Akvaristika, Biológia, Technika

Vzduchovanie a kyslík vo vode

Hits: 35531

Kys­lík je plyn, kto­rý sa v našich mys­liach spá­ja so živo­tom. Pri­már­nym zdro­jom kys­lí­ka sú rast­li­ny. Vo vode je ho ove­ľa menej ako vo vzdu­chu. Kon­cen­trá­cia kys­lí­ka vo vode je závis­lá od tep­lo­ty vody. Čím je tep­lo­ta v akvá­riu vyš­šia, tým je kon­cen­trá­cia O2 niž­šia. Pri tep­lo­te 10°C pri bež­nom tla­ku je vo vode roz­pus­te­ných asi 11.3 mg O2 v lit­ri, pri tep­lo­te 25°C – 8.3 mg/​l a pri 30°C – 7.6 mg/​l. Do vody sa kys­lík okrem pôso­be­nia vod­ných rast­lín dostá­va aj difú­zi­ou zo vzdu­chu, pre­mie­ša­va­ním, čere­ním hla­di­ny. Kys­lík sa spot­re­bú­va v akvá­riu hlav­ne roz­klad­nou čin­nos­ťou mik­ro­or­ga­niz­mov – v sub­strá­te dna. Ak je dno málo pre­vzduš­ne­né, môže dôjsť k jeho defi­ci­tu a tým k jeho vyčer­pa­niu pre ryby a rast­li­ny. Kys­lík napo­má­ha roz­kla­du hmo­ty. Čis­tý, 100 % kon­cen­tro­va­ný kys­lík je pre ľud­ský orga­niz­mus jedo­va­tý, tak­že ak hovo­rím o kys­lí­ku v súvis­los­ti so vzdu­cho­va­ním, ide samoz­rej­me o vzduch. Vzduch obsa­hu­je aj veľa dusí­kaCO2. Rast­li­nám kys­lík až tak veľ­mi nevo­nia”, naj­mä nie cez deň a za dosta­toč­né­ho prí­su­nu sve­tel­nej ener­gie. Aj ak spô­so­bu­je vzdu­cho­va­nie veľ­ký pohyb vody, rast­li­nám to nepro­spie­va. Naopak cez noc, kedy rast­li­ny kys­lík pri­jí­ma­jú by bol pre ne kys­lík víta­ný. Cez deň rast­li­ny pri­jí­ma­jú oxid uhli­či­tý – ide o pro­ces foto­syn­té­zy a z nej vyplý­va­jú­cich pro­ce­sov ako napr. Kreb­sov cyk­lus, cyk­lus C, N, apod. Vzdu­cho­va­nie homo­ge­ni­zu­je vodu v akvá­riu, zabez­pe­ču­je pohyb vody, mie­ša­nie jed­not­li­vých vrs­tiev, naj­mä ver­ti­kál­nym sme­rom. Množ­stvo kys­lí­ka, kto­ré doká­že vzdu­cho­va­nie odo­vzdať akvá­riu je pomer­ne níz­ke – difú­zia ply­nov vo vode je rádo­vo šty­ri krát niž­šia ako vo vzdu­chu. Dar­mo bude­me vytvá­rať veľ­ké bub­lin­ky, tie síce viac rozp­rú­dia vodu, ale množ­stvo pri­ja­té­ho kys­lí­ka vodou bude niž­šie ako keby sme pro­du­ko­va­li men­šie bub­lin­ky. Množ­stvo tak­to pri­ja­té­ho kys­lí­ka závi­sí na povr­chu bub­li­niek, kto­rý je vyš­ší pri men­ších bublinkách.

Vzdu­cho­va­cí kameň môže mať rôz­ny tvar. Môže to byť valec, gulič­ka, môže byť podl­ho­vas­tý, až 105 cm dlhý. Exis­tu­jú kame­ne tva­ru obvo­du kru­hu. Podob­ne ako vzdu­cho­va­cí kameň je mož­né pou­žiť lipo­vé driev­ko, kto­ré tvo­rí malé bub­lin­ky. Jeho nevý­ho­da je vtom, že sa póry v ňom rých­lo uzav­rú. Pou­ží­va sa skôr pri difú­zii CO2 – pri hno­je­ní rast­lín. Navy­še sa lipo­vé driev­ko roz­kla­dá a obras­tá ria­sa­mi. Urči­te neopo­me­nu­teľ­ným spô­so­bom tran­s­por­tu kys­lí­ka do vody je čere­nie hla­di­ny, kto­ré spô­so­bu­je buď vzdu­cho­va­nie cez kameň, ale­bo fil­ter. Väč­ši­na návo­dov na pou­ží­va­nie fil­tra odpo­rú­ča umiest­niť fil­ter tak, aby vývod vody bol na hla­di­nou ale­bo tes­ne pod ňou. Aj tak­to sa dostá­va kys­lík do vody. Na vzdu­cho­va­nie sa v akva­ris­ti­ke pou­ží­va­jú dmy­chad­lá, z kto­rých je vzduch pohá­ňa­ný vzduch do hadi­čiek buď do vzdu­cho­va­cích kame­ňov, ale­bo do fil­trov. Ja pou­ží­vam nie­koľ­ko typov motor­če­kov o rôz­nej sile. Dmy­chad­lo by malo byť umiest­ne­né nad všet­ký­mi hla­di­na­mi, do kto­rých vhá­ňa vzduch, aby sa pre­d­iš­lo pri výpad­ku prú­du samos­pá­do­vé­mu vnik­nu­tiu vody do kom­pre­so­ra. V prí­pa­de, že nie je mož­né kom­pre­sor tak­to umiest­niť, hadič­ku na jej ces­te od kom­pre­so­ra ku akvá­riám najprv vedie­me meter nad úro­veň naj­vyš­šej hla­di­ny, ale­bo zabez­pe­čí­me iné tech­nic­ké rie­še­nie, kto­ré zabrá­ni nasá­va­niu vody, napr. pou­ži­jem spät­ný ven­til. Ak sa nie­ke­dy stret­ne­te s poj­mom koryt­nač­ka, tak vedz­te že mož­no pôj­de o väč­šie dmy­chad­lo, kto­ré je pre väč­ší prie­mer trub­ky, resp. hadi­ce (napr. záh­rad­nej). Čas­to sa pou­ží­va tam, kde je via­cej nádr­ží. Dru­há mož­nosť je vzdu­cho­vať cez fil­ter. Nie­kto­ré fil­tre doká­žu otvo­rom vo vrch­nej čas­ti fil­tra nasá­vať cez pri­po­je­nú hadič­ku vzduch. Ja to využí­vam, a pova­žu­jem ten­to spô­sob sa lep­ší, funkč­nej­ší. Hadič­ka sa dá pri­škr­tiť pod­ľa potre­by, aby posky­to­va­la vzduch ako vám vyho­vu­je. Tak­to pris­pô­so­be­né vzdu­cho­va­nie má lep­ší efekt, pre­to­že bub­lin­ky sú vhá­ňa­né do vody vodo­rov­ne a sú men­šie ak to potre­bu­je­me. Zrej­me aj tým, že majú istú zotr­vač­nosť a malý objem, ich pre­sun na hla­di­nu a teda vypa­re­nie trvá ove­ľa dlh­šie než pri vzdu­cho­va­ní kame­ňom. Difú­zia ply­nov do vody je účin­nej­šia, pre­to­že trvá dlh­šie a pre­bie­ha na väč­šom povrchu.


Oxy­gen is a gas that we asso­cia­te with life in our minds. Plants are the pri­ma­ry sour­ce of oxy­gen. The­re is much less oxy­gen in water than in the air. The con­cen­tra­ti­on of oxy­gen in water depends on the water tem­pe­ra­tu­re. The hig­her the tem­pe­ra­tu­re in the aqu­arium, the lower the con­cen­tra­ti­on of O2. At a tem­pe­ra­tu­re of 10°C at nor­mal pre­ssu­re, the­re are about 11.3 mg of O2 dis­sol­ved in a liter of water, at a tem­pe­ra­tu­re of 25°C – 8.3 mg/​l, and at 30°C – 7.6 mg/​l. Oxy­gen enters the water not only through the acti­on of aqu­atic plants but also through dif­fu­si­on from the air, mixing, and sur­fa­ce agi­ta­ti­on. Oxy­gen is main­ly con­su­med in the aqu­arium by the decom­po­si­ti­on acti­vi­ty of mic­ro­or­ga­nisms in the sub­stra­te. If the sub­stra­te is poor­ly aera­ted, this can lead to a defi­cien­cy and dep­le­ti­on of oxy­gen for fish and plants. Oxy­gen pro­mo­tes the bre­ak­do­wn of mat­ter. Pure, 100% con­cen­tra­ted oxy­gen is toxic to the human body, so when I talk about oxy­gen in the con­text of aera­ti­on, I’m refer­ring, of cour­se, to air. Air also con­tains a lot of nit­ro­gen and CO2. Plants don’t like” oxy­gen all that much, espe­cial­ly not during the day and with suf­fi­cient supp­ly of light ener­gy. Even though aera­ti­on cau­ses sig­ni­fi­cant water move­ment, it is not bene­fi­cial for plants. On the con­tra­ry, oxy­gen would be wel­co­me for them during the night when plants absorb oxy­gen. During the day, plants absorb car­bon dioxi­de – this is the pro­cess of pho­to­synt­he­sis and the resul­ting pro­ces­ses such as the Krebs cyc­le, the C cyc­le, N cyc­le, etc. Aera­ti­on homo­ge­ni­zes the water in the aqu­arium, pro­vi­des water move­ment, and mixes indi­vi­du­al lay­ers, espe­cial­ly ver­ti­cal­ly. The amount of oxy­gen that aera­ti­on can deli­ver to the aqu­arium is rela­ti­ve­ly low – the dif­fu­si­on of gases in water is orders of mag­ni­tu­de lower than in air. It is poin­tless to cre­a­te lar­ge bubb­les; alt­hough they may agi­ta­te the water more, the amount of oxy­gen absor­bed by the water will be lower than if we pro­du­ced smal­ler bubb­les. The amount of oxy­gen absor­bed in this way depends on the sur­fa­ce area of the bubb­les, which is hig­her with smal­ler bubbles.

An airs­to­ne can have vari­ous sha­pes. It can be cylin­dri­cal, sphe­ri­cal, or elon­ga­ted, up to 105 cm long. The­re are sto­nes sha­ped like the cir­cum­fe­ren­ce of a circ­le. Simi­lar­ly to an airs­to­ne, a wood dif­fu­ser can be used, which cre­a­tes small bubb­les. Its disad­van­ta­ge is that the pores in it clo­se quick­ly. It is used more for CO2 dif­fu­si­on – for plant fer­ti­li­za­ti­on. More­over, the wood dif­fu­ser decom­po­ses and beco­mes cove­red with algae. Anot­her essen­tial way to tran­s­port oxy­gen into the water is sur­fa­ce agi­ta­ti­on, which eit­her aera­tes through the sto­ne or fil­ter. Most fil­ter usa­ge ins­truc­ti­ons recom­mend pla­cing the fil­ter so that the water out­let is at or just below the sur­fa­ce. This way, oxy­gen gets into the water. In aqu­aris­tics, air pumps are used for aera­ti­on, from which air is dri­ven through tubes eit­her to airs­to­nes or fil­ters. I use seve­ral types of air pumps of vary­ing power. The air pump should be posi­ti­oned abo­ve all water levels into which it deli­vers air to pre­vent water from ente­ring the com­pres­sor in the event of a power outa­ge. If it is not possib­le to pla­ce the com­pres­sor in this way, the tube on its way from the com­pres­sor to the aqu­arium is first led one meter abo­ve the hig­hest water level, or anot­her tech­ni­cal solu­ti­on is pro­vi­ded to pre­vent water from ente­ring, for exam­ple, I use a check val­ve. If you ever come across the term turt­le,” it might refer to a lar­ger air pump desig­ned for a lar­ger pipe or hose (e.g., gar­den). It is often used whe­re the­re are mul­tip­le tanks. Anot­her opti­on is to aera­te through the fil­ter. Some fil­ters can draw air through a con­nec­ted tube into the upper part of the fil­ter. I use this met­hod and con­si­der it bet­ter and more func­ti­onal. The tube can be adjus­ted as needed to pro­vi­de air as you like. This adap­ted aera­ti­on has a bet­ter effect becau­se the bubb­les are intro­du­ced into the water hori­zon­tal­ly and are smal­ler if needed. Pro­bab­ly also becau­se they have a cer­tain iner­tia and a small volu­me, the­ir move­ment to the sur­fa­ce and the­re­fo­re eva­po­ra­ti­on takes much lon­ger than with sto­ne aera­ti­on. Gas dif­fu­si­on into the water is more effec­ti­ve becau­se it takes lon­ger and occurs over a lar­ger sur­fa­ce area.


