedavo a nebojácne oblizujú prsty. Zaujímavé je aj  do , pretože ony sa chytajú často až príliš ľahko – ak chcete chytiť jednu jedinú, ľahko sa stane, že ich máte v sieťke aj 20. Chytiť jednoducho do  gupku medzi sto inými je problém. Čím je vyššia početnosť, tým sú zvedavejšie a nebojácnejšie.

Chov gupiek je celosvetovo rozšírený, čo je spôsobené asi aj tým, že ide snáď o najvariabilnejší druh ryby, chovaný v sladkovodných akváriách a to nielen čo sa týka sfarbenia, ale aj tvaru. Existuje množstvo tvarových a farebných foriem P. reticulata. Keďže gupka predstavuje a predstavovala vždy pre akvaristov výzvu, došlo k veľkým zmenám nielen v jej vzhľade, ale aj v nárokoch chovu. Chov gupiek bol kedysi bezproblémový. Asi ste aj vy počuli akvaristov a známych, ktorí vraveli, že  chovať nebol nikdy problém, a že to nemôže byť problém ani dnes. Dnešné , ktoré dostanete kúpiť v akvaristike, prípadne od chovateľa, sa dajú opísať ako . Svojim nárokmi sa dosť odlišujú od svojich príbuzných z minulosti. Dnes sú  silne prešlachtené a stali aj menej odolnými. V minulosti  neboli vôbec chúlostivé, ale dnes je to inak. Často sa chovateľovi stane, že si zakúpi nejaké , pridá ich ku svojim a najprv zahynú tie nové a neskôr aj jeho staré. Ak chcete chovať , ideálne je nájsť si cestu k chovateľovi, ktorý si udržuje čistú líniu. Pomer pohlaví odporúčam 3:1 a viac v prospech samičiek. Samce často nedožičia pokoj samičkám, preto je vhodné chovať viac samičiek ako samcov. Gupky tolerujú široké pásmo parametrov vody. Za ideálne hodnoty chovu považujem teplotu 22 – 27°C, 10 – 20°, ph 7.5. Sú schopné, najmä v dospelosti, pokiaľ nepatria ku chúlostivým typom, znášať aj veľké . Profitovanie gupiek v piešťanských jazierkach je toho dôkazom. Piešťanské  sú totiž napájané vodou, ktorá je veľmi bohatá na síru a iné minerály. Do jazierok ľudia púšťajú čas od času rôzne ryby, ale prežívajú len  a Poecilia reticulata. Sú to druhy, ktoré sú voči tomuto faktoru rezistentné. Niektorí  dokázali aklimatizovať gupky postupným privykaním dokonca na morskú vodu. Chovajú tak gupky v morskej vode ako krmivo. V prípade, že máte ambície zúčastniť sa súťaží, je vhodné gupky chovať v akváriách s rastlinami, pretože v nich sa gupky cítia lepšie a lepšie aj vyzerajú. Chov gupiek si teda vyžaduje viac akvárií, ideálne je, ak každá forma má svoje . Zvlášť pre dospelé ryby, mlaď, dospievajúce jedince. Ku gupkám sa do spoločenského akvária hodia iné  ako napr. platy, , ďalej , pancierničky rodu . Nehodia sa k nim väčšie druhy cichlíd – napr. , labyrintky – napr.  ryby – napr.  partipentazona.

Niektorí  pridávajú do akvárií, kde chovajú gupky soľ. Najmä tí, ktorí chovajú gupky bez dna a bez rastlín. V každom prípade sa gupka cíti v slanej vode dobre a lepšie odoláva nástrahám chorôb. Odporúčaná dávka  pre ne sú dve polievkové lyžice na 40 litrov vody. Na soľ je treba rybičky privyknúť postupne a použiť len vtedy, ak to iným rybám nevadí. Gupky majú relatívne dlhé chvosty a často preto viac trpia rôznymi chorobami. A keďže gupky veľa zožerú a veľa odpadu aj vyprodukujú, treba dbať na čistotu vody, aj dna. Jeden môj kamarát nazýva gupky a  vďaka tejto vlastnosti kombajn :-). Gupky v noci oddychujú ležiac na dne, chvosty sa dotýkajú dna a vtedy im hrozí nákaza. Dno nesmie obsahovať veľa detritu, účinná  je dobrým predpokladom vašich zdravých rýb. Gupky doslova milujú čerstvú vodu a ak sa im veľmi často mení , rastú veľmi rýchlo a sú vo výbornej kondícii. Ideálna je kontinuálna .

Gupky sú všežravé. Vhodnou potravou sú , patentky, , moina, , ideálne v živom stave. Mrazené krmivo tohto typu stačí namočiť do akvária a párkrát s ním rozvíriť hladinu a ryby nakŕmite. Ak chcete aby samičky gupiek kvalitne rodili, poskytnite im  čierneho komára, práve toho, ktorý nám ľuďom vie niekedy tak veľmi znepríjemniť život – komára piskľavého – Culex pipiens. Gupky sú riasožravé, vhodnou potravou je  apod. Pre dorastajúce mladé gupky sa hodí nálevník. S radosťou prijmú napr. nelietavé  Drosophila melanogaster a je to práve , na ktorý sa pri kŕmení rýb všeobecne najviac zabúda. Vhodné sú samozrejme , alebo , menej už vločkové suché , ktoré sú ponúkané v akvaristických obchodoch.

Rozmnožovanie gupiek je jednoduché, častokrát sa môže v nádržiach akvaristov diať aj proti ich vôli. Samčekovia, nezriedka aj traja naraz naháňajú vytrvalo samičku, ktorá ale zvyčajne zo začiatku ignoruje ich aktivitu. Keď ale samička privolí, samček pomocou pohlavného orgánu, gonopódia, kopuluje. Samička je schopná držať si  a rodiť aj v ďalších 3 – 4 nasledujúcich vrhoch. Aj preto je nevyhnutné, ak chcete zachovať líniu – tvar a farebnosť rodičov, zamedziť miešaniu genetického materiálu. Gravidné samičky je možné izolovať v pôrodničkách, napr. v takých, ktoré dostanete v obchode, alebo si zostrojíte napr. zo záhradníckeho pletiva kôš. Pletivo stačí zošiť a kôš upevniť na . Alebo sa môžete inšpirovať a spraviť si pôrodničku pomocou  a pletiva. Samozrejme môžete nechať samičku odrodiť v spoločnom akváriu a neskôr mladé vychytať. Gupky si niekedy svoje potomstvo žerú niekedy, ale ak chcete mať potomstvo, je dobré mať  dobre zarastené rastlinami. Gupky sú schopné rodiť mladé každý mesiac – perióda trvá zhruba 28 dní. Priemerný počet mladých je 40 jedincov – pohybuje sa od 30 do 70, niekedy aj viac ako 100 mladých. Niekedy sa stane, že samička vrhne len zopár mladých. Dbajte na to, aby ste, ak prekladáte samičku pred pôrodom, nemenili drasticky , najmä aby ste nezvýšili teplotu. Zvýšená teplota by mohla mať za následok predčasný pôrod – nedostatočne vyvinuté jedince až mŕtve jedince. Samička je po pôrode vyčerpaná, je bežné, že sa jej v tomto čase zhorší zdravotný stav.

Čo je oveľa väčší problém, je mladé odchovať. Ako hovorí Ivan Vyslúžil: „Gupku rozmnoží aj žiačik, ale odchová iba chovateľ.“ Narodené mladé gupky sú relatívne veľkým rybím plôdikom – dosahujú okolo 1 cm. Najprv rastú pomalšie, po dvoch týždňoch sa ich  pri dobrom kŕmení rozbehne. Tak ako aj pri iných rybách, gupky do veľkosti dvoch centimetrov je vhodné kŕmiť čo najdôslednejšie. Najlepšou možnosťou ako podávať potravu takýmto mladým gupkám, je čo najčastejšie a po malých dávkach. Samozrejme ideálne je živé krmivo, ktoré sa pohybuje v celom vodnom stĺpci akvária. Takýmto požiadavkám vyhovie  – Artemia salina, a nálevník . Akonáhle sa dá rozlíšiť , mlaď rozdeľte podľa pohlavia. Samčekovia pohlavne dospievajú vo veku dvoch mesiacov, samičky o mesiac neskôr. Samičky so samcami dajte dokopy vtedy, ak chcete, aby sa spolu párili. Pokiaľ to nie je nevyhnutné, vyhýbajte sa predovšetkým súrodeneckému páreniu.

Gupky trpia často chorobami, ktoré nevieme diagnostifikovať – často hynú bez zjavnej príčiny a veľmi rýchlo. Jednou zo závažných chorôb, postihujúcich tieto ryby je  spôsobený baktériami Pseudomonas,  a inými. Inou chorobou je mykobakterióza, ktorá je len veľmi ťažko liečiteľná. Ichtioftirióza – známa medzi akvaristami ako  je menej vážna choroba.

