Akvaristika, Údržba

Transport a nakladanie s rastlinami a rybami

Hits: 9224

Pri kúpe a aj rast­lín by sme si mali najprv poriad­ne poob­ze­rať. Ryby musia vyze­rať zdra­vo. Nepri­ro­dze­ne zele­ná, mod­rá, prí­pad­ne žltá voda je prav­de­po­dob­ne zna­kom momen­tál­nej ale­bo pred­chá­dza­jú­cej lieč­by. Rov­na­ko prá­ve pou­ží­va­ná UV lam­pa musí v nás vyvo­lať otáz­ky. V prí­pa­de, že vie­me, že tovar v obcho­de je prá­ve dove­ze­ný, maj­me rad­šej trpez­li­vosť, často­krát naj­mä dovo­zo­vé ryby a prá­ve dove­ze­né ryby sa ešte pre­rie­dia. Ich prí­pad­ný letec­ký tran­s­port je veľ­mi stre­su­jú­ci, stra­ty sú úpl­ne bež­né. Ryby by sa pod­ľa dru­hu rýb mali sprá­vať adek­vát­ne, nesmú byť apa­tic­ké nesmú byť na nich bada­teľ­né zna­ky cho­ro­by, ples­ní, odpa­dá­va­jú­cich plu­tiev, okú­sa­ných čas­tí tela apod. V opač­nom prí­pa­de, rad­šej počkaj­me, než sa ryby tro­chu akli­ma­ti­zu­jú prí­pad­ne vylie­čia. Na dru­hej stra­ne mali by sme vedieť, že prí­tom­nosť množ­stva ľudí, viac-​menej pro­vi­zór­ne pod­mien­ky v tej kto­rej akva­ris­ti­ke rybám spô­so­bu­jú rybám stres, že ryby nie sú doko­na­le vyfarbené.

Rast­li­ny môže­me posu­dzo­vať tole­ran­tnej­šie, pre­to­že v obcho­doch tak­mer nikdy nema­jú opti­mál­ne pod­mien­ky. Trpia viac ako ryby, len ich pre­jav nie je ľudom tak bada­teľ­ný, úči­nok sa pre­ja­ví neskôr, zato však symp­tó­my zme­ny sa udr­žia dlh­šie časo­vé obdo­bie. Rast­li­ny by v ide­ál­nom prí­pa­de mali kupo­vať také, kto­ré pôso­bia svie­žim doj­mom. Pri tran­s­por­te rýb aj rast­lín je vhod­né pri­hlia­dať na urči­té vedo­mos­ti. Ryby pre­ná­ša­me naj­čas­tej­šie v poly­ety­lé­no­vých sáči­koch. Potre­bu­jú pries­tor, avšak tre­ba pri­hlia­dať na sil­ne uzav­re­tý sys­tém sáč­ku – nepre­há­ňaj­te to s vodou. Je dôle­ži­té, aby vo vode bol kys­lík, a ten sa pri uzav­re­tí pries­to­ru gumič­kou dostá­va len z pries­to­ru nad vodou. Tak­že voda by mala sia­hať maxi­mál­ne do polo­vi­ce sáči­ku, odpo­rú­čam do tre­ti­ny.. Neus­tá­ly pohyb pri tran­s­por­te doká­že zabez­pe­čiť neus­tá­le zmie­ša­va­nie vody so vzdu­chom. Vzduch je mož­né natla­ko­vať prí­stro­jom. Exis­tu­jú dokon­ca aj kys­lí­ko­vé tab­let­ky, ich pou­ží­va­nie je však pomer­ne vzác­ne, pre­to­že nie sú prá­ve tým pra­vým. Okrem iné­ho sa roz­púš­ťa­jú sa pomer­ne rých­lo. Naj­mä ak je pH vody vyš­šie, môže dôjsť k prí­liš vyso­kej kon­cen­trá­cii kys­lí­ka, ale­bo k nežia­du­cim meta­bo­lic­kým pro­ce­som vo vode. Vhod­né je mať prí­pad­ne k dis­po­zí­cii aj vzdu­cho­va­cí motor­ček, s kame­ňom na vzdu­cho­va­nie naj­mä počas pokoj­nej fázy tran­s­por­tu. Napr. pri pre­no­se v ter­mo­bo­xe. Exis­tu­jú ver­zie aj na bater­ky, čo sa hodí napr. do auta, vla­ku apod.. Pri­hlia­dať musí­me na tep­lo­tu. V prí­pa­de ak je zima, a ryby, prí­pad­ne rast­li­ny by moh­li byť vysta­ve­né chla­du, je tre­ba zabez­pe­čiť aby boli tie­to vply­vy minimalizované.