Sau­ers­toff ist ein Gas, das wir in unse­ren Köp­fen mit Leben ver­bin­den. Pflan­zen sind die pri­mä­re Quel­le für Sau­ers­toff. Im Was­ser gibt es viel weni­ger Sau­ers­toff als in der Luft. Die Kon­zen­tra­ti­on von Sau­ers­toff im Was­ser hängt von der Was­ser­tem­pe­ra­tur ab. Je höher die Tem­pe­ra­tur im Aqu­arium ist, des­to gerin­ger ist die Kon­zen­tra­ti­on von O2. Bei einer Tem­pe­ra­tur von 10°C bei nor­ma­lem Druck gibt es etwa 11,3 mg O2 pro Liter Was­ser, bei einer Tem­pe­ra­tur von 25°C – 8,3 mg/​l und bei 30°C – 7,6 mg/​l. Sau­ers­toff gelangt nicht nur durch die Wir­kung von Was­serpf­lan­zen ins Was­ser, son­dern auch durch Dif­fu­si­on aus der Luft, durch Ver­mis­chung und Oberf­lä­chen­be­we­gung. Sau­ers­toff wird im Aqu­arium haupt­säch­lich durch die Zer­set­zung­sak­ti­vi­tät von Mik­ro­or­ga­nis­men im Sub­strat verb­raucht. Ist das Sub­strat sch­lecht belüf­tet, kann dies zu einem Man­gel und einer Ers­chöp­fung von Sau­ers­toff für Fis­che und Pflan­zen füh­ren. Sau­ers­toff för­dert den Abbau von Mate­rie. Rei­ner, 100% kon­zen­trier­ter Sau­ers­toff ist für den men­sch­li­chen Kör­per gif­tig, daher mei­ne ich, wenn ich über Sau­ers­toff im Zusam­men­hang mit Belüf­tung spre­che, natür­lich Luft. Luft ent­hält auch viel Sticks­toff und CO2. Pflan­zen mögen” Sau­ers­toff nicht so sehr, beson­ders nicht tag­süber und bei aus­re­i­chen­der Lich­te­ner­gie. Auch wenn die Belüf­tung zu einer erheb­li­chen Was­ser­be­we­gung führt, ist dies nicht för­der­lich für Pflan­zen. Im Gegen­te­il, Sau­ers­toff wäre für sie wäh­rend der Nacht, in der Pflan­zen Sau­ers­toff auf­neh­men, will­kom­men. Tag­süber neh­men Pflan­zen Koh­len­di­oxid auf – dies ist der Pro­zess der Pho­to­synt­he­se und der daraus resul­tie­ren­den Pro­zes­se wie dem Cit­rat­zyk­lus, dem C‑Zyklus, dem N‑Zyklus usw. Belüf­tung homo­ge­ni­siert das Was­ser im Aqu­arium, sorgt für Was­ser­be­we­gung und mischt ein­zel­ne Schich­ten, ins­be­son­de­re ver­ti­kal. Die Men­ge an Sau­ers­toff, die Belüf­tung dem Aqu­arium zufüh­ren kann, ist rela­tiv gering – die Dif­fu­si­on von Gasen im Was­ser ist um Größe­nord­nun­gen gerin­ger als in der Luft. Es ist sinn­los, gro­ße Bla­sen zu erze­ugen; obwohl sie das Was­ser mehr bewe­gen kön­nen, ist die Men­ge an Sau­ers­toff, die das Was­ser auf­nimmt, gerin­ger als bei kle­i­ne­ren Bla­sen. Die Men­ge an auf die­se Wei­se auf­ge­nom­me­nem Sau­ers­toff hängt von der Oberf­lä­che der Bla­sen ab, die bei kle­i­ne­ren Bla­sen höher ist.

Ein Lufts­te­in kann vers­chie­de­ne For­men haben. Er kann zylin­drisch, kugel­för­mig oder län­glich bis zu 105 cm lang sein. Es gibt Ste­i­ne in Form des Umfangs eines Kre­i­ses. Ähn­lich wie ein Lufts­te­in kann ein Holz­dif­fu­sor ver­wen­det wer­den, der kle­i­ne Bla­sen erze­ugt. Sein Nach­te­il ist, dass sich die Poren darin schnell sch­lie­ßen. Es wird eher für die CO2-​Diffusion – zur Pflan­zen­dün­gung ver­wen­det. Außer­dem zer­setzt sich der Holz­dif­fu­sor und wird von Algen über­zo­gen. Eine wei­te­re wich­ti­ge Mög­lich­ke­it, Sau­ers­toff ins Was­ser zu tran­s­por­tie­ren, ist die Oberf­lä­chen­be­we­gung, die ent­we­der durch den Ste­in oder den Fil­ter belüf­tet. Die meis­ten Anwe­i­sun­gen zur Fil­ter­ver­wen­dung emp­feh­len, den Fil­ter so zu plat­zie­ren, dass der Was­se­rab­lauf auf oder knapp unter der Oberf­lä­che liegt. So gelangt Sau­ers­toff ins Was­ser. In der Aqu­aris­tik wer­den Luft­kom­pres­so­ren zur Belüf­tung ver­wen­det, aus denen Luft durch Sch­lä­u­che ent­we­der zu Lufts­te­i­nen oder Fil­tern gele­i­tet wird. Ich ver­wen­de meh­re­re Arten von Luft­kom­pres­so­ren unters­chied­li­cher Leis­tung. Der Luft­kom­pres­sor soll­te über allen Was­sers­tän­den plat­ziert wer­den, in die er Luft abgibt, um zu ver­hin­dern, dass Was­ser bei einem Stro­maus­fall in den Kom­pres­sor gelangt. Ist es nicht mög­lich, den Kom­pres­sor auf die­se Wei­se zu plat­zie­ren, wird das Rohr auf sei­nem Weg vom Kom­pres­sor zum Aqu­arium zunächst einen Meter über dem höchs­ten Was­sers­tand gefü­hrt, oder es wird eine ande­re tech­nis­che Lösung bere­it­ges­tellt, um das Ein­drin­gen von Was­ser zu ver­hin­dern, zum Beis­piel ver­wen­de ich ein Rücksch­lag­ven­til. Wenn Sie jemals auf den Beg­riff Schildk­röte” sto­ßen, könn­te dies sich auf eine größe­re Luft­pum­pe für ein größe­res Rohr oder einen Sch­lauch (z.B. Gar­ten) bez­ie­hen. Es wird oft dort ver­wen­det, wo es meh­re­re Tanks gibt. Eine ande­re Mög­lich­ke­it ist die Belüf­tung durch den Fil­ter. Eini­ge Fil­ter kön­nen Luft durch einen angesch­los­se­nen Sch­lauch in den obe­ren Teil des Fil­ters zie­hen. Ich ver­wen­de die­se Met­ho­de und hal­te sie für bes­ser und funk­ti­ona­ler. Der Sch­lauch kann je nach Bedarf ange­passt wer­den, um Luft zu lie­fern, wie es Ihnen gefällt. Die­se ange­pass­te Belüf­tung hat eine bes­se­re Wir­kung, weil die Bla­sen hori­zon­tal in das Was­ser ein­ge­fü­hrt wer­den und kle­i­ner sind, wenn nötig. Wahrs­che­in­lich auch, weil sie eine gewis­se Träg­he­it und ein kle­i­nes Volu­men haben, dau­ert ihre Bewe­gung zur Oberf­lä­che und damit die Ver­duns­tung viel län­ger als bei Ste­in­be­lüf­tung. Die Gas­dif­fu­si­on ins Was­ser ist effek­ti­ver, weil sie län­ger dau­ert und über eine größe­re Oberf­lä­che stattfindet.

Use Facebook to Comment on this Post

Akvaristika, Biológia

Kyslík v živote rýb – pozitíva i negatíva

Hits: 12619

Autor prís­pev­ku: Róbert Toman

Pozi­tív­ne pôso­be­nie kys­lí­ka na živé orga­niz­my je vše­obec­ne zná­me. Ryby potre­bu­jú k svoj­mu živo­tu kys­lík rov­na­ko ako sucho­zem­ské sta­vov­ce, hoci spô­sob ich dýcha­nia je úpl­ne odliš­ný. Keď­že nema­jú pľú­ca, kys­lík musí pre­ni­kať z vody do krvi pria­mo cez tka­ni­vá, kto­ré sú v pria­mom kon­tak­te s vodou, teda cez žiab­re. Kys­lík, kto­rý má difun­do­vať do krvi cez žiab­re musí byť samoz­rej­me roz­pus­te­ný, pre­to­že ryby nema­jú schop­nosť pri­jí­mať kys­lík vo for­me bub­li­niek. Odchyt rýb, tran­s­port a ich chov v zaja­tí má váž­ne meta­bo­lic­ké náro­ky v moz­gu, sva­loch, srd­ci, žiab­rach a ďal­ších tka­ni­vách. Vše­obec­ne ich nazý­va­me stres, ale fyzi­olo­gic­ká situ­ácia je omno­ho kom­pli­ko­va­nej­šia. Stres spo­je­ný s odchy­tom a vypus­te­ním rýb do iné­ho pro­stre­dia môže pris­pieť k úmr­tnos­ti rýb. Pocho­pe­nie ener­ge­tic­ké­ho meta­bo­liz­mu rýb a fak­to­rov, kto­ré ho ovplyv­ňu­jú sú dôle­ži­té pre správ­ne zaob­chá­dza­nie s ryba­mi ich ošet­re­nie po odchy­te. Pred zhod­no­te­ním rizík, kto­ré súvi­sia s kys­lí­kom vo vode a pre ich pocho­pe­nie si pri­blíž­me aspoň v krát­kos­ti fyzi­olo­gic­ké pocho­dy spo­je­né s fun­kci­ou kys­lí­ka v orga­niz­me rýb.

Ener­ge­tic­ký meta­bo­liz­mus a potre­ba kyslíka 

Ener­gia, kto­rá sa pou­ží­va na zabez­pe­če­nie všet­kých bun­ko­vých fun­kcií sa zís­ka­va z ade­no­zín­tri­fos­fá­tu (ATP). Je potreb­ný na kon­trak­cie sva­lov, vede­nie ner­vo­vých impul­zov v moz­gu, čin­nosť srd­ca, na prí­jem kys­lí­ka žiab­ra­mi atď. Ak bun­ka potre­bu­je ener­giu, roz­po­je­ním väzieb v ATP sa uvoľ­ní ener­gia. Ved­ľaj­ším pro­duk­tom tej­to reak­cie je ade­no­zín­di­fos­fát (ADP) a anor­ga­nic­ký fos­fát. V bun­ke ADP a fos­fát môžu zno­va rea­go­vať cez kom­pli­ko­va­né meta­bo­lic­ké deje a tvo­rí sa ATP. Väč­ši­na slad­ko­vod­ných rýb potre­bu­je veľ­ké množ­stvo kys­lí­ka v pro­stre­dí. Ten­to kys­lík je potreb­ný hlav­ne ako pali­vo” pre bio­che­mic­ké mecha­niz­my spo­je­né s pro­ces­mi cyk­lu ener­gie. Ener­ge­tic­ký meta­bo­liz­mus, kto­rý je spo­je­ný s kys­lí­kom je vyso­ko účin­ný a zabez­pe­ču­je trva­lé dodá­va­nie ener­gie, kto­rú potre­bu­je ryba na základ­né fyzi­olo­gic­ké fun­kcie. Ten­to meta­bo­liz­mus sa ozna­ču­je aerób­ny metabolizmus.

Nie všet­ka pro­duk­cia ener­gie vyža­du­je kys­lík. Bun­ky majú vyvi­nu­tý mecha­niz­mus udr­žia­vať dodáv­ku ener­gie počas krát­ke­ho obdo­bia, keď je hla­di­na kys­lí­ka níz­ka (hypo­xia). Ana­e­rób­ny ale­bo hypo­xic­ký ener­ge­tic­ký meta­bo­liz­mus je málo účin­ný a nie je schop­ný pro­du­ko­vať dosta­tok ener­gie pre tka­ni­vá počas dlhé­ho obdo­bia. Ryby potre­bu­jú kon­štant­ný prí­sun ener­gie. K tomu potre­bu­jú stá­le a dosta­toč­né množ­stvo kys­lí­ka. Nedos­ta­tok kys­lí­ka rých­lo zba­vu­je ryby ener­gie, kto­rú potre­bu­jú k živo­tu. Ryby sú schop­né plá­vať nepretr­ži­te na dlhé vzdia­le­nos­ti bez úna­vy v znač­nej rých­los­ti. Ten­to typ plá­va­nia ryby využí­va­jú pri nor­mál­nom plá­va­ní a na dlhé vzdia­le­nos­ti. Sva­ly, kto­ré sa na tom­to pohy­be podie­ľa­jú, využí­va­jú veľ­ké množ­stvo kys­lí­ka na syn­té­zu ener­gie. Ak majú ryby dosta­tok kys­lí­ka, nikdy sa neuna­via pri dlho­do­bom plá­va­ní. Rých­le, prud­ké a vyso­ko inten­zív­ne plá­va­nie trvá nor­mál­ne iba nie­koľ­ko sekúnd, prí­pad­ne minút a kon­čí fyzic­kým sta­vom vyčer­pa­nia. Ten­to typ plá­va­nia využí­va­jú ryby pri love, mig­rá­cii pro­ti prú­du ale­bo pri úte­ku. Ten­to typ pohy­bu úpl­ne vyčer­pá ener­ge­tic­ké záso­by. Obno­va môže trvať hodi­ny, nie­ke­dy aj dni, čo závi­sí na prí­stup­nos­ti kys­lí­ka, trva­ní rých­le­ho plá­va­nia a stup­ni vyčer­pa­nia ener­ge­tic­kých zásob. Ak sa naprí­klad ryba, kto­rá bola pri odchy­te úpl­ne zba­ve­ná ener­gie, umiest­ni do inej nádr­že, potre­bu­je množ­stvo kys­lí­ka a pokoj­né mies­to, kde by obno­vi­la záso­by ener­gie. Ak sa však umiest­ni do nádo­by, kde je málo kys­lí­ka, nedo­ká­že obno­viť ener­giu a skôr či neskôr hynie. Nie nedos­ta­tok kys­lí­ka zabí­ja rybu, ale nedos­ta­tok ener­gie a neschop­nosť obno­viť ener­ge­tic­ké záso­by. Je jas­né, že to sú pod­mien­ky, kto­ré extrém­ne stre­su­jú ryby.