P. reticulata si istotne svoje významné miesto v akvaristike zaslúži a zastane, veď napokon sú to práve gupky, pre ktoré sa konajú Majstrovstvá Európy, aj , a iné medzinárodné a  a . Existuje medzinárodná organizácia IKGH (Internationale Kuratorium -Hochzucht), ktorá jednotlivé organizácie zaoberajúce sa chovom P. reticulata združuje a koordinuje [4]. Súťaží sa podľa vypracovaného štandardu IHS. [5] Zväčša súťažia triá samčekov, ale čoraz viac sa presadzujú aj páry. Kategórie sú určené podľa tvaru chvostovej plutvy: triangel, kruh, dvojmečík, dolný , horný , rýľ, 

Literatúra:

[1] http://www.fishbase.org/

[2] http://64.95.130.5/

[4] http://www.ikgh.nl/

[5] IHS

Odkazy

Use Facebook to Comment on this Post

2006, 2007, 2008, 2009, 2011, 2012, 2013, 2014, Akvaristika, Časová línia, Divoké živorodky, Farebné živorodky, Príroda, Ryby, Živočíchy, Živorodky

Živorodky – ryby mnohých akvaristov v minulosti aj v súčasnosti

Hits: 40193

Kto z akvaristov sa nestretol so živorodkami? Asi nikto. Každý, kto choval rybičky sa stretol so živorodkami, dokonca o nich zväčša niečo počuli aj neakvaristi. V predstave väčšiny populácie sú živorodky predovšetkým mečovky a gupky – červené rybičky, také s peknými chvostmi. Skutočnosť je však samozrejme omnoho bohatšia. Živorodky predstavujú podľa môjho názoru akýsi spojovací článok v komunikácii medzi tými, ktorí sa zaoberajú akvaristikou a ktorí nie. Zastávajú výsadné postavenie vďaka tomu, že sú „známe“. Dúfam, že svojím príspevkom obohatím poznatky najmä tých, ktorí pod termínom živorodky vidia iba úzky profil druhov. Živorodky sú úžasná skupina aj z hľadiska biologického aj z hľadiska chovateľského. Živorodky sa vyskytujú v južnej časti Severnej Ameriky, v Strednej a v Južnej Amerike a malá časť z nich v Juhovýchodnej Ázii. Niektoré druhy žijú v brakických vodách, dokonca priamo v mori pri ústiach riek. Napr. Poecilia reticulata bola nájdená aj na voľnom mori v pobrežných oblastiach.

Taxonómia

Názov živorodky, ktorý sa bežne používa pre označenie týchto rýb je nepresný a skupina rýb nazvaná „živorodky“ je umelo vytvorená – nemá jasné taxonomické odôvodnenie. Predstavujú štyri čeľade: Goodeidae, Anablepidae, Poeciliidae (patriace do radu Cyprinodontiformes) a Hemiramphidae (patriace medzi Beloniformes). Medzi tzv. živorodkami totiž nájdeme pomerne dosť druhov, ktoré sa živorodosťou nevyznačujú. V taxonómii tejto skupiny je aj v súčasnosti veľký pohyb, možno aj preto, lebo ide pravdepodobne o evolučne mladú skupinu. Živorodky sú príbuzné kaprozúbkam. Samotná živorodosť je hodnotená evolučne ako vysoký stupeň vývoja. Veď stačí si uvedomiť, ktoré skupiny organizmov sa vyznačujú rovnakou schopnosťou – okrem iného aj človek rozumný – Homo sapiens – teda my sami. Systematika živorodiek je opísaná podrobne ďalej v článku.

Farebné živorodky

Pre účely jednoznačného oddelenia a jasného pochopenia som si dovolil označiť bežne ponúkané druhy živorodiek ako živorodky farebné. Všetko sú to druhy vyšľachtené, ktoré vo svojej domovine vyzerajú inak. Najznámejšie druhy sú (na konci článku sa nachádza prehľad niektorých rodov):

  • Poecilia latipinna Lesueur, 1821 – živorodka širokoplutvá,
  • Poecilia reticulata Peters, 1859 – gupka dúhová,
  • Poecilia sphenops Valenciennes, 1946 – živorodka ostroústa,
  • Poecilia velifera Regan, 1914 – živorodka veľkoplutvá,
  • Xiphophorus helleri Heckel, 1848 – mečovka mexická,
  • Xiphophorus maculatus Günther, 1866 – plata škvrnitá,
  • Xiphophorus variatus Meek, 1904 – plata pestrá.

Okrem týchto rozšírených rýb sem patrí veľa iných krásnych druhov. V tejto súvislosti treba povedať, že to, čo je rozšírené v našich akváriách, sa už len vzdialene podobá na ryby žijúce v prírode – to sa týka najmä druhu Poecilia reticulata.

Divoké živorodky

Termínom divoké, prípadne prírodné živorodky označíme také, ktorých vzhľad sa blíži ku stavu v prírode. Malo by ísť o čistú a neprešľachtenú formu. Prax je trochu komplikovanejšia, totiž niektoré druhy ako napr. Poecilia wingei, ale aj iné, sa stále označujú za divoké druhy, ale ich populácia medzi chovateľmi môže byť už označená za akváriovú formu. Niektoré druhy sa bohužiaľ už skrížili v rukách akvaristov, najmä s Poecilia reticulata, prípadne došlo ku zmene správania – napr. u Girardinus falcatus, kde došlo k tolerancii voči narodeným jedincom iného druhu, čo divoká G. falcatus netoleruje. V našich nádržiach samozrejme menia divoké druhy aj svoje sfarbenie, ale stále predstavujú krásne rybičky. Niektoré druhy, napokon aj známe endlerky (už spomínaná P. wingei), patria medzi ohrozené druhy. Niektoré z nich ako Characodon audax sa pravdepodobne už v prírode nevyskytujú. Najznámejšie druhy: Poecilia wingei Kempkes, Isbrücker, 2005 – predtým Poeclia endleri, endlerka, Poecilia reticulata Peters, 1859, Girardinus metallicus Poey, 1854, Limia nigrofasciata Regan, 1913, Xenotoca eiseni Rutter, 1896, Xiphophorus nezahualcoyotl Rauchenberger, Kallman, Morizot, 1990.

Biológia

Oplodňovanie živorodkám zabezpečuje špeciálny orgán, ktorý vznikol zrastením lúčov ritnej plutvy – gonopódium, v prípade čeľade Goodeidae a živorodých zástupcov Hemiramphidae ide o andropódium. Andropódium vzniklo trochu iným spôsobom. Gonopódium sa vyvíja počas dospievania. Morfológia gonopódia je rozlišovacím znakom. Tzv. oplodnením do zásoby sa vyznačujú poecilidy. Ide zvyčajne o 3-4 vrhy, avšak bol popísaný prípad 11 vrhov bez ďalšieho oplodnenia. Ide o to, že samček oplodní samičku, no spermie v jej tele prežívajú určité časové obdobie. Čiže, ak samček oplodní samičku, ta je schopná produkovať potomstvo teoreticky aj bez samca a to počas dosť dlhého časového obdobia.

Chov

Živorodkám Severnej a Strednej Ameriky vyhovuje voda polotvrdá, až tvrdá, minimálna hodnota pre chov je 4 °dGH, optimum je zhruba medzi 10 – 15 °dGH. Maximálna hodnota sa odporúča 25 °dGH. Tvrdšia voda nie je vhodná pre chov najmä Poecilia reticulata – vápnik im neprospieva. Za vhodné pH pre živorodky považujem hodnoty od 6 po 8.5, v prírode sa vyskytujú živorodky zväčša vo vodách s pH nad 7.5. Niektorí chovatelia odporúčajú pridávať do vody soľ – keď ide o bežné druhy ako mečovky, gupky, molinézie, ktoré sú z oblastí, kde je koncentrácia solí vyššia. Odporúčaná dávka soli:

  • Poecilia sphenops – polievková lyžica na 10 litrov vody
  • Poecilia reticulata – polievková lyžica na 20 litrov vody
  • Xiphophorus helleri, X. maculatus, X. variatus – polievková lyžica na 40 litrov vody

Ak sa rozhodneme soľ pridávať, je vhodné ryby na ňu privyknúť postupne. Soľ sama pôsobí aj preventívne voči chorobám, nutná však nie je, ja osobne momentálne nesolím. Aj tu platí, že je treba, aby chovateľ na rybách videl, či sú v dobrom stave a podľa toho riešil situáciu.

Ako raritu uvediem v súvislosti so soľou, že niektorí chovatelia morských rýb si účelovo chovajú gupky ako potravu, pričom ich privykajú na slanú vodu – majú totiž záujem, aby gupky prípadne mohli spolu s morskými rybami žiť aj dlhšie ako trvá jedno kŕmenie. O živorodkách je známe, že značne zaťažujú vodu svojimi výkalmi, preto je nutná silnejšia filtrácia, pravidelná výmena vody a odkaľovanie. Ako dlhoročný chovateľ živorodiek považujem za vhodné pestovať vodné rastliny spolu so živorodkami tak, aby pokrývali celé dno. Čím budeme mať v nádrži väčšie množstvo rastlín, tým menej starostí nám budú spôsobovať výkaly rýb. Na tie treba tiež brať ohľad pri výbere prípadných vhodných spoločníkov v akváriu. Pomerne zaužívaný názor o nenáročnosti živorododiek je skreslený. Najviac tým, že nároky sú v prvom rade druhovo špecifické. Okrem toho šľachtené formy, najmä albinotické, sú veľmi chúlostivé. Vezmem si príklad gupiek – áno kedysi ich chov nepredstavoval väčší problém, aj sa akvaristom veľmi produktívne množili, dnes je však situácia iná – odchovať dnes gupky je neľahká záležitosť. Pre chov živorodiek sa odporúča pre väčšinu druhov kombinácia pohlaví 1:5 v prospech samičiek. V každom prípade je vhodné, aby samičiek bolo viac.

Ak by som mal odporučiť aké ryby sa hodia spolu do chovu so živorodkami, tak sa dostanem do pomerne ťažkej situácie. Mečovky mexické, gupky dúhové, väčšie druhy divoké ako napr. rod Xenotoca by som odporučil chovať s panciernikmi, malými druhmi amerických cichlíd, prípadne s kaprovitými druhmi ako je rod Barbus, Brachydanio. V prípade chovu malých druhov je situácia ešte ťažšia – hodia sa americké tetry, pancierniky rodov Corydoras, Brochis, drobné kaprovité ryby ako Boraras, prípadne rod Badis čeľade Badidae. Divoké živorodky je vhodné chovať monodruhovo – pre každý druh zvláštna nádrž. Vzhľadom na veľkosť rýb nádrž nemusí byť ani veľmi veľká, často stačí 50 litrová. Ak napr. nemáte dostatok akvárií, prípadne chcete experimentovať, tak je možné kombinovať a divoké živorodky chovať aj vo viacdruhových nádržiach. Pritom je však žiaduce dbať na to, aby sme vybrali do spoločného akvária druhy, ktoré sa spolu nekrížia. V každom prípade nie je vhodné podporovať chov napr. divokej formy Poecilia reticulata spolu so šľachtenou formou, prípadne kombináciu Poecilia wingei spolu s Poecilia reticulata v akejkoľvek forme.