Ak pre­ná­ša­me väč­šie množ­stvo, vhod­né je kli­ma­ti­zo­va­né auto, ter­mo­box, dre­vot­ries­ko­vá ška­tu­ľa oblo­že­ná polys­ty­ré­nom apod. Exis­tu­jú aj tab­let­ky, kto­ré pro­du­ku­jú tep­lo, ich pou­ží­va­nie však je málo roz­ší­re­né. V men­šom merít­ku, sáčik ochrá­ni­me vlast­ným telom – skry­je­me ho pod kabát, pod sve­ter apod. Pri tran­s­por­te sú ryby v pro­stre­dí, kto­ré nezod­po­ve­dá ich pred­sta­vám, sú stre­so­va­né, pre­to sa v tom­to prí­pa­de pri­klá­ňam ku apli­ká­cii neja­ké­ho neut­ra­li­zé­ra, kto­rý ustá­li pome­ry vo vode a ukľud­ní aj ryby – jed­ným z takých je aj Aqu­atan od fir­my SERA. Pomô­že aj tma. Ak pre­ná­ša­me rast­li­ny na krát­ky čas, voda je tak­mer nad­by­toč­ná v sáči­ku. Oby­čaj­ne sta­čí, aby boli rast­li­ny ako­by oro­se­né – len vytia­hnu­té z vody. Ak mie­ni­me rast­li­ny pre­ná­šať dlh­šiu dobu – viac ako 10 hodín – zale­je­me ich vodou len mier­ne. Prob­lé­mom pri tran­s­por­te vod­ných rast­lín je to, že sa vo vode lámu. V prí­pa­de, že napr. veziem akvá­ri­um s ryba­mi v aute, vypus­ti­me vodu sko­ro až na dno, pri­kry­me ho. Tak­to sa dá naj­lep­šie pre­niesť. Zásad­ný prob­lém je vypus­te­nie rýb. Pre­to­že voda, kto­rá je v sáči­ku je urči­te iná ako je tá vaša v akvá­riu. Okrem iné­ho môže byť zdro­jom náka­zy. Keď si pri­ne­sie­me ryby, rast­li­ny, mali by sme postu­po­vať tak­to. Pri­pra­ví­me si ved­ro a sieť­ku. Najprv je nut­né vyrov­nať tep­lo­ty – tej kto­rá je v sáči­ku a tej, kto­rá je vo vašom akvá­riu. To dosiah­ne­me tým, že sáčik pono­rí­me na pol­ho­di­nu do nádr­že. Potom sáčik pre­le­je­me do ved­ra, na kto­rom je polo­že­ná sieť­ka. Násled­ne ryby zo sieť­ky pre­ne­sie­me do akvá­ria, ide­ál­ne do karan­tén­nej nádr­že. Ak si trú­fa­te, ryby je ohľa­du­pl­nej­šie mož­né pre­niesť do akvá­ria mok­rou rukou.. V prvom rade, nikdy nemie­šaj­te vodu z cudzie­ho zdro­ja s tou vašou.