Fak­to­ry ovplyv­ňu­jú­ce obno­vu energie

Spo­lu so stra­tou ener­ge­tic­kých zásob počas rých­le­ho plá­va­nia naras­tá v tka­ni­vách a krvi hla­di­na lak­tá­tu. Keď­že sa jed­ná o kyse­li­nu, pro­du­ku­je ióny vodí­ka, kto­ré zni­žu­jú pH tka­nív a dodá­va­nie ener­gie do bun­ky. Tiež zvy­šu­je vypla­vo­va­nie dôle­ži­tých meta­bo­li­tov z bun­ky, kto­ré sú potreb­né pri obno­ve ener­gie. Vylu­čo­va­nie lak­tá­tu a obno­va nor­mál­nej fun­kcie buniek môže trvať od 4 do 12 hodín. Pri tom­to pro­ce­se hrá dôle­ži­tú úlo­hu veľ­kosť tela, tep­lo­ta vody, tvrdo­sť a pH vody a dostup­nosť kyslíka.

  • Veľ­kosť tela – exis­tu­je pozi­tív­na kore­lá­cia medzi ana­e­rób­nym ener­ge­tic­kým meta­bo­liz­mom a potre­bou ener­gie. Väč­šie ryby teda potre­bu­jú viac ener­gie na rých­le plá­va­nie. To spô­so­bu­je vyš­ší výdaj ener­gie a dlh­ší čas obnovy
  • Tep­lo­ta vody – vylu­čo­va­nie lak­tá­tu a iných meta­bo­li­tov výraz­ne ovplyv­ňu­je tep­lo­ta vody. Väč­šie zme­ny tep­lo­ty výraz­ne ovplyv­ňu­jú schop­nosť rýb obno­viť ener­ge­tic­ké záso­by. Je pre­to potreb­né sa vyva­ro­vať veľ­kým zme­nám tep­lo­ty, kto­ré zni­žu­jú schop­nosť obno­vy energie.
  • Tvrdo­sť vody – zní­že­nie tvrdo­s­ti vody má dôle­ži­tý úči­nok na meta­bo­liz­mus a aci­do­bá­zic­kú rov­no­vá­hu krvi. Väč­ši­na prác sa zaobe­ra­la vply­vom na mor­ské dru­hy a nie je úpl­ne jas­né, či sú tie­to výsled­ky pre­nos­né aj na slad­ko­vod­né ryby. Keď sú slad­ko­vod­né ryby stre­so­va­né, voda pre­ni­ká cez bun­ko­vé mem­brá­ny, hlav­ne žia­bier a krv je red­šia. Toto zrie­de­nie krvi zvy­šu­je náro­ky na udr­žia­va­nie rov­no­vá­hy solí v orga­niz­me, čiže udr­žia­va­nie osmo­tic­kej rov­no­vá­hy. Viac sa dočí­ta­te nižšie.
  • pH vody – v kys­lej­šom pro­stre­dí sú ryby schop­né obno­viť ener­giu rých­lej­šie. Vyš­šie pH ten­to pro­ces výraz­ne spo­ma­ľu­je, čo je rizi­ko­vé pre dru­hy vyža­du­jú­ce vyš­šie pH, ako napr. afric­ké cich­li­dy jazier Mala­wi a Tanganika.

Regu­lá­cia osmo­tic­ké­ho tla­ku – udr­žia­va­nie rov­no­vá­hy solí stre­so­va­ných rýb

Regu­lá­cia hla­di­ny solí je zákla­dom živo­ta. Štruk­tú­ra a fun­kcia bun­ky úzko súvi­sí s vodou a látok v nej roz­pus­te­ných. Ryba pou­ží­va znač­nú ener­giu na kon­tro­lu zlo­že­nia vnút­ro­bun­ko­vých a mimo­bun­ko­vých teku­tín. U rýb táto osmo­re­gu­lá­cia spot­re­bu­je asi 2550% cel­ko­vé­ho meta­bo­lic­ké­ho výda­ja, čo je prav­de­po­dob­ne naj­viac spo­me­dzi živo­čí­chov. Mecha­niz­mus, kto­rý ryby využí­va­jú na udr­žia­va­nie rov­no­vá­hy solí je veľ­mi kom­pli­ko­va­ný a extrém­ne závis­lý na ener­gii. Pre­to­že účin­nosť ana­e­rób­ne­ho ener­ge­tic­ké­ho meta­bo­liz­mu je iba na úrov­ni 110 ener­ge­tic­ké­ho meta­bo­liz­mu v pro­stre­dí boha­tom na kys­lík, ener­ge­tic­ká potre­ba pre osmo­re­gu­lá­ciu tka­nív nie je mož­ná iba ana­e­rób­nym ener­ge­tic­kým meta­bo­liz­mom. Rých­ly pokles hla­di­ny ATP v bun­ke spô­so­bu­je spo­ma­le­nie až zasta­ve­nie fun­kcie bun­ko­vých ióno­vých púmp, kto­ré regu­lu­jú pohyb solí cez bun­ko­vú mem­brá­nu. Pre­ru­še­nie čin­nos­ti ióno­vej pum­py spô­so­bu­je stra­tu rov­no­vá­hy iónov v bun­ke a dochá­dza k rizi­ku smr­ti bun­ky a ryby.

Slad­ko­vod­né aj mor­ské ryby trva­lo čelia nut­nos­ti ióno­vej a osmo­tic­kej regu­lá­cie. Slad­ko­vod­né ryby, kto­rých kon­cen­trá­cia iónov v tka­ni­vách je omno­ho vyš­šia ako vo vode, musia regu­lo­vať prí­jem a stra­tu vody cez prie­pust­né epi­te­liál­ne tka­ni­vá a močom. Tie­to ryby pro­du­ku­jú veľ­ké množ­stvo moču, kto­ré­ho den­né množ­stvo tvo­rí 20% hmot­nos­ti tela. Oblič­ky rýb sú vyso­ko účin­né v odstra­ňo­va­ní vody z tela a sú takis­to účin­né aj v zadr­žia­va­ní solí v tele. Zatiaľ čo veľ­mi malé množ­stvo soli pre­ni­ká do moču, väč­ši­na osmo­re­gu­lač­ných dejov sa zabez­pe­ču­je žiab­ra­mi. Sodík je hlav­ný ión tka­nív. Tran­s­port sodí­ka cez bun­ko­vú mem­brá­nu je vyso­ko závis­lý na ener­gii a umož­ňu­je ho enzým Na/​K‑ATP-​áza. Ten­to enzým sa nachá­dza v bun­ko­vej mem­brá­ne a využí­va ener­giu, kto­rú dodá­va ATP na pre­nos sodí­ka jed­ným sme­rom cez bun­ko­vú mem­brá­nu. Dras­lík sa pohy­bu­je opač­ným sme­rom. Ten­to pro­ces umož­ňu­je sva­lo­vú kon­trak­ciu, posky­tu­je elek­tro­che­mic­ký gra­dient potreb­ný na čin­nosť srd­ca a umož­ňu­je pre­nos všet­kých sig­ná­lov v moz­gu a ner­voch. Väč­ši­na osmo­re­gu­lá­cie u rýb sa deje v žiab­rach a fun­gu­je nasle­dov­ne: Čpa­vok sa tvo­rí ako odpa­do­vý pro­dukt meta­bo­liz­mu rýb. Keď sú ryby v pohy­be, tvo­ria väč­šie množ­stvo čpav­ku a ten sa musí vylú­čiť z krvi. Na roz­diel od vyš­ších živo­čí­chov, ryby nevy­lu­ču­jú čpa­vok močom. Čpa­vok a väč­ši­na dusí­ka­tých odpa­do­vých látok pre­stu­pu­je cez mem­brá­nu žia­bier (asi 8090%). Čpa­vok sa vymie­ňa pri pre­cho­de cez mem­brá­nu žia­bier za sodík. Tak­to sa zni­žu­je množ­stvo čpav­ku v krvi a zvy­šu­je sa jeho kon­cen­trá­cia v bun­kách žia­bier. Naopak, sodík pre­chá­dza z buniek žia­bier do krvi. Aby sa nahra­dil sodík v bun­kách žia­bier a obno­vi­la sa rov­no­vá­ha solí, bun­ky žia­bier vylú­čia čpa­vok do vody a vyme­nia ho za sodík z vody. Podob­ným spô­so­bom sa vymie­ňa­jú chlo­ri­do­vé ióny za bikar­bo­nát. Pri dýcha­ní je ved­ľaj­ší pro­dukt CO2 a voda. Bikar­bo­nát sa tvo­rí, keď CO2 z bun­ko­vé­ho dýcha­nia rea­gu­je s vodou v bun­ke. Ryby nemô­žu, na roz­diel od sucho­zem­ských živo­čí­chov, vydých­nuť CO2 a mies­to toho sa zlu­ču­je s vodou a tvo­rí sa bikar­bo­ná­to­vý ión. Chlo­ri­do­vé ióny sa dostá­va­jú do bun­ky a bikar­bo­nát von z bun­ky do vody. Tým­to spô­so­bom sa zamie­ňa vodík za sodík, čím sa napo­má­ha kon­tro­le pH krvi.

Tie­to dva mecha­niz­my výme­ny iónov sa nazý­va­jú absor­pcia a sek­ré­cia a vysky­tu­jú sa v dvoch typoch buniek žia­bier, res­pi­rač­ných a chlo­ri­do­vých. Chlo­ri­do­vé bun­ky vylu­ču­jú soli, sú väč­šie a vyvi­nu­tej­šie u mor­ských dru­hov rýb. Res­pi­rač­né bun­ky, kto­ré sú potreb­né pre výme­nu ply­nov, odstra­ňo­va­nie dusí­ka­tých odpa­do­vých pro­duk­tov a udr­žia­va­nie aci­do­bá­zic­kej rov­no­vá­hy, sú vyvi­nu­tej­šie u slad­ko­vod­ných rýb. Sú záso­bo­va­né arte­riál­nou krvou a zabez­pe­ču­jú výme­nu sodí­ka a chlo­ri­dov za čpa­vok a bikar­bo­nát. Tie­to pro­ce­sy sú opäť vyso­ko závis­lé na prí­stup­nos­ti ener­gie. Ak nie je dosta­tok ener­gie na fun­go­va­nie ióno­vej pum­py, nemô­že dochá­dzať k ich výme­ne a voda zapla­ví” bun­ky difú­zi­ou a to spô­so­bí smrť rýb.

Dôsled­ky nedos­tat­ku kys­lí­ka v pro­ce­se osmoregulácie

Len nie­koľ­ko minút nedos­tat­ku kys­lí­ka, mem­brá­na buniek moz­gu strá­ca schop­nosť kon­tro­lo­vať rov­no­vá­hu iónov a uvoľ­ňu­jú sa neuro­trans­mi­te­ry, kto­ré urých­ľu­jú vstup váp­ni­ka do bun­ky. Zvý­še­ná hla­di­na váp­ni­ka v bun­kách spúš­ťa množ­stvo dege­ne­ra­tív­nych pro­ce­sov, kto­ré vedú k poško­de­niu ner­vo­vej sústa­vy a k smr­ti. Tie­to pro­ce­sy zahŕňa­jú poško­de­nie DNA, dôle­ži­tých bun­ko­vých pro­te­ínov a bun­ko­vej mem­brá­ny. Tvo­ria sa voľ­né radi­ká­ly a oxid dusi­tý, kto­ré poško­dzu­jú bun­ko­vé orga­ne­ly. Podob­né pro­ce­sy sa dejú aj v iných orgá­noch (pečeň, sva­ly, srd­ce a krv­né bun­ky). Ak sa dosta­ne do bun­ky váp­nik, je potreb­né veľ­ké množ­stvo ener­gie na jeho odstrá­ne­nie kal­ci­ový­mi pum­pa­mi, kto­ré vyža­du­jú ATP. Ďal­ší dôsle­dok hypo­xie je uvoľ­ňo­va­nie hor­mó­nov z hypo­fý­zy, z kto­rých u rýb pre­va­žu­je pro­lak­tín. Uvoľ­ne­nie toh­to hor­mó­nu ovplyv­ňu­je prie­pust­nosť bun­ko­vej mem­brá­ny v žiab­rach, koži, oblič­kách, čre­ve a ovplyv­ňu­je mecha­niz­mus tran­s­por­tu iónov. Jeho uvoľ­ne­nie napo­má­ha regu­lá­cii rov­no­vá­hy vody a iónov zni­žo­va­ním príj­mu vody a zadr­žia­va­ním dôle­ži­tých iónov, hlav­ne Na+ a Cl-. Tým pomá­ha udr­žia­vať rov­no­vá­hu solí v krvi a v tka­ni­vách a brá­ni nabobt­na­niu rýb vodou.