Kŕmenie

Živorodky, ktoré sa bežne vyskytujú v obchodoch, ale aj v nádržiach akvaristov, sú dosť výrazne farebné. Aj z toho vyplýva, že musia odniekiaľ získať farbivo, aby zostali také krásne, farebné. Preto nemožno povedať, že by boli živorodky nenáročné na kŕmenie. Ak si chceme zachovať nádherné farby a kondíciu rýb, musíme dobre kŕmiť. Odporúčam najmä cyklop, rastlinné zložky – napr. špenát, šalát, ktorý je dostupný iste každému. Veľmi vhodné je kŕmiť živou potravou, spomenul by som najmä drozofily, ktoré sú veľmi vďačne prijímané väčšími druhmi. Samozrejme kŕmiť môžeme aj žiabronôžkou, mikrami, grindalom, nálevníkom, dafniou, koretrou, atď.. V prípade, že odchovávame mladé, platia podobné pravidlá, ako pri odchove iných rýb, len sú ešte znásobené – je veľmi vhodné kŕmiť mlaď aj šesť-krát za deň, vtedy naozaj rastie ako z vody.

Rozmnožovanie

Živorodky sa rozmnožujú zväčša pomerne ľahko a ochotne aj v spoločenskej nádrži. Tento fakt je pravdepodobne aj príčinou rozšírenia ich chovu. Rodia živé mláďatá, ktoré sú schopné samostatne existovať hneď po narodení. Doba gravidity je zhruba štyri týždne, samozrejme nie u každého druhu je to špecifické, niektoré druhy rodia 1-2 mladé denne počas rodenia potomstva. Niektoré druhy, jedince sú kanibali, a svoje potomstvo si požierajú, iné nie. Prípadne ak dôjde v pôrodu v spoločnosti iných rýb, nie je vzácnosťou, ak samička porodí mladé, svoje mláďatá si nevšíma, ale tie „vyzbierajú“ práve okolité ryby. Zaujímavý je aj fakt, že často rodiaca samička si počas pôrodu mladé nevšíma, len čo však pôrod skončí, začne sa hon na výživnú potravu – alebo aspoň sa zmení vzťah matky a potomstva. Moje skúsenosti hovoria, že tieto pudy ovplyvňuje to, ako sa ryby v svojom prostredí cítia, akú potravu dostávajú. Ak sa cítia dobre, dostanú kvalitnú výživu, najlepšie aj živú, tak sa odmenia pokojným nažívaním si mladých, dospelých aj práve narodených jedincov.

Spôsob akým dochádza ku rodeniu a vôbec otázka živorodosti je zaujímavá. Poeciliidae majú v tele oplodnené ikry a len tesne pred pôrodom sa ikry otvoria a z tela samičky vychádzajú už malé napodobeniny dospelcov. Ostatné čeľade sa nevyznačujú takouto ovovivipariou, mladé v tele matky u nich nie sú v ikernatých obaloch. Pozoruhodné je, že samica je schopná si uchovať spermie od samca do zásoby – mimo čeľade Goodeidae. Bol zaznamenaný prípad, kedy samička Gambusia affinis porodila 11 krát bez prítomnosti samca. V prípade, že už oplodnenú samičku oplodní nejaký samec opäť, prednosť pre nové potomstvo má nový genetický materiál, nie ten, ktorý sa už v tele samičky nachádza. Narodený poter živorodiek je veľký – je oveľa väčší ako poter ikernatých rýb. Najskôr ale rastie pomalšie ako u ikernačiek, po mesiaci sa však rozbehne. Rozdiely však závisia od chovateľových skúseností a možností. Pri komerčnom chove farebných živorodiek sa často používajú metódy ako optimalizovať množstvo mladých. Samice sa umiestňujú do rôznych košov, pôrodničiek. Tieto pomôcky mechanicky izolujú samice – potenciálne požierače narodených rybičiek, čím sa dosiahne vyšší počet rýb.

U živorodiek je známy funkčný hermafroditizmus. Pokusne boli izolované samičky Poecilia reticulata 24 hodín po narodení. Po dosiahnutí pohlavnej dospelosti porodili niektoré z nich napriek prísne oddelenému chovu mláďatá. Tieto fenotypové samičky boli vyšetrené histologicky, pričom sa zistilo, že u nich súčasne fungujú pohlavné žľazy oboch pohlaví. Vďaka tomuto obojpohlavnému usporiadaniu je možné rozmnožovanie samičiek neoplodnených samčekom – tzv. partenogenéza. (Dokoupil, 1981). S rozmnožovaním úzko súvisí téma šľachtenia – výberového chovu, kríženia. Platy, mečovky, moly majú rôzne formy, no najťažšie udržateľnými sú gupky. Moly (molly) – molinézie je výraz pre druhy rodu Poecilia, okrem P. reticulata. Z bežných druhov to sú: Poecilia latipinna, Poecilia sphenops, Poecilia velifera

Existuje mnoho tvarových aj farebných variantov, najmä u druhu Poecilia reticulata. V prípade deformovaných jedincov, nežiaducich foriem, odporúčam tieto z chovu vyradiť. Problémy pri chove z hľadiska šľachtenia – napr. pri množení blackmoll – čiernej formy Poecilia sphenops sa nám môže stať, že potomstvo nebude celé čierne ako rodičia. Prejavuje sa tú čiastočný návrat do divokej formy – genetický materiál pôvodnej formy z prírody má silnú váhu. Niektoré jedince budú ako forma calico – akoby postriekané čiernym farbivom. Veľa takýchto jedincov získa farbu po celom tele až v dospelosti. V každom prípade, občas je vhodné pri šľachtení občerstviť chov o jedinca z iného prostredia, napr. od známeho chovateľa, z obchodu apod. – a to sa týka všetkých živorodiek a všetkých rýb vôbec. Pri šľachtení je dôležité, či je znak recesívny, alebo dominantný. Ak chce sa niekto vážne zaoberať chovom farebných živorodiek a chce svoje rybičky vystavovať, je vhodné aby mal informácie z genetiky. Napr. ak je znak dominantný, jeho dedenie sa v zásade dedí aj pri krížení s jedincom bez tohto znaku. Ak je znak recesívny, musíme nájsť pre jeho zachovanie jedinca, ktorý nesie rovnaký znak.

Ustálenosť populácie dostaneme najskôr po tretej generácii, kedy sa požadovaný znak vyskytuje a ak sú potomkovia zdraví a rodia sa živí a sú samozrejme plodní. Obzvlášť niektoré krížence je veľký problém udržať v ustálenej forme. Krížia sa mnohé aj v prírode. Platy Xiphophorus maculatus, X. variatus, X. helleri sa často krížia medzi sebou, čím vzniká množstvo variantov. Napr. blackmolla Poecilia sphenops je pravdepodobne výsledkom šľachtenia divokej formy P. sphenops, P. latipinna a P. velifera. Tvar a sfarbenie najmä gupiek Poecilia reticulata je veľmi variabilné, preto zachovanie jednotlivých variet je veľmi náročne na skúsenosti chovateľa a na priestor, pretože takéto šľachtenie vyžaduje množstvo nádrží. Samičky dlhochvostých foriem majú na chvostovej plutve kresbu, krátkochvosté sú bez farby, no na samičke zväčša nie je vôbec vidieť o akú formu ide – aj o to je ťažšie šľachtiť gupky ako platy, mečovky, molly. Preto nám logika káže zamerať sa na samčeky. Základné – súťažné tvary gupiek sú tieto: vlajka, lýra, rýľ, ihla, šerpa, dva mečíky, kruh, vejár, dolný mečík, horný mečík, plamienok, triangel. V prípade ak chcete dosiahnuť úspech na výstave, je vhodné chovať ryby v nádrži s dnom a rastlinami. V rámci živorodiek sa usporadúvajú súťažné výstavy – súťaže, na ktorých sa dodržujú predpísané štandardy, v týchto kategóriách: Poecilia reticulata, a Xipho-Molly. Sú štandarde pre: Poecilia sphenops, Poecilia velifera, Poecilia latipinna, Xiphophorus helleri, Xiphophorus maculatus, Xiphophorus variatus. Popri farebných živorodkách sa občas vystavujú aj už vyššie spomínané divoké živorodky. Príklad z bodovacieho lístka pre Poecilia reticulata. Za telo je maximum 28 bodov, z toho 8 za dĺžku, 8 za tvar a 12 za farbu. Chrbtová plutva sa hodnotí 23 bodmi, z toho 5 za dĺžku, 8 za tvar a 10 za farbu. Chvostová plutva môže získať 44 bodov: 10 za dĺžku, 20 za tvar a 14 za farbu. Vitalita sa hodnotí 5 bodmi.

Správanie

Živorodky sa zdržujú prevažne v strednej a vrchnej časti vodného stĺpca. V ich správaní sú zaznamenané modely sociálnej hierarchie podobnej niektorým cicavcom, v ktorej dominuje alfa samec. V prípade jeho odchodu, dôjde k jeho nahradeniu. Agresívnejšie správanie môžeme pozorovať len u samcov mečoviek – Xiphophorus helleri. Pri ich chove je vhodné chovať buď jedného samca, alebo aspoň piatich, aby sa agresivita rozložila. Tento prípad je obdobný ako pri chove afrických cichlíd rodu Tropheus. Iným zaujímavým správaním sa vyznačuje dravý druh Belonesox belizamus, ktorý sa pári spôsobom, ktorý je veľmi rýchly, pretože dvojnásobne väčšia samica má snahu menšieho samca zožrať.