When buy­ing fish and plants, we should first take a good look. Fish should look healt­hy. Unna­tu­ral­ly gre­en, blue, or yel­low water is like­ly a sign of cur­rent or pre­vi­ous tre­at­ment. Simi­lar­ly, a newly used UV lamp should rai­se ques­ti­ons in us. If we know that the goods in the sto­re have just been impor­ted, let’s be patient; often impor­ted fish and just tran­s­por­ted fish are still acc­li­ma­ti­zing. The­ir possib­le air tran­s­port is very stress­ful, and los­ses are quite com­mon. Fish should beha­ve app­rop­ria­te­ly accor­ding to the spe­cies; they must not be apat­he­tic, and the­re should be no visib­le signs of dise­a­se, mold, shed­ding fins, bit­ten body parts, etc. Other­wi­se, let’s wait for the fish to acc­li­ma­ti­ze or heal. On the other hand, we should know that the pre­sen­ce of many peop­le, more or less pro­vi­si­onal con­di­ti­ons in each aqu­arium, cau­ses stress to the fish, and that fish are not per­fect­ly colored.

Plants can be jud­ged more tole­ran­tly becau­se they almost never have opti­mal con­di­ti­ons in sto­res. They suf­fer more than fish, but the­ir mani­fe­sta­ti­on is not so noti­ce­ab­le to peop­le; the effect mani­fests later, but the symp­toms of chan­ge per­sist for a lon­ger peri­od. Ide­al­ly, we should buy plants that give a fresh impres­si­on. When tran­s­por­ting fish and plants, it is advi­sab­le to con­si­der cer­tain kno­wled­ge. Fish are most often tran­s­por­ted in poly­et­hy­le­ne bags. They need spa­ce, but atten­ti­on should be paid to a tight­ly clo­sed bag sys­tem – do not over­do it with water. It is impor­tant for the­re to be oxy­gen in the water, and this is pro­vi­ded by the spa­ce abo­ve the water when the bag is sea­led with a rub­ber band. So the water should only reach hal­fway up the bag; I recom­mend up to a third. Cons­tant move­ment during tran­s­port ensu­res cons­tant mixing of water with air. Air can be injec­ted with a devi­ce. The­re are even oxy­gen tab­lets, but the­ir use is rela­ti­ve­ly rare becau­se they are not exact­ly the right thing. Among other things, they dis­sol­ve quite quick­ly. Espe­cial­ly if the water pH is hig­her, the­re may be too high an oxy­gen con­cen­tra­ti­on or unde­si­rab­le meta­bo­lic pro­ces­ses in the water. It is advi­sab­le to have an air pump avai­lab­le, with an air sto­ne espe­cial­ly during the quiet pha­se of tran­s­port. For exam­ple, when tran­s­por­ting in a ther­mal box. The­re are ver­si­ons powe­red by bat­te­ries, which is use­ful, for exam­ple, in a car, train, etc. We must pay atten­ti­on to the tem­pe­ra­tu­re. If it is cold and fish or plants could be expo­sed to cold, mea­su­res should be taken to mini­mi­ze the­se effects.