Naj­väč­šia hroz­ba pre slad­ko­vod­né ryby je stra­ta iónov difú­zi­ou do vody, skôr než vylu­čo­va­nie nad­byt­ku vody. Hoci regu­lá­cia rov­no­vá­hy vody môže mať význam, je sekun­dár­na vo vzťa­hu k zadr­žia­va­niu iónov. Pro­lak­tín zni­žu­je osmo­tic­kú prie­pust­nosť žia­bier zadr­žia­va­ním iónov a vylu­čo­va­ním vody. Zvy­šu­je tiež vylu­čo­va­nie hlie­nu žiab­ra­mi, čím napo­má­ha udr­žia­vať rov­no­vá­hu iónov a vody tým, že zabra­ňu­je pre­cho­du mole­kúl cez mem­brá­nu. U rýb, kto­ré boli stre­so­va­né chy­ta­ním, prud­kým plá­va­ním, sa z tka­nív odčer­pá­va ener­gia a trvá nie­koľ­ko hodín až dní, kým sa jej záso­by obno­via. Ana­e­rób­ny ener­ge­tic­ký meta­bo­liz­mus nie je schop­ný to zabez­pe­čiť v plnej mie­re a je potreb­né veľ­ké množ­stvo kys­lí­ka. Ak je ho nedos­ta­tok, vedie to k úhy­nu rýb. Nemu­sia však uhy­núť hneď. Rov­no­vá­ha solí sa nemô­že zabez­pe­čiť bez dostat­ku kyslíka.

Potre­ba kyslíka

Kys­lík je hlav­ným fak­to­rom, kto­rý ovplyv­ňu­je pre­ži­tie rýb v stre­se. Nie tep­lo­ta vody ani hla­di­na soli. Pred­sa však je tep­lo­ta hlav­ný uka­zo­va­teľ toho, koľ­ko kys­lí­ka vo vode je pre ryby dostup­né­ho a ako rých­lo ho budú môcť využiť. Maxi­mál­ne množ­stvo roz­pus­te­né­ho kys­lí­ka vo vode sa ozna­ču­je hla­di­na satu­rá­cie. Táto kle­sá so stú­pa­ním tep­lo­ty. Napr. pri tep­lo­te 21°C je voda nasý­te­ná kys­lí­kom pri jeho kon­cen­trá­cii 8,9 mg/​l, pri 26°C je to pri kon­cen­trá­cii 8 mg/​l a pri 32°C len 7,3 mg/​l. Pri vyš­ších tep­lo­tách sa zvy­šu­je meta­bo­liz­mus rýb a rých­lej­šie využí­va­jú aj kys­lík. Kon­cen­trá­cia kys­lí­ka pod 5 mg/​l pri 26°C môže byť rých­lo smrteľná.

Vzduch a kys­lík vo vode – môže aj ško­diť. Pri cho­ve cich­líd sa čas­to cho­va­teľ sna­ží zabez­pe­čiť maxi­mál­ne pre­vzduš­ne­nie vody veľ­mi sil­ným vzdu­cho­va­ním. Nie­kto­rí cho­va­te­lia využí­va­jú mož­nos­ti pri­sá­va­nia vzdu­chu pred vyús­te­ním vývo­du inter­né­ho ale­bo exter­né­ho fil­tra, iní pou­ží­va­jú samos­tat­né vzdu­cho­vé kom­pre­so­ry, kto­rý­mi vhá­ňa­jú vzduch do vody cez vzdu­cho­va­cie kame­ne s veľ­mi jem­ný­mi pór­mi. Oba spô­so­by vzdu­cho­va­nia sú schop­né vytvo­riť obrov­ské množ­stvo mik­ro­sko­pic­kých bub­li­niek. Veľ­kosť bub­lín kys­lí­ka ale­bo vzdu­chu môže význam­ne zme­niť ché­miu vody, stu­peň pre­no­su ply­nov a kon­cen­trá­ciu roz­pus­te­ných ply­nov. Rizi­ko poško­de­nia zdra­via a úhy­nu rýb vzni­ká naj­mä pri tran­s­por­te v uzav­re­tých nádo­bách, do kto­rých sa vhá­ňa vzduch ale­bo kys­lík pod tla­kom. Urči­té rizi­ko však vzni­ká aj pri nad­mer­nom jem­nom vzdu­cho­va­ní v akvá­riách. Mik­ro­sko­pic­ké bub­lin­ky ply­nu sa môžu pri­le­piť na žiab­re, skre­ly, kožu a oči a spô­so­bo­vať trau­mu a ply­no­vú embó­liu. Poško­de­nie žia­bier a ply­no­vá embó­lia nega­tív­ne ovplyv­ňu­jú zdra­vie rýb a pre­ží­va­teľ­nosť, obme­dzu­jú výme­nu ply­nov pri dýcha­ní a vedú k hypo­xii, zadr­žia­va­niu CO2 a res­pi­rač­nej aci­dó­ze. Čis­tý kys­lík je účin­né oxi­do­vad­lo. Mik­ro­sko­pic­ké bub­lin­ky obsa­hu­jú­ce čis­tý kys­lík sa môžu pri­chy­tiť na lís­t­ky žia­bier, vysu­šu­jú ich, dráž­dia, oxi­du­jú a spô­so­bu­jú che­mic­ké popá­le­nie jem­né­ho epi­te­liál­ne­ho tka­ni­va. Ak voda vyze­rá mlieč­ne zaka­le­ná s množ­stvom minia­túr­nych bub­lín, kto­ré sa pri­le­pu­jú na skre­ly a žiab­re ale­bo na vnú­tor­né ste­ny nádo­by, je potreb­né tie­to pod­mien­ky pova­žo­vať za poten­ciál­ne toxic­ké a vše­obec­ne nezdra­vé pre ryby. Ak je pôso­be­nie ply­nu v tom­to sta­ve dlh­šie trva­jú­ce a par­ciál­ny tlak kys­lí­ka sa pohy­bu­je oko­lo 1 atmo­sfé­ry (namies­to 0,2 atm., ako je vo vzdu­chu), šan­ca pre­ži­tia pre ryby kle­sá. Stla­če­ný vzduch je vhod­ný, ak sa dopĺňa kon­ti­nu­ál­ne v roz­me­dzí bez­peč­nej kon­cen­trá­cie kys­lí­ka, ale pôso­be­ním stla­če­né­ho vzdu­chu ale­bo dodá­va­né­ho pod vyso­kým par­ciál­nym tla­kom vo vode, môžu ryby pre­stať dýchať, čím sa zvy­šu­je kon­cen­trá­cia CO2 v ich orga­niz­me. To môže viesť k zme­nám aci­do­bá­zic­kej rov­no­vá­hy (res­pi­rač­nej aci­dó­zy) v orga­niz­me rýb a zvy­šo­vať úhyn. Čis­tý stla­če­ný kys­lík obsa­hu­je 5‑násobne vyš­ší obsah kys­lí­ka ako vzduch. Pre­to je potre­ba jeho dodá­va­nia asi 15 pri čis­tom kys­lí­ku opro­ti záso­bo­va­niu vzdu­chom. Veľ­mi malé bub­li­ny kys­lí­ka sa roz­púš­ťa­jú rých­lej­šie než väč­šie, pre­to­že majú väč­ší povrch vzhľa­dom k obje­mu, ale kaž­dá ply­no­vá bub­li­na potre­bu­je na roz­pus­te­nie vo vode dosta­toč­ný pries­tor. Ak ten­to pries­tor chý­ba ale­bo je nedos­ta­toč­ný, mik­ro­bub­li­ny môžu zostať v sus­pen­zii vo vode, pri­chy­tá­va­jú sa k povr­chom pred­me­tov vo vode ale­bo poma­ly stú­pa­jú k hladine.

Mik­ro­sko­pic­ké bub­lin­ky ply­nu sa roz­púš­ťa­jú vo vode rých­lej­šie a dodá­va­jú viac ply­nu do roz­to­ku než väč­šie bub­li­ny. Tie­to pod­mien­ky môžu pre­sy­co­vať vodu kys­lí­kom, ak množ­stvo bub­li­niek ply­nu tvo­rí hmlu” vo vode a zostá­va­jú rozp­tý­le­né (v sus­pen­zii) a kys­lík s vyso­kým tla­kom môže byť toxic­ký kvô­li tvor­be voľ­ných radi­ká­lov. Mik­ro­sko­pic­ké vzdu­cho­vé bub­lin­ky môžu tiež spô­so­biť ply­no­vú embó­liu. Arte­riál­na ply­no­vá embó­lia a emfy­zém tka­nív môžu byť reál­ne a tvo­ria nebez­pe­čen­stvo naj­mä pri tran­s­por­te živých rýb. Je pre­to potreb­né sa vyhnúť sus­pen­zii ply­no­vých bub­lín v tran­s­port­nej vode. Prob­lém arte­riál­nej ply­no­vej embó­lie počas tran­s­por­tu vzni­ká aj pre­to, že ryby nema­jú mož­nosť sa poto­piť do väč­šej hĺb­ky (ako to robia ryby vypus­te­né do jaze­ra), kde je vyš­ší tlak vody, kto­rý by roz­pus­til jem­né bub­lin­ky v obe­ho­vom sys­té­me. Dva kľú­čo­vé body zlep­šu­jú poho­du veľ­ké­ho počtu odchy­te­ných a stre­so­va­ných rýb pri transporte:

  • Zvý­šiť par­ciál­ny tlak O2 nad nasý­te­nie stla­če­ným kys­lí­kom a doda­nie dosť veľ­kých bub­lín, aby unik­li povr­chom vody. Vzduch tvo­rí naj­mä dusík a mik­ro­sko­pic­ké bub­lin­ky dusí­ka tiež môžu pri­lip­núť na žiab­re. Bub­lin­ky aké­ho­koľ­vek ply­nu pri­chy­te­né na žiab­re môžu ovplyv­niť dýcha­nie a naru­šiť zdra­vie rýb. Ak sa tran­s­por­tu­jú ryby vo vode pre­sý­te­nej bub­lin­ka­mi, vzni­ká prav­de­po­dob­nosť vzni­ku hypo­xie, hyper­kar­bie, res­pi­rač­nej aci­dó­zy, ocho­re­nia a smrti.
  • Zvý­šiť sla­nosť vody na 3 – 5 mg/​l. Soľ (sta­čí aj neiodi­do­va­ná NaCl) je vhod­ná pri tran­s­por­te rýb. V stre­se ryby strá­ca­jú ióny a toto môže byť pre ne viac stre­su­jú­ce. Ener­ge­tic­ká potre­ba tran­s­por­tu iónov cez mem­brá­ny buniek môže pred­sta­vo­vať význam­nú stra­tu ener­gie vyža­du­jú­cu ešte viac kys­lí­ka. Tran­s­port rýb v nádo­bách, kto­ré obsa­hu­jú hmlu mik­ro­sko­pic­kých bub­lín, môžu byť nebez­peč­ná pre tran­s­por­to­va­né ryby zvy­šo­va­ním mož­nos­ti one­sko­re­nej smr­ti po vypus­te­ní. Ryby tran­s­por­to­va­né v ako­by mlieč­ne zaka­le­nej vode sú stre­so­va­né, dochá­dza k ich fyzic­ké­mu poško­de­niu, zvy­šu­je sa cit­li­vosť k infek­ciám, ocho­re­niu a úhyn po vypus­te­ní po tran­s­por­te. Po vypus­te­ní rýb, kto­ré pre­ži­li prvot­ný toxic­ký vplyv kys­lí­ka, po tran­s­por­te môžu byť kvô­li poško­de­ným žiab­ram cit­li­vej­šie na rôz­ne pato­gé­ny a násled­ne sa môže vysky­to­vať zvý­še­ný úhyn počas nie­koľ­kých dní až týž­dňov po tran­s­por­te. Veľ­mi pre­vzduš­ne­ná voda nezna­me­ná pre­kys­li­če­ná. Veľ­mi pre­vzduš­ne­ná voda je čas­to pre­sý­te­ná plyn­ným dusí­kom, kto­rý môže spô­so­biť ocho­re­nie. Mik­ro­sko­pic­ké bub­lin­ky obsa­hu­jú­ce naj­mä dusík, môžu spô­so­biť emfy­zém tka­nív pri tran­s­por­te, podob­ne, ako je tomu u potápačov.