Choroby

Bohužiaľ aj živorodky trpia chorobami – staré známe zdravý ako rybička iste nevymyslel akvarista. Spomeniem krátko niektoré najčastejšie choroby:

  • ichtioftirióza – známa krupička spôsobená nálevníkom Ichthyophthirius multifilis. Liečba – soľným kúpeľom, pomocou FMC apod.
  • bakteriálny rozpad plutiev – veľká pliaga najmä u šľachtených gupiek. Spôsobujú ho baktérie Pseudomonas, Aeromonas a iné. Liečiť možno Acriflavínom.
  • mykobakterióza – tuberkulóza rýb –  brušná vodnateľnosť, prípade silné vychudnutie – prepadnutie bruška. Je spôsobená baktériou Mycobacterium. Je veľmi ťažko liečiteľná, vhodnejšie je napadnuté jedince odstrániť. Ako liečivo môžeme skúsiť použiť metronidazol – entizol.

Systematika živorodiek

Trieda: Actinopterygii, rad: Beloniformes, čeľaď: Hemiramphidae – polozobánky, rod:

  • Arrhamphus Günther, 1866 – živorodý čiastočne
  • Dermogenys Kuhl, van Hasselt in van Hasselt, 1823
  • Hemirhamphodon Bleeker, 1866
  • Hyporhamphus Gill, 1859 – živorodý čiastočne
  • Nomorhamphus Weber, de Beaufort, 1922
  • Zenarchopterus Gill, 1864 – živorodý čiastočne

Rad Cyprinodontiformes, čeľaď Anablepidae, rod:

  • Arrhamphus Günther, 1866 – živorodý čiastočne
  • Anableps Scopoli, 1777
  • Jenynsia Günther, 1866
  • Oxyzygonectes Fowler, 1916 – nie je živorodý

Čeľaď Poecilidae, rody:

  • Arrhamphus Günther, 1866 – živorodý čiastočne
  • Alfaro Meek, 1912
  • Alloheterandria Hubbs, 1924
  • Aplocheilichthys Bleeker, 1863
  • Belonesox Kner, 1860
  • Brachyrhaphis Regan, 1913
  • Carlhubbsia Whitley, 1951
  • Cnesterodon Garman, 1895
  • Diphyacantha Henn, 1916
  • Fluviphylax Whitley, 1965
  • Gambusia Poey, 1854
  • Girardinus Poey, 1854
  • Heterandria Agassiz, 1853
  • Heterophallus Regan, 1914
  • Hylopanchax Poll, Lambert, 1965 – nie je živorodý
  • Hypsopanchax Myers, 1924 – nie je živorodý
  • Laciris Huber, 1982 – nie je živorodý
  • Lamprichthys Regan, 1911 – nie je živorodý
  • Limia Poey, 1854
  • Micropoecilia Hubbs, 1926
  • Mollienesia Lesueur, 1821
  • Neoheterandria Henn, 1916
  • Pamphorichthys Regan, 1913 – nie je živorodý
  • Pantanodon Myers, 1955 – nie je živorodý
  • Phallichthys Hubbs, 1924
  • Phalloceros Eigenmann, 1907
  • Phalloptychus Eigenmann, 1907
  • Phallotorynus Henn, 1916
  • Plataplochilus Ahl, 1928 – nie je živorodý
  • Poecilia Bloch, Schneider, 1801
  • Poeciliopsis Regan, 1913
  • Priapella Regan, 1913
  • Priapichthys Regan, 1913
  • Procatopus Boulenger, 1904 – nie je živorodý
  • Pseudopoecilia Regan, 1913
  • Quintana Hubbs, 1934
  • Scolichthys Rosen, 1967
  • Tomeurus Eigenmann, 1909
  • Xenodexia Hubbs, 1950
  • Xiphophorus Heckel, 1848

Čeľaď Goodeidae, rod:

  • Arrhamphus Günther, 1866 – živorodý čiastočne
  • Allodontichthys Hubbs, Turner, 1939
  • Alloophorus Hubbs, Turner, 1939
  • Allotoca Hubbs, Turner, 1939
  • Ameca Miller, Fitzsimmons, 1971
  • Ataeniobius Hubbs, Turner, 1939
  • Crenichthys Hubbs, 1932 – fosílny druh
  • Empetrichthys Gilbert, 1893 – fosílny druh
  • Girardinichthys Bleeker, 1860
  • Goodea Jordan, 1880
  • Hubbsina de Buen, 1940
  • Chapalichthys Meek, 1902
  • Characodon Günther, 1866
  • Ilyodon Eigenmann, 1907
  • Neoophorus Hubbs, Turner, 1939
  • Skiffia Meek, 1902
  • Xenoophorus Hubbs, Turner, 1939
  • Xenotaenia Turner, 1946
  • Xenotoca Hubbs, Turner, 1939
  • Zoogoneticus Meek, 1902
Ilustratívny prehľad niektorých druhov jednotlivých rodov

Rod Xiphophorus

  • Xenotoca Hubbs, Turner, 1939
  • Xiphophorus alvarezi Rosen, 1960
  • X. andersi Meyer, Schartl, 1980
  • X. birchmanni Lechner, Radda, 1987
  • X. clemenciae Alvarez, 1959
  • X. continens Rauchenberger, Kallman, Morozot, 1990
  • X. cortezi Rosen, 1960
  • X. couchianus Girard, 1859
  • X. evelyenae Rosen, 1960
  • X. gordoni Miller, Minckley, 1963
  • X. helleri Heckel, 1848
  • X. kosszanderi Meyer, Wischnath, 1981
  • X. maculatus Günther, 1866
  • X. malinche Rauchenberger, Kallman, Morizot, 1990
  • X. mayae Meyer, Schartl, 2002
  • X. meyeri Schartl, Schröder, 1988
  • X. milleri Rosen, 1960
  • X. mixei Kallman, Walter, Morizot, Kazianis, 2004
  • X. montezumae Jordan, Snyder, 1899
  • X. monticolus Kallman, Walter, Morizot, Kazianis, 2004
  • X. multilineatus Rauchenberger, Kallman, Morizot, 1990
  • X. nezahualcoyotl Rauchenberger, Kallman, Morizot, 1990
  • X. nigrensis Rosen, 1960
  • X. pygmaeus Hubbs, Gordon, 1943
  • X. roseni Meyer, Wischnath, 1981
  • X. signum Rosen, Kallman, 1969
  • X. variatus Meek, 1904
  • X. xiphidium Gordon, 1932

Rod Poecilia

  • Xenotoca Hubbs, Turner, 1939
  • Poecilia amazonica Garman, 1895
  • P. boesemani Poeser, 2003
  • P. butleri Jordan, 1889
  • P. catemaconis Miller, 1975
  • P. caucana Steindachner, 1880
  • P. caudofasciata Regan, 1913
  • P. chica Miller, 1975
  • P. dauli Meyer, Radda, 2000
  • P. elegans Trewavas, 1948
  • P. formosa Girard, 1859
  • P. gillii Kner, 1863
  • P. hispaniolana Rivas, 1978
  • P. koperi Poeser, 2003
  • P. kykesis Poeser, 2002
  • P. latipinna Lesueur, 1821
  • P. latipunctata Meek, 1904
  • P. mercellinoi Poeser, 1995
  • P. maylandi Meyer, 1983
  • P. mechthildae Meyer, Etzel, Bork, 2002
  • P. mexicana Steindachner, 1863
  • P. nicholsi Myers, 1931
  • P. orri Fowler, 1943
  • P. petensis Günther, 1866
  • P. reticulata Peters, 1859
  • P. salvatoris Regan, 1907
  • P. sphenops Valenciennes, 1846
  • P. sulphurara Alvarez, 1948
  • P. teresae Greenfield, 1990
  • P. vandepolli Van Ludth de Jeude, 1887
  • P. velifera Regan, 1914
  • P. vivipara Bloch, Schneider, 1801
  • P. wandae Poeser, 2003

Literatúra

  • Hieronimus Harro, 1999, Živorodky, Ján Vašut, Praha, 72 pp.
  • Dokoupil Norbert, 1981: Živorodky, Státní zemědělské nakladatelství, p. 70
  • www.aquatab.net
  • www.fishbase.org

 

Use Facebook to Comment on this Post

Akvaristika, Biológia

Kyslík v živote rýb – pozitíva i negatíva

Hits: 11837

Autor príspevku: Róbert Toman

Pozitívne pôsobenie kyslíka na živé organizmy je všeobecne známe. Ryby potrebujú k svojmu životu kyslík rovnako ako suchozemské stavovce, hoci spôsob ich dýchania je úplne odlišný. Keďže nemajú pľúca, kyslík musí prenikať z vody do krvi priamo cez tkanivá, ktoré sú v priamom kontakte s vodou, teda cez žiabre. Kyslík, ktorý má difundovať do krvi cez žiabre musí byť samozrejme rozpustený, pretože ryby nemajú schopnosť prijímať kyslík vo forme bubliniek. Odchyt rýb, transport a ich chov v zajatí má vážne metabolické nároky v mozgu, svaloch, srdci, žiabrach a ďalších tkanivách. Všeobecne ich nazývame stres, ale fyziologická situácia je omnoho komplikovanejšia. Stres spojený s odchytom a vypustením rýb do iného prostredia môže prispieť k úmrtnosti rýb. Pochopenie energetického metabolizmu rýb a faktorov, ktoré ho ovplyvňujú sú dôležité pre správne zaobchádzanie s rybami ich ošetrenie po odchyte. Pred zhodnotením rizík, ktoré súvisia s kyslíkom vo vode a pre ich pochopenie si priblížme aspoň v krátkosti fyziologické pochody spojené s funkciou kyslíka v organizme rýb.

Energetický metabolizmus a potreba kyslíka

Energia, ktorá sa používa na zabezpečenie všetkých bunkových funkcií sa získava z adenozíntrifosfátu (ATP). Je potrebný na kontrakcie svalov, vedenie nervových impulzov v mozgu, činnosť srdca, na príjem kyslíka žiabrami atď. Ak bunka potrebuje energiu, rozpojením väzieb v ATP sa uvoľní energia. Vedľajším produktom tejto reakcie je adenozíndifosfát (ADP) a anorganický fosfát. V bunke ADP a fosfát môžu znova reagovať cez komplikované metabolické deje a tvorí sa ATP. Väčšina sladkovodných rýb potrebuje veľké množstvo kyslíka v prostredí. Tento kyslík je potrebný hlavne ako „palivo“ pre biochemické mechanizmy spojené s procesmi cyklu energie. Energetický metabolizmus, ktorý je spojený s kyslíkom je vysoko účinný a zabezpečuje trvalé dodávanie energie, ktorú potrebuje ryba na základné fyziologické funkcie. Tento metabolizmus sa označuje aeróbny metabolizmus.