If we tran­s­port a lar­ger quan­ti­ty, a climate-​controlled car, a ther­mal box, a wooden box lined with polys­ty­re­ne, etc., are suitab­le. The­re are also tab­lets that pro­du­ce heat, but the­ir use is rare. On a smal­ler sca­le, we pro­tect the bag with our own body – we hide it under a coat, under a swe­a­ter, etc. When tran­s­por­ting, the fish are in an envi­ron­ment that does not meet the­ir expec­ta­ti­ons; they are stres­sed. The­re­fo­re, in this case, I am inc­li­ned to app­ly a neut­ra­li­zer that sta­bi­li­zes the water con­di­ti­ons and calms the fish – one such is Aqu­atan from the com­pa­ny SERA. Dark­ness also helps. If we tran­s­port plants for a short time, water is almost superf­lu­ous in the bag. Usu­al­ly, it is enough for the plants to be as if dewy – just pul­led out of the water. If we intend to tran­s­port plants for a lon­ger time – more than 10 hours – we water them only slight­ly. The prob­lem with tran­s­por­ting aqu­atic plants is that they bre­ak in the water. For exam­ple, if we tran­s­port an aqu­arium with fish in a car, we drain the water almost to the bot­tom and cover it. This is the best way to tran­s­port it. The fun­da­men­tal prob­lem is rele­a­sing the fish. Becau­se the water in the bag is defi­ni­te­ly dif­fe­rent from yours in the aqu­arium. Among other things, it can be a sour­ce of infec­ti­on. When we bring fish, plants, we should pro­ce­ed as fol­lo­ws. Pre­pa­re a buc­ket and a net. First, it is neces­sa­ry to equ­ali­ze the tem­pe­ra­tu­res – the one in the bag and the one in your aqu­arium. This is achie­ved by immer­sing the bag in the tank for half an hour. Then pour the bag into the buc­ket, on which the net is pla­ced. Then trans­fer the fish from the net to the aqu­arium, ide­al­ly to a quaran­ti­ne tank. If you dare, it is more con­si­de­ra­te to trans­fer the fish to the aqu­arium with wet hands.. First of all, never mix water from a fore­ign sour­ce with yours.


Beim Kauf von Fis­chen und Pflan­zen soll­ten wir zuerst genau hin­se­hen. Die Fis­che soll­ten gesund aus­se­hen. Unna­tür­lich grünes, blau­es oder gel­bes Was­ser ist wahrs­che­in­lich ein Zei­chen für eine aktu­el­le oder frühe­re Behand­lung. Eben­so soll­te uns eine neu ver­wen­de­te UV-​Lampe Fra­gen aufwer­fen. Wenn wir wis­sen, dass die Waren im Laden gera­de erst ein­get­rof­fen sind, soll­ten wir lie­ber gedul­dig sein; oft wer­den impor­tier­te Fis­che und gera­de tran­s­por­tier­te Fis­che noch dün­ner. Ihr mög­li­cher Luft­tran­s­port ist sehr stres­sig, Ver­lus­te sind recht häu­fig. Fis­che soll­ten je nach Art ange­mes­sen han­deln; sie dür­fen nicht apat­hisch sein, und es soll­ten kei­ne sicht­ba­ren Anze­i­chen von Kran­khe­it, Schim­mel, abfal­len­den Flos­sen, abge­bis­se­nen Kör­per­te­i­len usw. vor­han­den sein. Andern­falls soll­ten wir lie­ber war­ten, bis sich die Fis­che akk­li­ma­ti­sie­ren oder hei­len. Ande­rer­se­its soll­ten wir wis­sen, dass die Anwe­sen­he­it vie­ler Men­schen, mehr oder weni­ger pro­vi­so­ris­che Bedin­gun­gen in jedem Aqu­arium, Stress für die Fis­che verur­sacht und dass Fis­che nicht per­fekt gefärbt sind.