Aut­hor of the post: Róbert Toman

The posi­ti­ve impact of oxy­gen on living orga­nisms is gene­ral­ly well-​known. Fish, like ter­res­trial ver­teb­ra­tes, need oxy­gen for the­ir sur­vi­val, alt­hough the way they bre­at­he is enti­re­ly dif­fe­rent. Sin­ce they lack lungs, oxy­gen must penet­ra­te from the water into the blo­od direct­ly through tis­su­es that are in direct con­tact with the water, such as gills. Oxy­gen, which is sup­po­sed to dif­fu­se into the blo­od through the gills, must be dis­sol­ved, as fish can­not take in oxy­gen in the form of bubb­les. The cap­tu­re, tran­s­por­ta­ti­on, and cap­ti­vi­ty of fish have seri­ous meta­bo­lic demands on the brain, musc­les, heart, gills, and other tis­su­es. We com­mon­ly refer to them as stress, but the phy­si­olo­gi­cal situ­ati­on is much more com­pli­ca­ted. Stress asso­cia­ted with the cap­tu­re and rele­a­se of fish into a dif­fe­rent envi­ron­ment can con­tri­bu­te to fish mor­ta­li­ty. Unders­tan­ding the ener­gy meta­bo­lism of fish and the fac­tors that influ­en­ce it is cru­cial for the pro­per hand­ling and tre­at­ment of fish after cap­tu­re. Befo­re eva­lu­ating the risks asso­cia­ted with oxy­gen in the water and unders­tan­ding them, let’s brief­ly out­li­ne the phy­si­olo­gi­cal pro­ces­ses rela­ted to the func­ti­on of oxy­gen in the fis­h’s body.

Ener­gy Meta­bo­lism and Oxy­gen Requirement

The ener­gy used to ensu­re all cel­lu­lar func­ti­ons are per­for­med is deri­ved from ade­no­si­ne trip­hosp­ha­te (ATP). It is requ­ired for musc­le con­trac­ti­ons, trans­mis­si­on of ner­ve impul­ses in the brain, heart acti­vi­ty, and oxy­gen inta­ke through the gills, among other func­ti­ons. When a cell needs ener­gy, bre­a­king the bonds in ATP rele­a­ses ener­gy. The by-​products of this reac­ti­on are ade­no­si­ne dip­hosp­ha­te (ADP) and inor­ga­nic phosp­ha­te. In the cell, ADP and phosp­ha­te can react again through com­plex meta­bo­lic pro­ces­ses to form ATP. Most fres­hwa­ter fish requ­ire a sig­ni­fi­cant amount of oxy­gen in the­ir envi­ron­ment. This oxy­gen is needed pri­ma­ri­ly as fuel” for bio­che­mi­cal mecha­nisms asso­cia­ted with ener­gy cyc­le pro­ces­ses. The ener­gy meta­bo­lism asso­cia­ted with oxy­gen is high­ly effi­cient and ensu­res a con­ti­nu­ous supp­ly of ener­gy needed for the fis­h’s basic phy­si­olo­gi­cal func­ti­ons. This meta­bo­lism is refer­red to as aero­bic metabolism.

Not all ener­gy pro­duc­ti­on requ­ires oxy­gen. Cells have deve­lo­ped a mecha­nism to main­tain ener­gy supp­ly during short peri­ods when oxy­gen levels are low (hypo­xia). Ana­e­ro­bic or hypo­xic ener­gy meta­bo­lism is less effi­cient and can­not pro­du­ce enough ener­gy for tis­su­es over a long peri­od. Fish need a cons­tant supp­ly of ener­gy, requ­iring a con­ti­nu­ous and suf­fi­cient amount of oxy­gen. Oxy­gen defi­cien­cy quick­ly dep­ri­ves fish of the ener­gy they need to live. Fish are capab­le of swim­ming con­ti­nu­ous­ly for long dis­tan­ces wit­hout fati­gue at con­si­de­rab­le spe­ed. They use this type of swim­ming during nor­mal acti­vi­ty and for long-​distance tra­vel. The musc­les invol­ved in this move­ment uti­li­ze a lar­ge amount of oxy­gen for ener­gy synt­he­sis. If fish have enough oxy­gen, they never tire during pro­lon­ged swim­ming. Rapid, inten­se swim­ming lasts nor­mal­ly only a few seconds or minu­tes and ends in a sta­te of phy­si­cal exhaus­ti­on. Fish use this type of move­ment during hun­ting, ups­tre­am mig­ra­ti­on, or esca­pe. This type of move­ment com­ple­te­ly dep­le­tes ener­gy reser­ves. Reco­ve­ry can take hours, some­ti­mes even days, depen­ding on oxy­gen avai­la­bi­li­ty, the dura­ti­on of rapid swim­ming, and the degree of dep­le­ti­on of ener­gy reser­ves. For exam­ple, if a fish com­ple­te­ly dep­le­ted of ener­gy during cap­tu­re is pla­ced in anot­her tank, it needs a sig­ni­fi­cant amount of oxy­gen and a calm pla­ce to reple­nish ener­gy reser­ves. Howe­ver, if pla­ced in a con­tai­ner with low oxy­gen, it can­not res­to­re ener­gy and sooner or later dies. It is cle­ar that the­se are con­di­ti­ons that extre­me­ly stress fish.

Fac­tors Influ­en­cing Ener­gy Recovery

Along with the dep­le­ti­on of ener­gy reser­ves during rapid swim­ming, the levels of lac­ta­te in tis­su­es and blo­od inc­re­a­se. As lac­ta­te is an acid, it pro­du­ces hyd­ro­gen ions that lower the pH of tis­su­es and impe­de the deli­ve­ry of ener­gy to the cell. It also inc­re­a­ses the eff­lux of impor­tant meta­bo­li­tes from the cell, neces­sa­ry for ener­gy reco­ve­ry. The eli­mi­na­ti­on of lac­ta­te and the res­to­ra­ti­on of nor­mal cell func­ti­on can take from 4 to 12 hours. In this pro­cess, body size, water tem­pe­ra­tu­re, water hard­ness and pH, and oxy­gen avai­la­bi­li­ty play cru­cial roles.

  • Body Size: The­re is a posi­ti­ve cor­re­la­ti­on bet­we­en ana­e­ro­bic ener­gy meta­bo­lism and ener­gy demand. Lar­ger fish, the­re­fo­re, requ­ire more ener­gy for rapid swim­ming. This results in hig­her ener­gy expen­di­tu­re and a lon­ger reco­ve­ry time.
  • Water Tem­pe­ra­tu­re: The exc­re­ti­on of lac­ta­te and other meta­bo­li­tes is sig­ni­fi­can­tly influ­en­ced by water tem­pe­ra­tu­re. Sub­stan­tial chan­ges in tem­pe­ra­tu­re sig­ni­fi­can­tly affect the fis­h’s abi­li­ty to reple­nish ener­gy reser­ves. It is neces­sa­ry to avo­id lar­ge tem­pe­ra­tu­re fluc­tu­ati­ons, which redu­ce the abi­li­ty to reco­ver energy.
  • Water Hard­ness: Dec­re­a­sing water hard­ness has a sig­ni­fi­cant effect on meta­bo­lism and the acid-​base balan­ce of blo­od. Most stu­dies have focu­sed on the impact on mari­ne spe­cies, and it is not enti­re­ly cle­ar whet­her the­se results are trans­fe­rab­le to fres­hwa­ter fish. When fres­hwa­ter fish are stres­sed, water penet­ra­tes through cell mem­bra­nes, espe­cial­ly gills, and the blo­od beco­mes dilu­ted. This blo­od dilu­ti­on inc­re­a­ses the demands on main­tai­ning salt balan­ce in the body, i.e., main­tai­ning osmo­tic balan­ce. More infor­ma­ti­on on this is pro­vi­ded below.
  • Water pH: In an aci­dic envi­ron­ment, fish can reco­ver ener­gy more quick­ly. Hig­her pH sig­ni­fi­can­tly slo­ws down this pro­cess, which poses a risk for spe­cies requ­iring hig­her pH, such as Afri­can cich­lids from the Mala­wi and Tan­ga­ny­i­ka lakes.

Osmo­tic Pre­ssu­re Regu­la­ti­on – Main­tai­ning Salt Balan­ce in Stres­sed Fish

Regu­la­ti­on of salt levels is fun­da­men­tal to life. The struc­tu­re and func­ti­on of cells are clo­se­ly rela­ted to the water and dis­sol­ved sub­stan­ces wit­hin them. Fish expend sig­ni­fi­cant ener­gy to con­trol the com­po­si­ti­on of intra­cel­lu­lar and extra­cel­lu­lar flu­ids. In fish, osmo­re­gu­la­ti­on con­su­mes about 25 – 50% of the total meta­bo­lic expen­di­tu­re, like­ly the hig­hest among ani­mals. The mecha­nism fish use to main­tain salt balan­ce is high­ly com­plex and extre­me­ly energy-​dependent. Sin­ce the effi­cien­cy of ana­e­ro­bic ener­gy meta­bo­lism is only about 110 of the ener­gy meta­bo­lism in an oxygen-​rich envi­ron­ment, the ener­gy requ­ire­ment for tis­sue osmo­re­gu­la­ti­on is not fea­sib­le through ana­e­ro­bic ener­gy meta­bo­lism alo­ne. A rapid dec­re­a­se in ATP levels in the cell slo­ws down or stops the func­ti­on of cel­lu­lar ion pumps that regu­la­te the move­ment of salts across the cell mem­bra­ne. The inter­rup­ti­on of ion pump acti­vi­ty leads to an imba­lan­ce of ions in the cell, posing a risk of cell and fish death.

Both fres­hwa­ter and mari­ne fish cons­tan­tly face the need for ion and osmo­tic regu­la­ti­on. Fres­hwa­ter fish, with ion con­cen­tra­ti­ons in tis­su­es much hig­her than in water, must regu­la­te water inta­ke and loss through per­me­ab­le epit­he­lial tis­su­es and uri­ne. The­se fish pro­du­ce a lar­ge amount of uri­ne, with dai­ly amounts cons­ti­tu­ting 20% of body weight. Fish kid­ne­ys are high­ly effi­cient in remo­ving water from the body and are also effec­ti­ve in retai­ning salts. Whi­le very litt­le salt penet­ra­tes into the uri­ne, most osmo­re­gu­la­to­ry pro­ces­ses are faci­li­ta­ted by the gills. Sodium is the main ion in tis­su­es. The tran­s­port of sodium across the cell mem­bra­ne is high­ly depen­dent on ener­gy and is faci­li­ta­ted by the enzy­me Na/​K‑ATPase. This enzy­me is loca­ted in the cell mem­bra­ne and uses the ener­gy supp­lied by ATP to tran­s­port sodium uni­di­rec­ti­onal­ly across the cell mem­bra­ne. Potas­sium moves in the oppo­si­te direc­ti­on. This pro­cess enab­les musc­le con­trac­ti­on, pro­vi­des the elect­ro­che­mi­cal gra­dient neces­sa­ry for heart func­ti­on, and allo­ws the trans­mis­si­on of all sig­nals in the brain and ner­ves. Most osmo­re­gu­la­ti­on in fish occurs in the gills and works as fol­lo­ws: Ammo­nia is pro­du­ced as a was­te pro­duct of fish meta­bo­lism. When fish are in moti­on, a lar­ger amount of ammo­nia is pro­du­ced, and it must be exc­re­ted from the blo­od. Unli­ke hig­her ani­mals, fish do not exc­re­te ammo­nia through uri­ne. Ammo­nia and most nit­ro­ge­nous was­te sub­stan­ces pass through the gill mem­bra­ne (about 80 – 90%). As ammo­nia pas­ses through the gill mem­bra­ne, it is exchan­ged for sodium. This redu­ces the amount of ammo­nia in the blo­od and inc­re­a­ses its con­cen­tra­ti­on in gill cells. Con­ver­se­ly, sodium pas­ses from gill cells to the blo­od. To repla­ce sodium in gill cells and res­to­re salt balan­ce, gill cells exc­re­te ammo­nia into the water and exchan­ge it for sodium from the water. Simi­lar­ly, chlo­ri­de ions are exchan­ged for bicar­bo­na­te. During res­pi­ra­ti­on, the byp­ro­duct is CO2 and water. Bicar­bo­na­te is for­med when CO2 from cel­lu­lar res­pi­ra­ti­on reacts with water in the cell. Fish can­not, unli­ke ter­res­trial ani­mals, exha­le CO2 and ins­te­ad com­bi­ne it with water to form bicar­bo­na­te ions. Chlo­ri­de ions enter the cell, and bicar­bo­na­te exits the cell into the water. This exchan­ge of hyd­ro­gen for sodium helps con­trol blo­od pH.

The­se two mecha­nisms of ion exchan­ge are cal­led absorp­ti­on and sec­re­ti­on, occur­ring in two types of gill cells: res­pi­ra­to­ry and chlo­ri­de cells. Chlo­ri­de cells, res­pon­sib­le for exc­re­ting salts, are lar­ger and more deve­lo­ped in mari­ne fish spe­cies. Res­pi­ra­to­ry cells, cru­cial for gas exchan­ge, remo­val of nit­ro­ge­nous was­te pro­ducts, and main­tai­ning acid-​base balan­ce, are more deve­lo­ped in fres­hwa­ter fish. They are supp­lied by arte­rial blo­od and faci­li­ta­te the exchan­ge of sodium and chlo­ri­de for ammo­nia and bicar­bo­na­te. The­se pro­ces­ses are again high­ly depen­dent on ener­gy acces­si­bi­li­ty. If the­re is not enough ener­gy for the ion pump to func­ti­on, the exchan­ge can­not occur, and water flo­ods” the cells through dif­fu­si­on, lea­ding to the death of the fish.