Nie všetka produkcia energie vyžaduje kyslík. Bunky majú vyvinutý mechanizmus udržiavať dodávku energie počas krátkeho obdobia, keď je hladina kyslíka nízka (hypoxia). Anaeróbny alebo hypoxický energetický metabolizmus je málo účinný a nie je schopný produkovať dostatok energie pre tkanivá počas dlhého obdobia. Ryby potrebujú konštantný prísun energie. K tomu potrebujú stále a dostatočné množstvo kyslíka. Nedostatok kyslíka rýchlo zbavuje ryby energie, ktorú potrebujú k životu. Ryby sú schopné plávať nepretržite na dlhé vzdialenosti bez únavy v značnej rýchlosti. Tento typ plávania ryby využívajú pri normálnom plávaní a na dlhé vzdialenosti. Svaly, ktoré sa na tomto pohybe podieľajú, využívajú veľké množstvo kyslíka na syntézu energie. Ak majú ryby dostatok kyslíka, nikdy sa neunavia pri dlhodobom plávaní. Rýchle, prudké a vysoko intenzívne plávanie trvá normálne iba niekoľko sekúnd, prípadne minút a končí fyzickým stavom vyčerpania. Tento typ plávania využívajú ryby pri love, migrácii proti prúdu alebo pri úteku. Tento typ pohybu úplne vyčerpá energetické zásoby. Obnova môže trvať hodiny, niekedy aj dni, čo závisí na prístupnosti kyslíka, trvaní rýchleho plávania a stupni vyčerpania energetických zásob. Ak sa napríklad ryba, ktorá bola pri odchyte úplne zbavená energie, umiestni do inej nádrže, potrebuje množstvo kyslíka a pokojné miesto, kde by obnovila zásoby energie. Ak sa však umiestni do nádoby, kde je málo kyslíka, nedokáže obnoviť energiu a skôr či neskôr hynie. Nie nedostatok kyslíka zabíja rybu, ale nedostatok energie a neschopnosť obnoviť energetické zásoby. Je jasné, že to sú podmienky, ktoré extrémne stresujú ryby.

Faktory ovplyvňujúce obnovu energie

Spolu so stratou energetických zásob počas rýchleho plávania narastá v tkanivách a krvi hladina laktátu. Keďže sa jedná o kyselinu, produkuje ióny vodíka, ktoré znižujú pH tkanív a dodávanie energie do bunky. Tiež zvyšuje vyplavovanie dôležitých metabolitov z bunky, ktoré sú potrebné pri obnove energie. Vylučovanie laktátu a obnova normálnej funkcie buniek môže trvať od 4 do 12 hodín. Pri tomto procese hrá dôležitú úlohu veľkosť tela, teplota vody, tvrdosť a pH vody a dostupnosť kyslíka.

Veľkosť tela – existuje pozitívna korelácia medzi anaeróbnym energetickým metabolizmom a potrebou energie. Väčšie ryby teda potrebujú viac energie na rýchle plávanie. To spôsobuje vyšší výdaj energie a dlhší čas obnovy

Teplota vody – vylučovanie laktátu a iných metabolitov výrazne ovplyvňuje teplota vody. Väčšie zmeny teploty výrazne ovplyvňujú schopnosť rýb obnoviť energetické zásoby. Je preto potrebné sa vyvarovať veľkým zmenám teploty, ktoré znižujú schopnosť obnovy energie.

Tvrdosť vody – zníženie tvrdosti vody má dôležitý účinok na metabolizmus a acidobázickú rovnováhu krvi. Väčšina prác sa zaoberala vplyvom na morské druhy a nie je úplne jasné, či sú tieto výsledky prenosné aj na sladkovodné ryby. Keď sú sladkovodné ryby stresované, voda preniká cez bunkové membrány, hlavne žiabier a krv je redšia. Toto zriedenie krvi zvyšuje nároky na udržiavanie rovnováhy solí v organizme, čiže udržiavanie osmotickej rovnováhy. Viac sa dočítate nižšie.

pH vody – v kyslejšom prostredí sú ryby schopné obnoviť energiu rýchlejšie. Vyššie pH tento proces výrazne spomaľuje, čo je rizikové pre druhy vyžadujúce vyššie pH, ako napr. africké cichlidy jazier Malawi a Tanganika.

Regulácia osmotického tlaku – udržiavanie rovnováhy solí stresovaných rýb

Regulácia hladiny solí je základom života. Štruktúra a funkcia bunky úzko súvisí s vodou a látok v nej rozpustených. Ryba používa značnú energiu na kontrolu zloženia vnútrobunkových a mimobunkových tekutín. U rýb táto osmoregulácia spotrebuje asi 25 – 50% celkového metabolického výdaja, čo je pravdepodobne najviac spomedzi živočíchov. Mechanizmus, ktorý ryby využívajú na udržiavanie rovnováhy solí je veľmi komplikovaný a extrémne závislý na energii. Pretože účinnosť anaeróbneho energetického metabolizmu je iba na úrovni 1/10 energetického metabolizmu v prostredí bohatom na kyslík, energetická potreba pre osmoreguláciu tkanív nie je možná iba anaeróbnym energetickým metabolizmom. Rýchly pokles hladiny ATP v bunke spôsobuje spomalenie až zastavenie funkcie bunkových iónových púmp, ktoré regulujú pohyb solí cez bunkovú membránu. Prerušenie činnosti iónovej pumpy spôsobuje stratu rovnováhy iónov v bunke a dochádza k riziku smrti bunky a ryby.

Sladkovodné aj morské ryby trvalo čelia nutnosti iónovej a osmotickej regulácie. Sladkovodné ryby, ktorých koncentrácia iónov v tkanivách je omnoho vyššia ako vo vode, musia regulovať príjem a stratu vody cez priepustné epiteliálne tkanivá a močom. Tieto ryby produkujú veľké množstvo moču, ktorého denné množstvo tvorí 20% hmotnosti tela. Obličky rýb sú vysoko účinné v odstraňovaní vody z tela a sú takisto účinné aj v zadržiavaní solí v tele. Zatiaľ čo veľmi malé množstvo soli preniká do moču, väčšina osmoregulačných dejov sa zabezpečuje žiabrami. Sodík je hlavný ión tkanív. Transport sodíka cez bunkovú membránu je vysoko závislý na energii a umožňuje ho enzým Na/K-ATP-áza. Tento enzým sa nachádza v bunkovej membráne a využíva energiu, ktorú dodáva ATP na prenos sodíka jedným smerom cez bunkovú membránu. Draslík sa pohybuje opačným smerom. Tento proces umožňuje svalovú kontrakciu, poskytuje elektrochemický gradient potrebný na činnosť srdca a umožňuje prenos všetkých signálov v mozgu a nervoch. Väčšina osmoregulácie u rýb sa deje v žiabrach a funguje nasledovne: Čpavok sa tvorí ako odpadový produkt metabolizmu rýb. Keď sú ryby v pohybe, tvoria väčšie množstvo čpavku a ten sa musí vylúčiť z krvi. Na rozdiel od vyšších živočíchov, ryby nevylučujú čpavok močom. Čpavok a väčšina dusíkatých odpadových látok prestupuje cez membránu žiabier (asi 80 – 90%). Čpavok sa vymieňa pri prechode cez membránu žiabier za sodík. Takto sa znižuje množstvo čpavku v krvi a zvyšuje sa jeho koncentrácia v bunkách žiabier. Naopak, sodík prechádza z buniek žiabier do krvi. Aby sa nahradil sodík v bunkách žiabier a obnovila sa rovnováha solí, bunky žiabier vylúčia čpavok do vody a vymenia ho za sodík z vody. Podobným spôsobom sa vymieňajú chloridové ióny za bikarbonát. Pri dýchaní je vedľajší produkt CO2 a voda. Bikarbonát sa tvorí, keď CO2 z bunkového dýchania reaguje s vodou v bunke. Ryby nemôžu, na rozdiel od suchozemských živočíchov, vydýchnuť CO2 a miesto toho sa zlučuje s vodou a tvorí sa bikarbonátový ión. Chloridové ióny sa dostávajú do bunky a bikarbonát von z bunky do vody. Týmto spôsobom sa zamieňa vodík za sodík, čím sa napomáha kontrole pH krvi.

Tieto dva mechanizmy výmeny iónov sa nazývajú absorpcia a sekrécia a vyskytujú sa v dvoch typoch buniek žiabier, respiračných a chloridových. Chloridové bunky vylučujú soli, sú väčšie a vyvinutejšie u morských druhov rýb. Respiračné bunky, ktoré sú potrebné pre výmenu plynov, odstraňovanie dusíkatých odpadových produktov a udržiavanie acidobázickej rovnováhy, sú vyvinutejšie u sladkovodných rýb. Sú zásobované arteriálnou krvou a zabezpečujú výmenu sodíka a chloridov za čpavok a bikarbonát. Tieto procesy sú opäť vysoko závislé na prístupnosti energie. Ak nie je dostatok energie na fungovanie iónovej pumpy, nemôže dochádzať k ich výmene a voda „zaplaví“ bunky difúziou a to spôsobí smrť rýb.