Pflan­zen kön­nen tole­ran­ter beur­te­ilt wer­den, da sie in Ges­chäf­ten fast nie opti­ma­le Bedin­gun­gen haben. Sie lei­den mehr als Fis­che, aber ihr Ers­che­i­nungs­bild ist für Men­schen nicht so auf­fäl­lig; Der Effekt zeigt sich spä­ter, aber die Symp­to­me der Verän­de­rung hal­ten län­ger an. Ide­a­ler­we­i­se soll­ten wir Pflan­zen kau­fen, die einen fris­chen Ein­druck machen. Beim Tran­s­port von Fis­chen und Pflan­zen soll­ten wir bes­timm­tes Wis­sen berück­sich­ti­gen. Fis­che wer­den am häu­figs­ten in Poly­et­hy­len­be­uteln tran­s­por­tiert. Sie brau­chen Platz, aber es soll­te auf ein fest versch­los­se­nes Beutel­sys­tem geach­tet wer­den – über­tre­i­ben Sie es nicht mit Was­ser. Es ist wich­tig, dass Sau­ers­toff im Was­ser vor­han­den ist, und die­ser gelangt beim Versch­lie­ßen des Beutels mit einem Gum­mi­band nur aus dem Raum über dem Was­ser. Das Was­ser soll­te also nur bis zur Mit­te des Beutels rei­chen; Ich emp­feh­le bis zu einem Drit­tel. Durch stän­di­ge Bewe­gung beim Tran­s­port wird eine stän­di­ge Ver­mis­chung von Was­ser mit Luft sicher­ges­tellt. Luft kann mit einem Gerät ein­geb­la­sen wer­den. Es gibt sogar Sau­ers­toff­tab­let­ten, aber ihre Ver­wen­dung ist rela­tiv sel­ten, weil sie nicht genau das Rich­ti­ge sind. Unter ande­rem lösen sie sich ziem­lich schnell auf. Ins­be­son­de­re wenn der pH-​Wert des Was­sers höher ist, kann es zu einer zu hohen Sau­ers­toff­kon­zen­tra­ti­on oder uner­wün­sch­ten Stof­fwech­selp­ro­zes­sen im Was­ser kom­men. Es ist rat­sam, auch eine Luft­pum­pe mit einem Lufts­te­in, ins­be­son­de­re wäh­rend der ruhi­gen Tran­s­portp­ha­se, bere­it­zu­hal­ten. Zum Beis­piel beim Tran­s­port in einer Ther­mo­box. Es gibt auch Ver­si­onen mit Bat­te­rie­bet­rieb, was zum Beis­piel im Auto, im Zug usw. nütz­lich ist. Wir müs­sen auf die Tem­pe­ra­tur ach­ten. Wenn es kalt ist und Fis­che oder Pflan­zen der Käl­te aus­ge­setzt sein könn­ten, soll­ten Maßnah­men ergrif­fen wer­den, um die­se Auswir­kun­gen zu minimieren.

Wenn wir eine größe­re Men­ge tran­s­por­tie­ren, ist ein kli­ma­ti­sier­tes Auto, eine Ther­mo­box, eine Holz­kis­te, die mit Polys­ty­rol aus­gek­le­i­det ist, usw., gee­ig­net. Es gibt auch Tab­let­ten, die Wär­me erze­ugen, aber ihre Ver­wen­dung ist sel­ten. Im kle­i­ne­ren Maßs­tab schüt­zen wir den Beutel mit unse­rem eige­nen Kör­per – wir vers­tec­ken ihn unter einem Man­tel, unter einem Pul­lo­ver usw. Beim Tran­s­port befin­den sich die Fis­che in einer Umge­bung, die nicht ihren Erwar­tun­gen ents­pricht; sie sind ges­tresst. Daher neige ich in die­sem Fall dazu, einen Neut­ra­li­sa­tor anzu­wen­den, der die Was­ser­be­din­gun­gen sta­bi­li­siert und auch die Fis­che beru­higt – einer davon ist Aqu­atan von der Fir­ma SERA. Dun­kel­he­it hilft auch. Wenn wir Pflan­zen für kur­ze Zeit tran­s­por­tie­ren, ist Was­ser im Beutel fast überf­lüs­sig. Nor­ma­ler­we­i­se reicht es aus, wenn die Pflan­zen so aus­se­hen, als wären sie tauf­risch – nur aus dem Was­ser gezo­gen. Wenn wir die Pflan­zen jedoch län­ger als 10 Stun­den tran­s­por­tie­ren möch­ten, gie­ßen wir sie nur leicht. Das Prob­lem beim Tran­s­port von Was­serpf­lan­zen bes­teht darin, dass sie im Was­ser bre­chen. Wenn wir beis­piel­swe­i­se ein Aqu­arium mit Fis­chen im Auto tran­s­por­tie­ren, las­sen wir das Was­ser fast bis zum Boden ab und bedec­ken es. Auf die­se Wei­se lässt es sich am bes­ten tran­s­por­tie­ren. Das grund­le­gen­de Prob­lem bes­teht darin, die Fis­che fre­i­zu­las­sen. Weil das Was­ser im Beutel defi­ni­tiv anders ist als das in Ihrem Aqu­arium. Unter ande­rem kann es eine Infek­ti­on­squ­el­le sein. Wenn wir Fis­che, Pflan­zen brin­gen, soll­ten wir wie folgt vor­ge­hen. Wir bere­i­ten einen Eimer und ein Netz vor. Zuerst müs­sen die Tem­pe­ra­tu­ren aus­geg­li­chen wer­den – die im Beutel und die in Ihrem Aqu­arium. Dies wird erre­icht, indem der Beutel eine hal­be Stun­de lang ins Aqu­arium getaucht wird. Gie­ßen Sie dann den Beutel in den Eimer, auf dem das Netz liegt. Über­tra­gen Sie dann die Fis­che vom Netz ins Aqu­arium, ide­a­ler­we­i­se in ein Quaran­tä­ne­bec­ken. Wenn Sie sich trau­en, ist es für die Fis­che res­pekt­vol­ler, sie mit nassen Hän­den ins Aqu­arium zu über­tra­gen. Vor allem soll­ten Sie nie­mals Was­ser aus einer frem­den Quel­le mit Ihrem mischen.