Con­se­qu­en­ces of Oxy­gen Shor­ta­ge in Osmoregulation

Just a few minu­tes of oxy­gen dep­ri­va­ti­on cau­se the brain cell mem­bra­ne to lose the abi­li­ty to con­trol ion balan­ce, rele­a­sing neuro­trans­mit­ters that acce­le­ra­te cal­cium entry into the cell. Ele­va­ted cal­cium levels in cells trig­ger nume­rous dege­ne­ra­ti­ve pro­ces­ses that lead to dama­ge to the ner­vous sys­tem and death. The­se pro­ces­ses inc­lu­de DNA dama­ge, impor­tant cel­lu­lar pro­te­ins, and the cell mem­bra­ne. Free radi­cals and nit­ro­gen oxi­de are for­med, dama­ging cel­lu­lar orga­nel­les. Simi­lar pro­ces­ses occur in other organs (liver, musc­les, heart, and blo­od cells). If cal­cium enters the cell, a lar­ge amount of ener­gy is needed to remo­ve it with cal­cium pumps, which requ­ire ATP. Anot­her con­se­qu­en­ce of hypo­xia is the rele­a­se of hor­mo­nes from the pitu­ita­ry gland, with pro­lac­tin pre­vai­ling in fish. The rele­a­se of this hor­mo­ne affects the per­me­a­bi­li­ty of the cell mem­bra­ne in the gills, skin, kid­ne­ys, intes­ti­nes, influ­en­cing the ion tran­s­port mecha­nism. Its rele­a­se helps regu­la­te the balan­ce of water and ions by redu­cing water inta­ke and retai­ning impor­tant ions, main­ly Na+ and Cl-. This helps main­tain salt balan­ce in the blo­od and tis­su­es and pre­vents fish from swel­ling with water.

The big­gest thre­at to fres­hwa­ter fish is the loss of ions through dif­fu­si­on into the water rat­her than exc­re­ti­on of excess water. Alt­hough water balan­ce regu­la­ti­on may be impor­tant, it is secon­da­ry to ion reten­ti­on. Pro­lac­tin redu­ces the osmo­tic per­me­a­bi­li­ty of the gills by retai­ning ions and exc­re­ting water. It also inc­re­a­ses mucus sec­re­ti­on in the gills, hel­ping main­tain the balan­ce of ions and water by pre­ven­ting the pas­sa­ge of mole­cu­les through the mem­bra­ne. In fish stres­sed by cap­tu­re or vigo­rous swim­ming, ener­gy is dep­le­ted from the tis­su­es, and it takes seve­ral hours to days for its reser­ves to reple­nish. Ana­e­ro­bic ener­gy meta­bo­lism can­not ful­ly pro­vi­de for this, requ­iring a sub­stan­tial amount of oxy­gen. A lack of oxy­gen leads to fish mor­ta­li­ty. Howe­ver, they may not die imme­dia­te­ly. Salt balan­ce can­not be main­tai­ned wit­hout an ade­qu­ate supp­ly of oxygen.

The need for oxy­gen is a cri­ti­cal fac­tor that influ­en­ces the sur­vi­val of fish under stress, more so than water tem­pe­ra­tu­re or sali­ni­ty levels. Howe­ver, water tem­pe­ra­tu­re is a key indi­ca­tor of how much oxy­gen is avai­lab­le to fish and how quick­ly they can uti­li­ze it. The maxi­mum amount of dis­sol­ved oxy­gen in water is kno­wn as the satu­ra­ti­on level, and it dec­re­a­ses as the water tem­pe­ra­tu­re rises. For exam­ple, at a tem­pe­ra­tu­re of 21°C, water is satu­ra­ted with oxy­gen at a con­cen­tra­ti­on of 8.9 mg/​l, at 26°C, it’s satu­ra­ted at 8 mg/​l, and at 32°C, it drops to only 7.3 mg/​l. Hig­her tem­pe­ra­tu­res inc­re­a­se the meta­bo­lism of fish, lea­ding to a fas­ter uti­li­za­ti­on of oxy­gen. A con­cen­tra­ti­on of oxy­gen below 5 mg/​l at 26°C can be rapid­ly lethal.

Air and Oxy­gen in Water – Can Harm Too

In some cich­lid bre­e­ding setups, hob­by­ists often aim for maxi­mum water aera­ti­on through power­ful air pumps. Some use air inta­ke befo­re the out­let of inter­nal or exter­nal fil­ters, whi­le others employ sepa­ra­te air com­pres­sors to inject air into the water through air sto­nes with very fine pores. Both aera­ti­on met­hods can cre­a­te a vast num­ber of mic­ros­co­pic bubb­les. The size of oxy­gen or air bubb­les can sig­ni­fi­can­tly alter water che­mis­try, gas exchan­ge effi­cien­cy, and the con­cen­tra­ti­on of dis­sol­ved gases. Risks to the health and sur­vi­val of fish ari­se, espe­cial­ly during tran­s­por­ta­ti­on in clo­sed con­tai­ners whe­re air or oxy­gen is for­ced into the water under pre­ssu­re. The­re­’s also a risk with exces­si­ve and fine aera­ti­on in aqu­ariums. Mic­ros­co­pic gas bubb­les can adhe­re to gills, sca­les, skin, and eyes, cau­sing trau­ma and gas embo­lism. Dama­ged gills and gas embo­lism nega­ti­ve­ly affect fish health and sur­vi­va­bi­li­ty, limi­ting gas exchan­ge during bre­at­hing and lea­ding to hypo­xia, CO2 reten­ti­on, and res­pi­ra­to­ry aci­do­sis. Pure oxy­gen is an effec­ti­ve oxi­di­zer. Mic­ros­co­pic bubb­les con­tai­ning pure oxy­gen can attach to gill fila­ments, dry­ing them out, irri­ta­ting them, cau­sing oxi­da­ti­on, and resul­ting in che­mi­cal burns to the deli­ca­te epit­he­lial tis­sue. If the water appe­ars mil­ky with nume­rous tiny bubb­les stic­king to sca­les, gills, or the tan­k’s inner walls, the­se con­di­ti­ons should be con­si­de­red poten­tial­ly toxic and gene­ral­ly unhe­alt­hy for fish. If the acti­on of gas is pro­lon­ged and the par­tial pre­ssu­re of oxy­gen hovers around 1 atmo­sp­he­re (ins­te­ad of the nor­mal 0.2 atm. in air), the chan­ces of fish sur­vi­val dec­re­a­se. Com­pres­sed air is suitab­le if it is con­ti­nu­ous­ly supp­lied wit­hin a safe oxy­gen con­cen­tra­ti­on ran­ge. Howe­ver, the acti­on of com­pres­sed air or oxy­gen supp­lied under high pre­ssu­re into the water can cau­se fish to stop bre­at­hing, inc­re­a­sing the con­cen­tra­ti­on of CO2 in the­ir bodies. This can lead to chan­ges in the acid-​base balan­ce (res­pi­ra­to­ry aci­do­sis) in fish, rai­sing mor­ta­li­ty. Pure com­pres­sed oxy­gen con­tains five times more oxy­gen than air. The­re­fo­re, the need for its supp­ly is about 15 of that for air. Very small oxy­gen bubb­les dis­sol­ve fas­ter than lar­ger ones becau­se they have a lar­ger sur­fa­ce area rela­ti­ve to volu­me. Howe­ver, each gas bubb­le needs suf­fi­cient spa­ce to dis­sol­ve in water. If this spa­ce is lac­king or insuf­fi­cient, mic­ro­bubb­les may remain in sus­pen­si­on in the water, adhe­re to sur­fa­ces in the water, or slo­wly rise to the surface.

Mic­ros­co­pic gas bubb­les dis­sol­ve in water quick­ly, deli­ve­ring more gas into the solu­ti­on than lar­ger bubb­les. The­se con­di­ti­ons can over­sa­tu­ra­te water with oxy­gen if the quan­ti­ty of gas bubb­les cre­a­tes a mist” in the water and remains dis­per­sed (in sus­pen­si­on). High-​pressure oxy­gen can be toxic due to the for­ma­ti­on of free radi­cals. Mic­ros­co­pic oxy­gen bubb­les can also cau­se gas embo­lism. Arte­rial gas embo­lism and tis­sue emp­hy­se­ma can be real dan­gers, espe­cial­ly during the tran­s­port of live fish. It is neces­sa­ry to avo­id the sus­pen­si­on of gas bubb­les in tran­s­port water. The prob­lem of arte­rial gas embo­lism during tran­s­port ari­ses becau­se fish do not have the oppor­tu­ni­ty to sub­mer­ge into dee­per waters (as fish rele­a­sed into a lake might), whe­re the water pre­ssu­re is hig­her, hel­ping to dis­sol­ve fine bubb­les in the cir­cu­la­to­ry sys­tem. Two key points impro­ve the well-​being of a lar­ge num­ber of caught and stres­sed fish during transport:

  • Inc­re­a­sing the Par­tial Pre­ssu­re of O2 Abo­ve Satu­ra­ti­on with Com­pres­sed Oxy­gen and Supp­ly­ing Suf­fi­cien­tly Lar­ge Bubb­les to Esca­pe the Water Sur­fa­ce. Air main­ly con­sists of nit­ro­gen, and mic­ros­co­pic nit­ro­gen bubb­les can also adhe­re to the gills. Bubb­les of any gas atta­ched to the gills can affect bre­at­hing and dis­rupt the health of fish. If fish are tran­s­por­ted in water over­sa­tu­ra­ted with bubb­les, the­re is a like­li­ho­od of hypo­xia, hyper­car­bia, res­pi­ra­to­ry aci­do­sis, dise­a­ses, and death.
  • Inc­re­a­sing the Sali­ni­ty of Water to 3 – 5 mg/​l. Salt (non-​iodized NaCl is suf­fi­cient) is suitab­le for fish tran­s­port. In stress, fish lose ions, which can be more stress­ful for them. The ener­gy requ­ired for ion tran­s­port through cell mem­bra­nes can repre­sent a sig­ni­fi­cant loss of ener­gy, requ­iring even more oxy­gen. Tran­s­por­ting fish in con­tai­ners con­tai­ning a mist of mic­ros­co­pic bubb­les can be dan­ge­rous for tran­s­por­ted fish, inc­re­a­sing the like­li­ho­od of dela­y­ed mor­ta­li­ty after rele­a­se. Fish tran­s­por­ted in water that appe­ars mil­ky and con­tains mic­ro­bubb­les are stres­sed, expe­rien­ce phy­si­cal dama­ge, and have inc­re­a­sed sus­cep­ti­bi­li­ty to infec­ti­ons, ill­nes­ses, and post-​transport mortality.

After the rele­a­se of fish that sur­vi­ved the ini­tial toxic effects of oxy­gen during tran­s­port, they may be more sen­si­ti­ve to vari­ous pat­ho­gens. As a result, inc­re­a­sed mor­ta­li­ty may occur in the days to weeks fol­lo­wing tran­s­port. Very aera­ted water does not mean oxy­ge­na­ted water. High­ly aera­ted water is often over­sa­tu­ra­ted with gase­ous nit­ro­gen, which can cau­se ill­ness. Mic­ros­co­pic bubb­les con­tai­ning main­ly nit­ro­gen can cau­se tis­sue emp­hy­se­ma during tran­s­port, simi­lar to what hap­pens to divers.