Dôsledky nedostatku kyslíka v procese osmoregulácie

Len niekoľko minút nedostatku kyslíka, membrána buniek mozgu stráca schopnosť kontrolovať rovnováhu iónov a uvoľňujú sa neurotransmitery, ktoré urýchľujú vstup vápnika do bunky. Zvýšená hladina vápnika v bunkách spúšťa množstvo degeneratívnych procesov, ktoré vedú k poškodeniu nervovej sústavy a k smrti. Tieto procesy zahŕňajú poškodenie DNA, dôležitých bunkových proteínov a bunkovej membrány. Tvoria sa voľné radikály a oxid dusitý, ktoré poškodzujú bunkové organely. Podobné procesy sa dejú aj v iných orgánoch (pečeň, svaly, srdce a krvné bunky). Ak sa dostane do bunky vápnik, je potrebné veľké množstvo energie na jeho odstránenie kalciovými pumpami, ktoré vyžadujú ATP. Ďalší dôsledok hypoxie je uvoľňovanie hormónov z hypofýzy, z ktorých u rýb prevažuje prolaktín. Uvoľnenie tohto hormónu ovplyvňuje priepustnosť bunkovej membrány v žiabrach, koži, obličkách, čreve a ovplyvňuje mechanizmus transportu iónov. Jeho uvoľnenie napomáha regulácii rovnováhy vody a iónov znižovaním príjmu vody a zadržiavaním dôležitých iónov, hlavne Na+ a Cl-. Tým pomáha udržiavať rovnováhu solí v krvi a v tkanivách a bráni nabobtnaniu rýb vodou.

Najväčšia hrozba pre sladkovodné ryby je strata iónov difúziou do vody, skôr než vylučovanie nadbytku vody. Hoci regulácia rovnováhy vody môže mať význam, je sekundárna vo vzťahu k zadržiavaniu iónov. Prolaktín znižuje osmotickú priepustnosť žiabier zadržiavaním iónov a vylučovaním vody. Zvyšuje tiež vylučovanie hlienu žiabrami, čím napomáha udržiavať rovnováhu iónov a vody tým, že zabraňuje prechodu molekúl cez membránu. U rýb, ktoré boli stresované chytaním, prudkým plávaním, sa z tkanív odčerpáva energia a trvá niekoľko hodín až dní, kým sa jej zásoby obnovia. Anaeróbny energetický metabolizmus nie je schopný to zabezpečiť v plnej miere a je potrebné veľké množstvo kyslíka. Ak je ho nedostatok, vedie to k úhynu rýb. Nemusia však uhynúť hneď. Rovnováha solí sa nemôže zabezpečiť bez dostatku kyslíka.

Potreba kyslíka

Kyslík je hlavným faktorom, ktorý ovplyvňuje prežitie rýb v strese. Nie teplota vody ani hladina soli. Predsa však je teplota hlavný ukazovateľ toho, koľko kyslíka vo vode je pre ryby dostupného a ako rýchlo ho budú môcť využiť. Maximálne množstvo rozpusteného kyslíka vo vode sa označuje hladina saturácie. Táto klesá so stúpaním teploty. Napr. pri teplote 21°C je voda nasýtená kyslíkom pri jeho koncentrácii 8,9 mg/l, pri 26°C je to pri koncentrácii 8 mg/l a pri 32°C len 7,3 mg/l. Pri vyšších teplotách sa zvyšuje metabolizmus rýb a rýchlejšie využívajú aj kyslík. Koncentrácia kyslíka pod 5 mg/l pri 26°C môže byť rýchlo smrteľná.

Vzduch a kyslík vo vode – môže aj škodiť. Pri chove cichlíd sa často chovateľ snaží zabezpečiť maximálne prevzdušnenie vody veľmi silným vzduchovaním. Niektorí chovatelia využívajú možnosti prisávania vzduchu pred vyústením vývodu interného alebo externého filtra, iní používajú samostatné vzduchové kompresory, ktorými vháňajú vzduch do vody cez vzduchovacie kamene s veľmi jemnými pórmi. Oba spôsoby vzduchovania sú schopné vytvoriť obrovské množstvo mikroskopických bubliniek. Veľkosť bublín kyslíka alebo vzduchu môže významne zmeniť chémiu vody, stupeň prenosu plynov a koncentráciu rozpustených plynov. Riziko poškodenia zdravia a úhynu rýb vzniká najmä pri transporte v uzavretých nádobách, do ktorých sa vháňa vzduch alebo kyslík pod tlakom. Určité riziko však vzniká aj pri nadmernom jemnom vzduchovaní v akváriách. Mikroskopické bublinky plynu sa môžu prilepiť na žiabre, skrely, kožu a oči a spôsobovať traumu a plynovú embóliu. Poškodenie žiabier a plynová embólia negatívne ovplyvňujú zdravie rýb a prežívateľnosť, obmedzujú výmenu plynov pri dýchaní a vedú k hypoxii, zadržiavaniu CO2 a respiračnej acidóze. Čistý kyslík je účinné oxidovadlo. Mikroskopické bublinky obsahujúce čistý kyslík sa môžu prichytiť na lístky žiabier, vysušujú ich, dráždia, oxidujú a spôsobujú chemické popálenie jemného epiteliálneho tkaniva. Ak voda vyzerá mliečne zakalená s množstvom miniatúrnych bublín, ktoré sa prilepujú na skrely a žiabre alebo na vnútorné steny nádoby, je potrebné tieto podmienky považovať za potenciálne toxické a všeobecne nezdravé pre ryby. Ak je pôsobenie plynu v tomto stave dlhšie trvajúce a parciálny tlak kyslíka sa pohybuje okolo 1 atmosféry (namiesto 0,2 atm., ako je vo vzduchu), šanca prežitia pre ryby klesá. Stlačený vzduch je vhodný, ak sa dopĺňa kontinuálne v rozmedzí bezpečnej koncentrácie kyslíka, ale pôsobením stlačeného vzduchu alebo dodávaného pod vysokým parciálnym tlakom vo vode, môžu ryby prestať dýchať, čím sa zvyšuje koncentrácia CO2 v ich organizme. To môže viesť k zmenám acidobázickej rovnováhy (respiračnej acidózy) v organizme rýb a zvyšovať úhyn. Čistý stlačený kyslík obsahuje 5-násobne vyšší obsah kyslíka ako vzduch. Preto je potreba jeho dodávania asi 1/5 pri čistom kyslíku oproti zásobovaniu vzduchom. Veľmi malé bubliny kyslíka sa rozpúšťajú rýchlejšie než väčšie, pretože majú väčší povrch vzhľadom k objemu, ale každá plynová bublina potrebuje na rozpustenie vo vode dostatočný priestor. Ak tento priestor chýba alebo je nedostatočný, mikrobubliny môžu zostať v suspenzii vo vode, prichytávajú sa k povrchom predmetov vo vode alebo pomaly stúpajú k hladine.

Mikroskopické bublinky plynu sa rozpúšťajú vo vode rýchlejšie a dodávajú viac plynu do roztoku než väčšie bubliny. Tieto podmienky môžu presycovať vodu kyslíkom, ak množstvo bubliniek plynu tvorí „hmlu“ vo vode a zostávajú rozptýlené (v suspenzii) a kyslík s vysokým tlakom môže byť toxický kvôli tvorbe voľných radikálov. Mikroskopické vzduchové bublinky môžu tiež spôsobiť plynovú embóliu. Arteriálna plynová embólia a emfyzém tkanív môžu byť reálne a tvoria nebezpečenstvo najmä pri transporte živých rýb. Je preto potrebné sa vyhnúť suspenzii plynových bublín v transportnej vode. Problém arteriálnej plynovej embólie počas transportu vzniká aj preto, že ryby nemajú možnosť sa potopiť do väčšej hĺbky (ako to robia ryby vypustené do jazera), kde je vyšší tlak vody, ktorý by rozpustil jemné bublinky v obehovom systéme. Dva kľúčové body zlepšujú pohodu veľkého počtu odchytených a stresovaných rýb pri transporte:

Zvýšiť parciálny tlak O2 nad nasýtenie stlačeným kyslíkom a dodanie dosť veľkých bublín, aby unikli povrchom vody. Vzduch tvorí najmä dusík a mikroskopické bublinky dusíka tiež môžu prilipnúť na žiabre. Bublinky akéhokoľvek plynu prichytené na žiabre môžu ovplyvniť dýchanie a narušiť zdravie rýb. Ak sa transportujú ryby vo vode presýtenej bublinkami, vzniká pravdepodobnosť vzniku hypoxie, hyperkarbie, respiračnej acidózy, ochorenia a smrti.

Zvýšiť slanosť vody na 3-5 mg/l. Soľ (stačí aj neiodidovaná NaCl) je vhodná pri transporte rýb. V strese ryby strácajú ióny a toto môže byť pre ne viac stresujúce. Energetická potreba transportu iónov cez membrány buniek môže predstavovať významnú stratu energie vyžadujúcu ešte viac kyslíka. Transport rýb v nádobách, ktoré obsahujú hmlu mikroskopických bublín, môžu byť nebezpečná pre transportované ryby zvyšovaním možnosti oneskorenej smrti po vypustení. Ryby transportované v akoby mliečne zakalenej vode sú stresované, dochádza k ich fyzickému poškodeniu, zvyšuje sa citlivosť k infekciám, ochoreniu a úhyn po vypustení po transporte. Po vypustení rýb, ktoré prežili prvotný toxický vplyv kyslíka, po transporte môžu byť kvôli poškodeným žiabram citlivejšie na rôzne patogény a následne sa môže vyskytovať zvýšený úhyn počas niekoľkých dní až týždňov po transporte. Veľmi prevzdušnená voda neznamená prekysličená. Veľmi prevzdušnená voda je často presýtená plynným dusíkom, ktorý môže spôsobiť ochorenie. Mikroskopické bublinky obsahujúce najmä dusík, môžu spôsobiť emfyzém tkanív pri transporte, podobne, ako je tomu u potápačov.