Use Facebook to Comment on this Post

Akvaristika, Údržba

Úprava vody

Hits: 35994

Pri úpra­ve vody je nut­né byť obo­zret­ný. Vhod­né sú vedo­mos­ti z ché­mie. Je nut­né si uve­do­miť, že bez zod­po­ved­nos­ti voči živým orga­niz­mom nie je etic­ké pri­stu­po­vať ku expe­ri­men­tom pri zme­nách para­met­rov vody. Uži­toč­né je obo­zná­miť sa s para­met­ra­mi vody. Kva­li­ta­tív­ne všet­ky zme­ny sa dajú vyko­nať mie­ša­ním s vodou iných vlast­nos­tí. Mera­niu para­met­rov vody, úpra­ve tvrdo­s­ti, pH sa čas­to vkla­dá prí­liš veľ­ký význam. Ryby cho­va­né už gene­rá­cie v zaja­tí sú čas­to pris­pô­so­be­né našim pod­mien­kam. Nie je prvo­ra­dé, aby ryby a rast­li­ny žili vo vode s takým pH a hod­no­tou tvrdo­s­ti v akej žijú v prí­ro­de, ale aby sme spl­ni­li čo naj­viac pod­mie­nok pre ich úspeš­ný roz­voj. Neutá­paj­te sa v neus­tá­lom mera­ní a poku­soch o zme­nu. Pre bež­nú akva­ris­tic­kú prax sa para­met­re vody preceňujú.


When tre­a­ting water, cau­ti­on is neces­sa­ry. Kno­wled­ge of che­mis­try is use­ful. It is neces­sa­ry to rea­li­ze that wit­hout res­pon­si­bi­li­ty towards living orga­nisms, it is not ethi­cal to app­ro­ach expe­ri­ments with chan­ges in water para­me­ters. It is use­ful to fami­lia­ri­ze one­self with the para­me­ters of water. Quali­ta­ti­ve­ly, all chan­ges can be made by mixing with water of dif­fe­rent pro­per­ties. Moni­to­ring water para­me­ters, adjus­ting hard­ness, and pH are often ove­remp­ha­si­zed. Fish bred for gene­ra­ti­ons in cap­ti­vi­ty are often adap­ted to our con­di­ti­ons. It is not para­mount for fish and plants to live in water with the same pH and hard­ness as they do in natu­re, but to meet as many con­di­ti­ons as possib­le for the­ir suc­cess­ful deve­lop­ment. Do not get lost in cons­tant mea­su­re­ments and attempts to chan­ge. For regu­lar aqu­arium prac­ti­ce, water para­me­ters are overrated.