Lite­ra­tú­ra

Cech, J.J. Jr., Cast­le­ber­ry, D.T., Hop­kins, T.E. 1994. Tem­pe­ra­tu­re and CO2 effects on blo­od O2 equ­ilib­ria in squ­awfish, Pty­cho­che­i­lus ore­go­nen­sis. In: Can. J. Fish. Aqu­at. Sci., 51, 1994, 13 – 19.
Cech, J.J. Jr., Cast­le­ber­ry, D.T., Hop­kins, T.E., Peter­sen, J.H. 1994. Nort­hern squ­awfish, Pty­cho­che­i­lus ore­go­nen­sis, O2 con­sump­ti­on and res­pi­ra­ti­on model: effects of tem­pe­ra­tu­re and body size. In: Can. J. Fish. Aqu­at. Sci., 51, 1994, 8 – 12.
Croc­ker, C.E., Cech, J.J. Jr. 1998. Effects of hyper­cap­nia on blood-​gas and acid-​base sta­tus in the whi­te stur­ge­on, Aci­pen­ser trans­mon­ta­nus. In: J. Comp. Phy­si­ol., B168, 1998, 50 – 60.
Croc­ker, C.E., Cech, J.J. Jr. 1997. Effects of envi­ron­men­tal hypo­xia on oxy­gen con­sump­ti­on rate and swim­ming acti­vi­ty in juve­ni­le whi­te stur­ge­on, Aci­pen­ser trans­mon­ta­nus, in rela­ti­on to tem­pe­ra­tu­re and life inter­vals. In: Env. Biol. Fish., 50, 1997, 383 – 389.
Croc­ker, C.E., Far­rell, A.P., Gam­perl, A.K., Cech, J.J. Jr. 2000. Car­di­ores­pi­ra­to­ry res­pon­ses of whi­te stur­ge­on to envi­ron­men­tal hyper­cap­nia. In: Amer. J. Phy­si­ol. Regul. Integr. Comp. Phy­si­ol., 279, 2000, 617 – 628.
Fer­gu­son, R.A, Kief­fer, J.D., Tufts, B.L. 1993. The effects of body size on the acid-​base and meta­bo­lic sta­tus in the whi­te musc­le of rain­bow trout befo­re and after exhaus­ti­ve exer­ci­se. In: J. Exp. Biol., 180, 1993, 195 – 207.
Hyl­land, P., Nils­son, G.E., Johans­son, D. 1995. Ano­xic brain fai­lu­re in an ectot­her­mic ver­teb­ra­te: rele­a­se of ami­no acids and K+ in rain­bow trout tha­la­mus. In: Am. J. Phy­si­ol., 269, 1995, 1077 – 1084.
Kief­fer, J.D., Cur­rie, S., Tufts, B.L. 1994. Effects of envi­ron­men­tal tem­pe­ra­tu­re on the meta­bo­lic and acid-​base res­pon­ses on rain­bow trout to exhaus­ti­ve exer­ci­se. In: J. Exp. Biol., 194, 1994, 299 – 317.
Krum­schna­bel, G., Sch­warz­baum, P.J., Lisch, J., Bia­si, C., Wei­ser, W. 2000. Oxygen-​dependent ener­ge­tics of anoxia-​intolerant hepa­to­cy­tes. In: J. Mol. Biol., 203, 2000, 951 – 959.
Laiz-​Carrion, R., Sangiao-​Alvarellos, S., Guz­man, J.M., Mar­tin, M.P., Migu­ez, J.M., Soen­gas, J.L., Man­ce­ra, J.M. 2002. Ener­gy meta­bo­lism in fish tis­su­es rela­ed to osmo­re­gu­la­ti­on and cor­ti­sol acti­on: Fish gro­wth and meta­bo­lism. Envi­ron­men­tal, nut­ri­ti­onal and hor­mo­nal regu­la­ti­on. In: Fish Phy­si­ol. Bio­chem., 27, 2002, 179 – 188.
Mac­Cor­mack, T.J., Drie­dzic, W.R. 2002. Mito­chon­drial ATP-​sensitive K+ chan­nels influ­en­ce for­ce deve­lop­ment and ano­xic con­trac­ti­li­ty in a flat­fish, yel­lo­wtail floun­der Liman­da fer­ru­gi­nea, but not Atlan­tic cod Gadus mor­hua heart. In: J. Exp. Biol., 205, 2002, 1411 – 1418.
Man­zon, L.A. 2002. The role of pro­lac­tin in fish osmo­re­gu­la­ti­on: a review. In: : Gen. Com­par. Endoc­rin., 125, 2002, 291 – 310.
Mil­li­gan, C.L. 1996. Meta­bo­lic reco­ve­ry from exhaus­ti­ve exer­ci­se in rain­bow trout: Review. In: Comp. Bio­chem. Physiol.,113A, 1996, 51 – 60.
Mor­gan, J.D., Iwa­ma, G.K. 1999. Ener­gy cost of NaCl tran­s­port in iso­la­ted gills of cutth­ro­at trout. In: Am. J. Phy­si­ol., 277, 1999, 631 – 639.
Nils­son, G.E., Perez-​Pinzon, M., Dim­berg, K., Win­berg, S. 1993. Brain sen­si­ti­vi­ty to ano­xia in fish as ref­lec­ted by chan­ges in extra­cel­lu­lar potassium-​ion acti­vi­ty. In: Am. J. Phy­si­ol., 264, 1993, 250 – 253.

Use Facebook to Comment on this Post

Akvaristika, Technika

Filtrácia

Hits: 24602

Fil­tro­va­nie akvá­ria je prak­tic­ky nevy­hnut­né. Zabez­pe­ču­je rov­no­mer­né roz­miest­ne­nie pozi­tív­nych aj nega­tív­nych zlo­žiek vody v nádr­ži a fil­trá­ciu vody cez fil­trač­né hmo­ty – zadr­žia­va­nie nečis­tôt, prí­pad­ne ich trans­for­má­cia. Uva­žo­vať o pros­pe­ru­jú­com akvá­riu bez fil­tra sa dá iba v nádr­žiach úzko zame­ra­ných na rast­li­ny. Ako fil­trač­ná hmo­ta sa pou­ží­va naj­mä tzv. bio­mo­li­tan – ide o lát­ku blíz­ku moli­ta­nu, kto­ré však neob­sa­hu­je feno­ly. Zväč­ša je vyro­be­ný na báze poly­ure­tá­nu. Fil­tro­vať sa dá aj cez kom­pre­sor a malý oby­čaj­ný mecha­nic­ký moli­ta­no­vý fil­ter. Hlav­ne do ele­men­tiek a malých nádr­ží sa pou­ží­va­jú fil­tre, kto­ré sú čas­to ozna­čo­va­né ako ele­ment­ko­vé fil­tre. Ak je taký­to fil­ter veľ­mi zaškr­te­ný ven­ti­lom, v akva­ris­tic­kej pra­xi je zau­ží­va­ný názov prek­vap­ká­va­cí fil­ter. Taký­to fil­ter, len mini­mál­ne ženie vodu, čo však pre čerstvo vylia­hnu­tý poter, prí­pad­ne vyví­ja­jú­ce sa ikry úpl­ne posta­ču­je. Fil­tre sú buď von­kaj­šie ale­bo vnú­tor­né. Roz­diel je v tom, že hlav­ná časť von­kaj­šie­ho fil­tra je umiest­ne­ná mimo akvá­ria, čo nesie zo sebou množ­stvo výhod. Je však drah­ší ako vnú­tor­ný fil­ter.

Pre jazier­ka sa pou­ží­va­jú špe­ciál­ne fil­tre, pod­ľa toho ako sil­né majú byť, či budú ponor­né, či budú vodu tla­čiť doho­ra, ale­bo dodo­la. Čas­to sa naj­mä v prí­pa­de cho­va­te­ľov, prí­pad­ne v obcho­doch – akva­ris­ti­kách stret­núť s rie­še­ním, kedy je na obje­mo­vo malé čer­pad­lo nasa­de­ný jed­no­du­cho moli­tan bez aké­ho­koľ­vek oba­lu. Tre­ba si uve­do­miť, že dôle­ži­tej­šia úlo­ha fil­trá­cie sa deje vnút­ri moli­ta­nu – úlo­ha mecha­nic­ké­ho fil­tro­va­nia je dru­ho­ra­dá. Je samoz­rej­me mož­ná aj ich kom­bi­ná­cia, prí­pad­ne pris­pô­so­be­nia von­kaj­šie­ho a vnú­tor­né­ho fil­tra. Za bež­ných okol­nos­tí vnú­tor­ný fil­ter fun­gu­je ako oxi­do­vad­lo. Na fil­trač­ných hmo­tách sa zachy­tá­va­jú okrem iné­ho všet­ky živi­ny, a per­fekt­ným požie­ra­čom žele­za – Fe je prá­ve vnú­tor­ných fil­ter. Tomu­to zabra­ňu­je pou­ži­tie orga­nic­kých kom­ple­xov, kto­ré sú schop­né Fe via­zať a tak­to posky­to­vať rast­li­nám – a to napr. roz­kla­dom lís­tia (naj­lep­šie sta­ré­ho), roz­kla­dom dre­va. Vnú­tor­ný fil­ter tre­ba čis­tiť nie­len z este­tic­ké­ho, ale naj­mä z fyzi­olo­gic­ké­ho dôvo­du. Ak by sme tak neuči­ni­li, roz­klad­né pro­ce­sy by v ňom do takej mie­ry spot­re­bú­va­li kys­lík, že by to ohro­zo­va­lo exis­ten­ciu rýb v akvá­riu. Ako čas­to, to však už závi­sí od cha­rak­te­ru našej osád­ky, či ryby vylu­ču­jú veľ­ké množ­stvo exkre­men­tov, ako tie­to doká­žu spra­co­vať rast­li­ny, koľ­ko kŕmi­me, ale dá sa pove­dať, že rad­šej skôr ako neskoro.

Výkon fil­tra je váž­na otáz­ka pre akva­ris­tu. Asi neexis­tu­je neja­ký vše­moc­ný recept, pod­ľa kto­ré­ho by sme sa moh­li ria­diť. Fil­tre v ponu­kách špe­cia­li­zo­va­ných obcho­dov majú oby­čaj­ne na sebe uve­de­ný odpo­rú­ča­ný objem nádr­že, pre kto­rý sú urče­né. Pre osád­ku nároč­nú na objem fil­tra odpo­rú­čam si zaob­sta­rať fil­ter s prie­to­kom viac ako dva krát pre­vy­šu­jú­cim objem nádr­že, naopak pre akvá­ri­um s rast­li­na­mi odpo­rú­čam fil­ter s prie­to­kom men­ším ako objem nádr­že. Pre bež­né spo­lo­čen­ské akvá­ri­um bude zrej­me opti­mum fil­ter schop­ný pre­čer­pať zhru­ba 1.5 náso­bok nádr­že. Pre rast­lin­né nádr­že pri dodr­ža­ní správ­ne­ho kŕme­nia odpo­rú­čam výkon niž­ší ako 0.5 náso­bok nádr­že – poma­ly tečú­ci fil­ter. Pokiaľ sa roz­hod­ne­te pre von­kaj­ší fil­ter, musí­te rátať s väč­šou inves­tí­ci­ou. Také­to rie­še­nie je však vše­obec­ne lep­šie. Aj pre ryby, aj pre rast­li­ny, aj pre jeho údrž­bu. Za urči­tých okol­nos­tí sa dá uva­žo­vať o jeho bio­lo­gic­kej pova­he, pre­to sa nie­ke­dy v tej­to súvis­los­ti môže­me stret­núť s poj­mom bio­lo­gic­ký fil­ter. Všet­ko závi­sí od rie­še­nia a pohľa­du na vec. Väč­šia časť von­kaj­šie­ho fil­tra je pri jeho pou­ži­tí mimo nádr­že, na to nemož­no zabud­núť – je potreb­ný preň pries­tor. Che­mic­kú a fyzi­kál­nu fil­trá­ciu akých­koľ­vek fil­trov doká­že zabez­pe­čiť raše­li­na, hne­dé uhlie, drve­ný vápe­nec, mra­mor, jel­šo­vé šiš­ky, aktív­ne uhlie, ión­to­me­ni­če, pie­sok obo­ha­te­ný o soľ, prí­pad­ne jed­lú sóda, zeolit. Bio­lo­gic­kú fil­trá­ciu zabez­pe­čí napr. už spo­mí­na­ný moli­tan, kera­mic­ký mate­riál, láva, tuf, neja­ký mate­riál s veľ­kým povr­chom. Ja pou­ží­vam naj­rad­šej Power­he­a­do­vé hla­vi­ce, ale­bo nie­čo podob­né a bio­mo­li­tan, kto­rý si nare­žem sám. V nie­kto­rých nádr­žiach pou­ží­vam poma­ly tečú­ci fil­ter. Stá­va sa občas, že do nádr­že potre­bu­je­te dostať viac vzdu­chu. Odpo­rú­čam do čas­ti na to urče­nej na vrchu fil­tra pri­po­jiť hadič­ku tak, že na kon­ci hadič­ky ju zaškr­tí­te pod­ľa potre­by. Vzduch totiž potom ide účel­nej­šie – sil­nej­ším tla­kom a vhá­ňa­jú­ci plyn je zlo­že­ný z men­ších čas­tí. Prí­liš sil­né vzdu­cho­va­nie nie je vhod­né.


Fil­te­ring the aqu­arium is prac­ti­cal­ly essen­tial. It ensu­res the even dis­tri­bu­ti­on of both posi­ti­ve and nega­ti­ve com­po­nents in the tank water and the fil­tra­ti­on of water through fil­ter media — cap­tu­ring impu­ri­ties and possib­ly trans­for­ming them. Con­tem­pla­ting a thri­ving aqu­arium wit­hout a fil­ter is only possib­le in tanks spe­ci­fi­cal­ly focu­sed on plants. The most com­mon­ly used fil­ter media is cal­led bio­mo­li­tan, which is a mate­rial simi­lar to foam but does not con­tain phe­nols. It is usu­al­ly made based on poly­uret­ha­ne. Fil­tra­ti­on can also be done through a com­pres­sor and a small, regu­lar mecha­ni­cal foam fil­ter. Espe­cial­ly in small tanks and nano aqu­ariums, fil­ters often refer­red to as com­pact fil­ters are com­mon­ly used. When such a fil­ter is very res­tric­ted by a val­ve, it is com­mon­ly refer­red to as a drip fil­ter in aqu­arium prac­ti­ce. This type of fil­ter only mini­mal­ly pro­pels water, which, howe­ver, is suf­fi­cient for fresh­ly hat­ched fry or deve­lo­ping eggs. Fil­ters can be eit­her exter­nal or inter­nal. The dif­fe­ren­ce is that the main part of an exter­nal fil­ter is loca­ted out­si­de the aqu­arium, which comes with many advan­ta­ges. Howe­ver, it is more expen­si­ve than an inter­nal filter.