Literatúra

Cech, J.J. Jr., Castleberry, D.T., Hopkins, T.E. 1994. Temperature and CO2 effects on blood O2 equilibria in squawfish, Ptychocheilus oregonensis. In: Can. J. Fish. Aquat. Sci., 51, 1994, 13-19.
Cech, J.J. Jr., Castleberry, D.T., Hopkins, T.E., Petersen, J.H. 1994. Northern squawfish, Ptychocheilus oregonensis, O2 consumption and respiration model: effects of temperature and body size. In: Can. J. Fish. Aquat. Sci., 51, 1994, 8-12.
Crocker, C.E., Cech, J.J. Jr. 1998. Effects of hypercapnia on blood-gas and acid-base status in the white sturgeon, Acipenser transmontanus. In: J. Comp. Physiol., B168, 1998, 50-60.
Crocker, C.E., Cech, J.J. Jr. 1997. Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. In: Env. Biol. Fish., 50, 1997, 383-389.
Crocker, C.E., Farrell, A.P., Gamperl, A.K., Cech, J.J. Jr. 2000. Cardiorespiratory responses of white sturgeon to environmental hypercapnia. In: Amer. J. Physiol. Regul. Integr. Comp. Physiol., 279, 2000, 617-628.
Ferguson, R.A, Kieffer, J.D., Tufts, B.L. 1993. The effects of body size on the acid-base and metabolic status in the white muscle of rainbow trout before and after exhaustive exercise. In: J. Exp. Biol., 180, 1993, 195-207.
Hylland, P., Nilsson, G.E., Johansson, D. 1995. Anoxic brain failure in an ectothermic vertebrate: release of amino acids and K+ in rainbow trout thalamus. In: Am. J. Physiol., 269, 1995, 1077-1084.
Kieffer, J.D., Currie, S., Tufts, B.L. 1994. Effects of environmental temperature on the metabolic and acid-base responses on rainbow trout to exhaustive exercise. In: J. Exp. Biol., 194, 1994, 299-317.
Krumschnabel, G., Schwarzbaum, P.J., Lisch, J., Biasi, C., Weiser, W. 2000. Oxygen-dependent energetics of anoxia-intolerant hepatocytes. In: J. Mol. Biol., 203, 2000, 951-959.
Laiz-Carrion, R., Sangiao-Alvarellos, S., Guzman, J.M., Martin, M.P., Miguez, J.M., Soengas, J.L., Mancera, J.M. 2002. Energy metabolism in fish tissues relaed to osmoregulation and cortisol action: Fish growth and metabolism. Environmental, nutritional and hormonal regulation. In: Fish Physiol. Biochem., 27, 2002, 179-188.
MacCormack, T.J., Driedzic, W.R. 2002. Mitochondrial ATP-sensitive K+ channels influence force development and anoxic contractility in a flatfish, yellowtail flounder Limanda ferruginea, but not Atlantic cod Gadus morhua heart. In: J. Exp. Biol., 205, 2002, 1411-1418.
Manzon, L.A. 2002. The role of prolactin in fish osmoregulation: a review. In: : Gen. Compar. Endocrin., 125, 2002, 291-310.
Milligan, C.L. 1996. Metabolic recovery from exhaustive exercise in rainbow trout: Review. In: Comp. Biochem. Physiol.,113A, 1996, 51-60.
Morgan, J.D., Iwama, G.K. 1999. Energy cost of NaCl transport in isolated gills of cutthroat trout. In: Am. J. Physiol., 277, 1999, 631-639.
Nilsson, G.E., Perez-Pinzon, M., Dimberg, K., Winberg, S. 1993. Brain sensitivity to anoxia in fish as reflected by changes in extracellular potassium-ion activity. In: Am. J. Physiol., 264, 1993, 250-253.

Use Facebook to Comment on this Post

Akvaristika, Biológia, Príroda, Rastliny, Ryby, Živočíchy

Rozmnožovanie rýb a rastlín

Hits: 44124

Ryby sa rozmnožujú iba pohlavne. Podľa spôsobu rozmnožovanie rozlišujeme na ikernačky a živorodky. Ikernačky kladú ikry – vajíčka podobne ako plazy, ktoré sa po akte rozmnožovania vyvíjajú mimo tela matky – oviparia – vajcorodosť. Ich priemer je od 0.8 mm do 6 mm, v závislosti na konkrétnom druhu. Ikry, napokon v menšej miere aj plôdik veľmi často neznášajú svetlo, preto sa ikry často zakrývajú – rozumej celé akvárium. Je to logické – treba si uvedomiť, že v prírode je obyčajne väčšia „tma“ a ikry obyčajne kladú pod list, do rastlín, na dno, do jaskyniek pod skalný strop apod. Ikry, ktoré nie sú oplodnené, časom zbelejú, a je ich treba z akvária vybrať, pretože by sa zbytočne rozkladali a tým ohrozovali zvyšné. Naopak druhom živorodým sa ikry vyvíjajú v telovej dutine matky podobne ako u cicavcov – viviparia – živorodosť. V prípade málo častého vylučovania oplodnených ikier hovoríme o ovoviviparii – vajcoživorodosti. Plôdik totiž často opúšťa telo matky tesne po zbavení sa posledných zárodočných obalov. Práve vyliahnuté mláďa sa nazýva eleuterembryo. Živorodým druhov sa vlastne ikry vyvíjajú v tele, sú rovnakého tvaru, veľkosti ako u ikernačiek, len vývin prebieha dlhšie 20 – 40 dní. Živorodky majú vyvinutý špecifický orgán – gonopódium, u rodu Hemirhaphodon androgónium, pomocou ktorého sa rozmnožujú. Tvar gonopódia je určovacím druhovým znakom. Plodnosť rýb viac-menej rastie s ich dĺžkou, váhou. Vplyv naň však má aj okrem iného aj vek, obsah solí, kyslíka, teplota vody. Živorodým druhom, okrem gudeovitých spermie v tele samičky prežívajú aj mesiace – samček oplodní samičku a tento prenos genetickej informácie je životaschopný dlhé časové obdobie, obyčajne 3 – 4 vrhy, bol však zaznamenaný aj prípad 11 vrhov. Je zaujímavé, že aj medzi rybami sa nájdu druhy, ktoré sú obojpohlavné – hermafroditizmom, no drvivá väčšina rýb sú gonochoristi – funkčne samičky tvoria samičie pohlavné bunky, samce samčie pohlavné bunky. Pri rozmnožovaní by sme sa mali vyhnúť príbuzenskej plemenitbe. Ak už sme nútení ku nej, množme radšej rodiča s potomkom, ako sestra s bratom. Dlhodobá príbuzenská plemenitba vedie ku degeneratívnym poruchám, napr. ku zakriveniu chrbtice, ku iným morfologickým odchýlkam, ku zníženej životaschopnosti.

V prírode dochádza aj ku kríženiu medzi príbuznými, no ide o izolované oblasti, kde je zamedzený prístup ku migrácii a tým ku premiešavaniu genetickej informácie. Nie je vylúčené, že dochádza priamo ku kríženiu medzi potomkami jedného rodiča, ale vzhľadom na veľkosť areálu a početnosť populácie ide o rozmnožovanie medzi bratrancami a sesternicami. Keďže dochádza v oveľa vyššej miere aj ku prírodnému výberu, neraz sa stane, že takáto izolovaná príbuzensky sa množiaca populácia je životaschopnejšia ako populácia, ktorej areál nedovoľuje prakticky príbuzenské kríženie vďaka dostatku priestoru. Tento stav však platí, ak sú podmienky ideálne, len čo sa rapídne zmenia faktory prostredia negatívne, neizolovaná populácia je razom vo výhode. Aktivity vedúce k reprodukcii sú jedny z najkrajších, ktoré nám vedia ryby pri ich chovaní poskytnúť. Snaha samcov, predvádzanie sa pred samičkami je veľmi zaujímavá. Niektoré sú schopné prenasledovať samičky väčšinu dňa, iné sa tejto činnosti venujú len v určitom období a za určitých podmienok. Práve preto je vhodné práve počas snahy o rozmnožovanie viac dbať o tesnosť krycieho skla, pretože najmä samičky majú neraz snahu ujsť pred dobiedzajúcimi samcami aj skokmi nad hladinu.

Tetrám sa často pre ich záujem o ikry, kladie ako prekážka, z nášho chovateľského pohľadu rošt – filter, ktorý oddeľuje ikry od ostatných rýb. Netýka sa to však iba tetier, pre tetry je však použitie trecieho roštu príznačné. Rošt môže byť položený na holom dne po celom obsahu. Počas trenia padajú ikry na dno, kde sa nachádza rošt, ktorý je trochu nadvihnutý nad dno, aby na ikry rodičia nedosiahli. Samozrejme rošt môže byť položený aj inak, podstatné je aby sa dospelé ryby ku ikrám nedostali, alebo mali túto úlohu sťaženú. Materiál, z ktorého je vyrobený, je takisto rôzny, závisí od veľkosti rýb, ikier pre ktorý má byť použitý. Používajú sa rôzne najčastejšie pletivá pre záhradkárov apod. Existuje aj forma skleneného perforovaného roštu.

Pôrodnička je nádoba, uzavretý priestor, prípadne akvárium, v ktorom sa rodí poter. Opomeniem teraz nádrž, ako materiál sa komerčne používa umelá hmota. Tieto sú vhodné pre živorodky. Sú konštruované tak, aby napr. gravidná gupka mohla v nej porodiť svoje mladé. Existujú principiálne dva typy: pri prvom narodené rybky opúšťajú telo matky a prepadávajú cez lišty do spodnej časti pôrodničky, kam sa samička nemá šancu dostať, alebo pri druhom rybky opúšťajú matku do voľnej vody – v tomto prípade musí byť samozrejme toto akvárium bez rýb, inak čerstvo narodené rybky čoskoro požerie. Oba typy pôrodničiek na vode plávu – pohybujú sa na hladine Ako lepšia alternatíva použitého materiálu ku takýmto pôrodničkám je použitie sieťoviny, podobne ako pri trecom rošte. Pletivo stačí zošiť napr. saturnou to želaného tvaru a zabezpečiť napr. polystyrénom, aby pletivo nepadlo na dno. Výhoda takéhoto riešenia je zjavná – pletivo môže byť oveľa väčšie ako v obchode zakúpenej pôrodničke, a celkovo je šité takpovediac na mieru. Zakúpené pôrodničky z obchodu som však malými vrtákmi prevŕtal, aby medzery pre únik plôdika boli ešte širšie. O svojpomocne vytvorených pôrodničkách píše Ivan Vyslúžil v tomto článku.