Bei der Auf­be­re­i­tung von Was­ser ist Vor­sicht gebo­ten. Kenn­tnis­se in Che­mie sind nütz­lich. Es ist not­wen­dig zu erken­nen, dass es nicht ethisch ist, ohne Verant­wor­tung gege­nüber leben­den Orga­nis­men Expe­ri­men­te mit Verän­de­run­gen der Was­ser­pa­ra­me­ter dur­ch­zu­füh­ren. Es ist nütz­lich, sich mit den Para­me­tern des Was­sers ver­traut zu machen. Quali­ta­tiv kön­nen alle Verän­de­run­gen durch Mis­chen mit Was­ser ande­rer Eigen­schaf­ten vor­ge­nom­men wer­den. Die Über­wa­chung der Was­ser­pa­ra­me­ter, die Anpas­sung der Här­te und des pH-​Werts wer­den oft über­be­tont. Fis­che, die seit Gene­ra­ti­onen in Gefan­gen­schaft gezüch­tet wur­den, sind oft an unse­re Bedin­gun­gen ange­passt. Es ist nicht ents­che­i­dend, dass Fis­che und Pflan­zen in Was­ser mit dem gle­i­chen pH-​Wert und der gle­i­chen Här­te leben wie in der Natur, son­dern dass mög­lichst vie­le Bedin­gun­gen für ihre erfolg­re­i­che Ent­wick­lung erfüllt wer­den. Ver­lie­ren Sie sich nicht in stän­di­gen Mes­sun­gen und Ver­su­chen, etwas zu ändern. Für die regel­mä­ßi­ge Aqu­arium­pra­xis wer­den die Was­ser­pa­ra­me­ter überbewertet.


Zvy­šo­va­nie tep­lo­ty vody ohrie­va­čom je pomer­ne bež­né aj v iných oblas­tiach, nie­len v akva­ris­ti­ke. Ďale­ko ťaž­ší prob­lém je však ako vodu ochla­dzo­vať. Túto otáz­ku rie­šia naj­mä akva­ris­ti zaobe­ra­jú­ci sa cho­vom mor­ských živo­čí­chov. Tu sa ponú­ka mož­nosť využiť prin­cíp pel­tie­ro­vých člán­kov. Pomô­že star­šia mraz­nič­ka, chla­dia­ren­ský prí­stroj a šikov­ný maj­ster. Dru­há mož­nosť je nákup v obcho­de. Ochla­dzo­va­nie vody tým­to spô­so­bom je finanč­ne pomer­ne nároč­né. V malom merít­ku je mož­né využiť ľad, je to však nebez­peč­né – pre­to­že na roz­púš­ťa­nie ľadu je potreb­né veľa ener­gie, Ľad je pev­ná lát­ka a oplý­va tepel­nou kapa­ci­tou – na pre­chod do kva­pal­né­ho sta­vu je nut­né viac ener­gie pri rov­na­kom posu­ne tep­lôt. Postu­puj­me pre­to opatr­ne, aby sme nemu­se­li vyskú­šať tep­lot­né extrémy.


Rai­sing the water tem­pe­ra­tu­re with a hea­ter is quite com­mon in vari­ous are­as, not just in aqu­ariums. Howe­ver, a far more chal­len­ging prob­lem is how to cool the water. This ques­ti­on is pri­ma­ri­ly add­res­sed by aqu­arists dea­ling with the bre­e­ding of mari­ne orga­nisms. Here, the opti­on to uti­li­ze the prin­cip­le of Pel­tier cells pre­sents itself. An old fre­e­zer, ref­ri­ge­ra­ti­on devi­ce, and a skil­led crafts­man can help. The second opti­on is pur­cha­sing from a sto­re. Cooling water in this way is finan­cial­ly deman­ding. On a small sca­le, ice can be used, but it is dan­ge­rous – becau­se mel­ting ice requ­ires a lot of ener­gy. Ice is a solid sub­stan­ce and has a high ther­mal capa­ci­ty – it requ­ires more ener­gy to trans­i­ti­on to a liqu­id sta­te for the same tem­pe­ra­tu­re chan­ge. Let’s pro­ce­ed cau­ti­ous­ly so we don’t have to expe­rien­ce tem­pe­ra­tu­re extremes.