For ponds, spe­cial fil­ters are used depen­ding on how strong they should be, whet­her they will be sub­mer­sib­le or push water upwards or down­wards. Often, espe­cial­ly in the case of bre­e­ders or in sto­res spe­cia­li­zing in aqu­ariums, you can encoun­ter a solu­ti­on whe­re a small pump is sim­ply fit­ted with foam wit­hout any casing. It is essen­tial to rea­li­ze that the more impor­tant func­ti­on of fil­tra­ti­on occurs insi­de the foam — mecha­ni­cal fil­tra­ti­on is secon­da­ry. It is, of cour­se, possib­le to com­bi­ne them or adapt exter­nal and inter­nal fil­ters. Under nor­mal cir­cum­stan­ces, an inter­nal fil­ter acts as an oxi­di­zer. Besi­des other sub­stan­ces, all nut­rients are trap­ped on the fil­ter media, and inter­nal fil­ters are excel­lent iron (Fe) con­su­mers. The use of orga­nic com­ple­xes that can bind iron, such as the decay of lea­ves (pre­fe­rab­ly old ones) or the decay of wood, pre­vents this. The inter­nal fil­ter needs to be cle­a­ned not only for aest­he­tic but main­ly phy­si­olo­gi­cal rea­sons. If we did not do so, decom­po­si­ti­on pro­ces­ses in it would con­su­me oxy­gen to such an extent that it would endan­ger the exis­ten­ce of fish in the aqu­arium. Howe­ver, how often this needs to be done depends on the natu­re of our popu­la­ti­on, whet­her fish exc­re­te a lar­ge amount of was­te, how well plants can pro­cess them, how much we feed, but it can be said that sooner rat­her than later.

The fil­te­r’s per­for­man­ce is a seri­ous mat­ter for the aqu­arium ent­hu­siast. The­re is pro­bab­ly no all-​encompassing reci­pe to fol­low. Fil­ters in the offe­rings of spe­cia­li­zed sto­res usu­al­ly have the recom­men­ded tank volu­me for which they are inten­ded. For a popu­la­ti­on deman­ding in fil­ter volu­me, I recom­mend get­ting a fil­ter with a flow rate exce­e­ding twi­ce the tank volu­me. On the con­tra­ry, for a plan­ted aqu­arium, I recom­mend a fil­ter with a flow rate smal­ler than the tank volu­me. For a typi­cal com­mu­ni­ty aqu­arium, the opti­mum fil­ter is pro­bab­ly capab­le of cir­cu­la­ting about 1.5 times the tank volu­me. For plan­ted tanks with pro­per fee­ding, I recom­mend a per­for­man­ce lower than 0.5 times the tank volu­me — a slow-​flow fil­ter. If you deci­de on an exter­nal fil­ter, you must count on a hig­her inves­tment. Howe­ver, such a solu­ti­on is gene­ral­ly bet­ter — for fish, for plants, for its main­te­nan­ce. Under cer­tain cir­cum­stan­ces, its bio­lo­gi­cal natu­re can be con­si­de­red, so we may some­ti­mes come across the term bio­lo­gi­cal fil­ter in this con­text. Eve­ryt­hing depends on the solu­ti­on and per­spec­ti­ve. A sig­ni­fi­cant part of the exter­nal fil­ter is used out­si­de the tank when it is used — spa­ce is requ­ired for it. Che­mi­cal and phy­si­cal fil­tra­ti­on of any fil­ters can be pro­vi­ded by peat, bro­wn coal, crus­hed limes­to­ne, marb­le, spru­ce cones, acti­va­ted char­co­al, ion exchan­gers, salt-​enriched sand, or baking soda. Bio­lo­gi­cal fil­tra­ti­on can be pro­vi­ded by mate­rials such as the afo­re­men­ti­oned foam, cera­mic mate­rial, lava, tuff, or a mate­rial with a lar­ge sur­fa­ce area. I pre­fer to use Power­he­ad heads or somet­hing simi­lar and bio­mo­li­tan, which I cut myself. In some tanks, I use a slow-​flow fil­ter. It hap­pens occa­si­onal­ly that you need to get more air into the tank. I recom­mend con­nec­ting a hose to the part desig­na­ted for it on the top of the fil­ter and regu­la­ting it as needed at the end of the hose. The air then flo­ws more effi­cien­tly — under hig­her pre­ssu­re, and the intro­du­ced gas is com­po­sed of smal­ler par­tic­les. Exces­si­ve aera­ti­on is not suitable.


Das Fil­tern des Aqu­ariums ist prak­tisch uner­läss­lich. Es gewähr­le­is­tet eine gle­ich­mä­ßi­ge Ver­te­i­lung sowohl posi­ti­ver als auch nega­ti­ver Bes­tand­te­i­le im Tank­was­ser und die Fil­tra­ti­on des Was­sers durch Fil­ter­me­dien – Auf­nah­me von Verun­re­i­ni­gun­gen und mög­li­cher­we­i­se deren Umwand­lung. Über ein blühen­des Aqu­arium ohne Fil­ter nach­zu­den­ken, ist nur in Bec­ken mög­lich, die spe­ziell auf Pflan­zen aus­ge­rich­tet sind. Als Fil­ter­me­dium wird haupt­säch­lich soge­nann­tes Bio­mo­li­tan ver­wen­det, ein Mate­rial ähn­lich Schaum­stoff, das jedoch kei­ne Phe­no­le ent­hält. Es wird in der Regel auf Poly­uret­han­ba­sis her­ges­tellt. Die Fil­tra­ti­on kann auch durch einen Kom­pres­sor und einen kle­i­nen, her­kömm­li­chen mecha­nis­chen Schaum­stoff­fil­ter erfol­gen. Ins­be­son­de­re in kle­i­nen Tanks und Nano-​Aquarien wer­den oft Fil­ter ver­wen­det, die oft als Kom­pakt­fil­ter bez­e­ich­net wer­den. Wenn ein sol­cher Fil­ter durch ein Ven­til sehr ein­gesch­ränkt ist, wird er in der Aqu­aris­tik oft als Tropf­fil­ter bez­e­ich­net. Die­se Art von Fil­ter tre­ibt das Was­ser nur mini­mal an, was jedoch für frisch gesch­lüpf­te Fis­che oder sich ent­wic­keln­de Eier aus­re­icht. Fil­ter kön­nen ent­we­der extern oder intern sein. Der Unters­chied bes­teht darin, dass der Haupt­te­il eines exter­nen Fil­ters außer­halb des Aqu­ariums plat­ziert ist, was vie­le Vor­te­i­le mit sich bringt. Es ist jedoch teurer als ein inter­ner Filter.

Für Tei­che wer­den spe­ziel­le Fil­ter ver­wen­det, je nach­dem, wie stark sie sein sol­len, ob sie ein­ge­taucht wer­den oder das Was­ser nach oben oder unten drüc­ken. Oft trifft man, ins­be­son­de­re bei Züch­tern oder in auf Aqu­arien spe­zia­li­sier­ten Ges­chäf­ten, auf eine Lösung, bei der ein­fach eine kle­i­ne Pum­pe mit Schaum­stoff ohne Gehä­u­se aus­ges­tat­tet ist. Es ist wich­tig zu erken­nen, dass die wich­ti­ge­re Funk­ti­on der Fil­tra­ti­on im Inne­ren des Schaum­stoffs erfolgt – mecha­nis­che Fil­tra­ti­on ist sekun­där. Es ist natür­lich mög­lich, bei­des zu kom­bi­nie­ren oder exter­ne und inter­ne Fil­ter anzu­pas­sen. Unter nor­ma­len Umstän­den wir­kt ein inter­ner Fil­ter als Oxi­da­ti­ons­mit­tel. Neben ande­ren Sub­stan­zen wer­den auf den Fil­ter­me­dien alle Nährs­tof­fe abge­fan­gen, und inter­ne Fil­ter sind aus­ge­ze­ich­ne­te Verb­rau­cher von Eisen (Fe). Dies wird durch die Ver­wen­dung von orga­nis­chen Kom­ple­xen ver­hin­dert, die in der Lage sind, Eisen zu bin­den, z. B. durch den Abbau von Blät­tern (am bes­ten von alten) oder den Abbau von Holz. Der inter­ne Fil­ter muss nicht nur aus äst­he­tis­chen, son­dern vor allem aus phy­si­olo­gis­chen Grün­den gere­i­nigt wer­den. Wenn wir dies nicht tun wür­den, wür­den die Zer­set­zungs­pro­zes­se darin Sau­ers­toff in einem Maße verb­rau­chen, das die Exis­tenz von Fis­chen im Aqu­arium gefä­hr­den wür­de. Wie oft dies getan wer­den muss, hängt jedoch von der Art unse­rer Bevöl­ke­rung ab, ob Fis­che eine gro­ße Men­ge Abfall auss­che­i­den, wie gut Pflan­zen sie verar­be­i­ten kön­nen, wie viel wir füt­tern, aber man kann sagen, eher früher als später.

Die Leis­tung des Fil­ters ist eine ernst­haf­te Ange­le­gen­he­it für den Aquarium-​Enthusiasten. Es gibt wahrs­che­in­lich kein allum­fas­sen­des Rezept, dem wir fol­gen kön­nen. Fil­ter in den Ange­bo­ten spe­zia­li­sier­ter Ges­chäf­te haben in der Regel das emp­foh­le­ne Tan­kvo­lu­men, für das sie gedacht sind, auf­ged­ruc­kt. Für eine in der Fil­ter­le­is­tung ans­pruchs­vol­le Besat­zung emp­feh­le ich einen Fil­ter mit einer Durchf­luss­ra­te von mehr als dem Zwe­i­fa­chen des Tan­kvo­lu­mens. Im Gegen­te­il, für ein bepf­lanz­tes Aqu­arium emp­feh­le ich einen Fil­ter mit einer Durchf­luss­ra­te kle­i­ner als dem Tan­kvo­lu­men. Für ein typis­ches Geme­in­schaft­sa­qu­arium ist der opti­ma­le Fil­ter wahrs­che­in­lich in der Lage, etwa 1,5‑mal das Tan­kvo­lu­men zu zir­ku­lie­ren. Für bepf­lanz­te Tanks mit rich­ti­ger Füt­te­rung emp­feh­le ich eine Leis­tung von weni­ger als 0,5‑mal das Tan­kvo­lu­men – ein lang­sam flie­ßen­der Fil­ter. Wenn Sie sich für einen exter­nen Fil­ter ents­che­i­den, müs­sen Sie mit einer höhe­ren Inves­ti­ti­on rech­nen. Eine sol­che Lösung ist jedoch im All­ge­me­i­nen bes­ser – für Fis­che, für Pflan­zen, für sei­ne War­tung. Unter bes­timm­ten Umstän­den kann auch sei­ne bio­lo­gis­che Natur in Bet­racht gezo­gen wer­den, daher kön­nen wir manch­mal auf den Beg­riff bio­lo­gis­cher Fil­ter in die­sem Zusam­men­hang sto­ßen. Alles hängt von der Lösung und Per­spek­ti­ve ab. Ein erheb­li­cher Teil des exter­nen Fil­ters wird ver­wen­det, wenn er ver­wen­det wird – Platz ist dafür erfor­der­lich. Che­mis­che und phy­si­ka­lis­che Fil­tra­ti­on aller Fil­ter kön­nen durch Torf, Braun­koh­le, zerk­le­i­ner­ten Kalks­te­in, Mar­mor, Fich­ten­zap­fen, Aktiv­koh­le, Ione­naus­taus­cher, sal­zan­ge­re­i­cher­tem Sand oder Back­pul­ver erfol­gen. Die bio­lo­gis­che Fil­tra­ti­on kann durch Mate­ria­lien wie den bere­its erwähn­ten Schaum­stoff, kera­mis­ches Mate­rial, Lava, Tuff oder ein Mate­rial mit gro­ßer Oberf­lä­che erfol­gen. Ich bevor­zu­ge die Ver­wen­dung von Powerhead-​Köpfen oder etwas Ähn­li­chem und Bio­mo­li­tan, das ich selbst zuschne­i­de. In eini­gen Tanks ver­wen­de ich einen lang­sam flie­ßen­den Fil­ter. Es kommt gele­gen­tlich vor, dass Sie mehr Luft in den Tank brin­gen müs­sen. Ich emp­feh­le, einen Sch­lauch mit dem dafür vor­ge­se­he­nen Teil oben am Fil­ter zu ver­bin­den und ihn am Ende des Sch­lauchs bei Bedarf zu regu­lie­ren. Die Luft strömt dann effi­zien­ter – unter höhe­rem Druck, und das ein­geb­rach­te Gas bes­teht aus kle­i­ne­ren Par­ti­keln. Über­mä­ßi­ge Belüf­tung ist nicht geeignet.

Use Facebook to Comment on this Post