Ako substrát pre niektoré druhy poslúžia jemnolisté rastliny, steny nádrže, listy rastlín, kamene na plochu, alebo strop kamenných „jaskyniek“, atď. Pre niektoré druhy rýb sa pripravujú rôzne výluhy. Néonka čierna – Hypessobrycon herbertaxelrodi je toho názorným príkladom – pre tento druh sa často výluhy pripravujú ako napokon aj pre ostatné tetrovité.

Rozmnožovanie cichlíd je zrejme jedno z najzaujímavejších medzi rybami. Napr. samička ostriežika purpurového si vyhliadne vhodnú jaskynku, napr. kokosový orech, kde dokáže držať v papuli svoje mladé celé hodiny. Samozrejme predtým prebehlo trenie. Najmä u amerických druhov sa páry musia nájsť samé, často vydržia spolu aj celý život. Niektoré druhy kladú ikry na substrát, napr. na plochý kameň, na podnebie kameňa apod. Zospodu kladie ikry napr. princezná – Neolamprologus brichardi. Tento druh je pomerne neznášanlivý voči sebe, takže dominantné páry eliminujú svoju konkurenciu, a potom sa plnou silou pustia do rozmnožovania. Keď začnú, často v pomerne pravidelných intervaloch prinášajú nové generácie. Ich ikry sú slabo ružové, pomerne veľké, počet ikier je 20 – 100. Veľa druhov cichlíd patria medzi tzv. papuľovce (česky tlamovce). Čiže sú to také druhy, ktoré svoje potomstvo uchovávajú vo svojej papuľke, avšak  papuľovce nájdeme aj medzi inými taxónmi, napr. aj medzi druhmi rodu Betta. Ich rodičovský inštinkt je však často dosť slabý, je to samozrejme druhovo špecifické, napr. Neolamprologus brichardi, väčšina amerických cichlíd svoje potomstvo urputne bráni, na rozdiel od napr. malawijských rodov Pseudotropheus, Maylandia, Melanochromis, Labidochromis. Ikry držia poctivo v papuli, nechajú ich stráviť žĺtkový vak, pripravia ich na opustenie ústnej dutiny matky, vypustia ich. Niekedy sa stane, že ich ešte nejaký čas opäť pozbierajú a tento jav sa môže opakovať, no keď už tak nespravia, ich rodičovský inštinkt ide veľmi rýchlo bokom. Samec, v podstate po oplodnení iba chránil samičku, ale teraz svoje mladé väčšinou pokladá za votrelcov, prípadne za spestrenie menu. Samička je na tom podobne, ona sa ale skôr „pomýli“. Najprv si mladé nevšíma, akoby sa dištancovala, no časom sa môže stať, že svoje potomstvo začne prenasledovať.

Typické kaprozúbky (halančíky) nakladú ikry, ktoré v prírode jednoducho neskôr vyschnú. Impulz na vývoj zárodku donesie so sebou až opätovný dážď na začiatku obdobia dažďov. Simulácia tohto procesu je aj základom úspechu pri ich rozmnožovaní v zajatí, v našich nádržiach. Čiže po trení v akváriu je nutné ikry vybrať a umiestniť na suchom mieste. Po druhovo špecifickom čase ikry vyberieme, umiestnime do vhodnej nádrže a zalejeme vodou. Vtedy začne pokračovať reprodukcia až po vyliahnutie mladých rýb. Tieto ryby rastú veľmi rýchlo, pretože jednoročné druhy musia počas krátkej dobe dospieť a sami sa rozmnožovať.

Samičky panciernika Corydoras aeneus zbiera oplodnené ikry a dočasne ich nesie pod prsnými plutvami, ktoré má zložené do tzv. taštičky. Neskôr ich lepí na sklo a na rastliny. Pancierniky sa rozmnožujú v hejnách, patria sem druhy obľubujúce nižšiu teplotu. Známa je pomôcka ku stimulácii – nitenky a každodenné znižovanie hladiny vody a výmena vody za čerstvú studenú vodu, čo simuluje nadchádzajúce obdobie dažďov – obdobie hojnosti. Pancierniky si zväčša vlastné ikry veľmi nevšímajú, odporúča sa však, ich premiestňovať. Samozrejme veľa druhov nie je tak ľahko rozmnožiteľných: Corydoras sterbai, C. panda atď.

Najčastejšie sa v akváriách vyskytujúci prísavník Ancistrus cf. cirrhosus sa rozmnožuje v dutinách, alebo pod kamene. Chovatelia si pomáhajú napr. sklenenou fľašou, novodurovou trubkou apod. Samček si svoju samičku zvyčajne vyberie. Svoje ikry samec do istého času stráži, avšak nemá toľko prostriedkov ako veľké dravé druhy, ani nie je tak húževnatý. Avšak v bežnom spoločenskom akváriu má prísavník šancu sa rozmnožiť a poskytnúť aj potomstvo.

O skalároch – Pterophyllum scalare sa vraví, že vyžadujú tlak vody – vysoký vodný stĺpec. Avšak mal som možnosť vidieť ich odchovávať aj vo veľmi malých nádržiach nie vyšších ako 25 cm. Keďže v domovine sa vytierajú zvyčajne na listy vysoko rastúcich rastlín, môžeme im poskytnúť ako trecí substrát napr. otvorený kus z PET fľaše. Skalár, pokiaľ nakládol ikry, tak ich chráni, aj sa o ne stará, hneď ako sa rozplavávajú mladé, začne ich zvyčajne nemilosrdne požierať. V prírode by sa takto nesprával a stáva sa, že aj v akváriu mladé nepožiera.

Živorodky sú z hľadiska rozmnožovania vhodné pre začiatočníka. Dá sa pre ne pri rozmnožovaní uplatniť vyššie spomínaná pôrodnička, ale aj vlastnými prostriedkami zošité sito. Rozmnožujú sa pri troche snahy veľmi ochotne. Mečovka mexická je takmer vždy voči svojim mladým kanibal, platy sú na tom obdobne, len pávie očká zväčša vlastné potomstvo ušetria. Keď dospejú a začnú sa rozmnožovať, cyklus pôrodov sa opakuje zhruba po 4 – 5 týždňoch ako u väčšiny živorodiek. Gupky a platy môžu mať až 100 mladých, dospelá mečúnka aj 200. Ide o živorodé druhy, takže rodia živé mláďatá, v brušnej časti sa nachádza škvrna plodnosti, ktorá svedčí o pohlavnej zrelosti samičiek. Jedno oplodnenie samcom môže vystačiť aj na 3 – 4 vrhy. Počas dní pred pôrodom sa škvrna zväčšuje a tmavne. Blackmolly – tmavá vypestovaná forma Poecilia shenops je trochu ťažšie odchovateľná rybka, pretože vyžaduje o niečo teplejšiu vodu a nevidno na nej škvrnu plodnosti. U blacmoll pri ich potomstve máme možnosť vidieť presadzovanie sa génov prírodnej povahy, pretože nie všetky mladé budú celé čierne ako pravdepodobne sú rodičia. Ide o to, že blacmolla je vyšľachtená forma, ktorá nie je celkom biologicky ustálená. Dokonca sa môže stať, že niektoré jedince sú v mladšom veku strakaté a neskôr im čierny pigment pribúda natoľko, že celkom zčernejú. Aj pre blackmolly je vhodné sito na ich rozmnožovanie, resp. na ochranu vyliahnutého potomstva pred pažravosťou dospelcov.

Labyrintky žijú obyčajne v preteplených oblastiach, kde sa nachádza veľmi veľa súčastí vo vode: rýb, rastlín, organických zvyškov, driev apod. Dospelé jedince dýchajú atmosférický kyslík. Veľa druhov labyrintiek tvorí penové hniezdo – pri ochrane ikier využijú svoju schopnosť naberať atmosférický vzduch. Penové hniezdo je tvorené čiastočkami vzduchu, ktoré ryby premelú v ústnej dutine. Na vode pláva. To znamená, že hniezdo pre ikry pláva na hladine, nie je vhodné aby v akváriu bolo silné prúdenie vody – to by mohlo poškodiť stavbu penového hniezda. Ako podpora preň slúžia napr. plávajúce rastliny Riccia, Salvinia, Myriophyllum, Lemna apod. Hniezdo obyčajne stavia samec, niektoré druhy alebo jedince je treba po trení z nádrže odloviť, iné nie. Týmto spôsobom sa rozmnožujú guramy, bojovnice, kolizy. O kolizách – Colisa je známe, že ich poter je jeden z najmenších, preto sa odporúča udržiavať hladinu vody počas jeho vývoja pod 10 cm. Sú veľmi náchylné na zmenu teploty a na chlad, preto je vhodné zabezpečiť výborné utesnenie krycím sklom alebo niečím iným, a udržiavanie rovnakej teploty vody, a vzduchu nad hladinou ak medzi krycím sklom a hladinou je nejaký priestor. Filtrovanie by malo byť veľmi slabé alebo žiadne a prúdenie vody minimálne, alebo žiadne. Kritické obdobie je doba tvorby labyrintu. Dochádza k tomu po 50 dni a toto obdobie je kritické, vtedy je vhodné ešte viac zvýšiť obozretnosť, aby sme prípadné straty minimalizovali. Pred rozmnožovaním bojovníc Betta splendens môže v ich správaní dôjsť ku prejavu džentlmenstva. Vtedy sok pri fyziologickej potrebe soka nadýchnuť sa, čaká na to aby mohol pokračovať v súboji. Spoločenské boje samcov sú u bojovní dosť drsné.

Vodné rastliny sa rozmnožujú v akváriách, ale často aj v prírode, hlavne nepohlavne. Vegetatívne rozmnožovanie nastáva rôznymi spôsobmi, napr. odrezkami, poplazmi, odnožami atď. Pohlavný spôsob nie je taký častý ako u ich suchozemských príbuzných. Rastliny často v akváriu nekvitnú a k opeleniu – k začiatku úspešného rozmnoženia dochádza ešte menej často, čo je pochopiteľné aj vzhľadom na priestorové bariéry.

Use Facebook to Comment on this Post