Das Erhöhen der Was­ser­tem­pe­ra­tur mit einem Heiz­ge­rät ist in vers­chie­de­nen Bere­i­chen recht verb­re­i­tet, nicht nur in Aqu­arien. Ein weit sch­wie­ri­ge­res Prob­lem ist jedoch, wie man das Was­ser kühlt. Die­se Fra­ge wird haupt­säch­lich von Aqu­aria­nern behan­delt, die sich mit der Zucht von Mee­res­tie­ren bes­chäf­ti­gen. Hier bie­tet sich die Mög­lich­ke­it, das Prin­zip der Peltier-​Zellen zu nut­zen. Ein alter Gef­riers­chrank, ein Kühl­sys­tem und ein ges­chic­kter Han­dwer­ker kön­nen hel­fen. Die zwe­i­te Opti­on ist der Kauf im Ges­chäft. Das Küh­len des Was­sers auf die­se Wei­se ist finan­ziell ans­pruchs­voll. Im kle­i­nen Maßs­tab kann Eis ver­wen­det wer­den, aber es ist gefähr­lich – denn das Sch­mel­zen von Eis erfor­dert viel Ener­gie. Eis ist ein fes­ter Stoff und hat eine hohe Wär­me­ka­pa­zi­tät – es erfor­dert mehr Ener­gie, um den Über­gang in einen flüs­si­gen Zus­tand für die gle­i­che Tem­pe­ra­tu­rän­de­rung zu bewir­ken. Gehen wir also vor­sich­tig vor, damit wir nicht extre­me Tem­pe­ra­tu­ren erle­ben müssen.


Ak chce­me meniť tvrdo­sť vody, bež­ný­mi lac­ný­mi pros­tried­ka­mi vie­me zabez­pe­čiť len jej zvý­še­nie. Obsah váp­ni­ka a hor­čí­ka zvý­ši­me uhli­či­ta­nom vápe­na­tým – CaCO3, uhli­či­ta­nom horeč­na­tým – MgCO3, síra­nom vápe­na­tým – CaSO4, síra­nom horeč­na­tým – MgSO4, chlo­ri­dom vápe­na­tým – CaCl2. Pri­ro­dze­ne napr. vápen­com. Avšak ak chce­me dosiah­nuť rých­lu zme­nu musí­me pou­žiť sil­nej­šiu kon­cen­trá­ciu. Napo­kon je dostať aj účin­né komerč­né pre­pa­rá­ty, kto­ré doká­žu rých­lo tvrdo­sť zvý­šiť. Pred ove­ľa ťaž­šou otáz­kou sto­jí­me ak sme si zau­mie­ni­li tvrdo­sť zní­žiť. Je mož­né pou­žiť vyzrá­ža­nie kyse­li­nou šťa­ve­ľo­vou, no rov­no­vá­ha toh­to pro­ce­su je malá. Ak by sme však doká­za­li túto vodu mecha­nic­ky veľ­mi jem­ným fil­trom odfil­tro­vať, mož­no by sme dosiah­li žia­da­ný výsle­dok. Vare­nie vody za úče­lom zní­že­nia tvrdo­s­ti je veľ­mi neeko­no­mic­ké. Efekt je mizi­vý. Varom vyzrá­ža­me len uhli­či­ta­no­vú tvrdo­sť a to maxi­mál­ne o 2.7 °dKH. Okrem toho varom ničí­me aj ten kúsok živo­ta, kto­rý vo vode je, pre­to var neod­po­rú­čam. Aktív­ne uhlie čias­toč­ne zni­žu­je tvrdo­sť vody, podob­ne nie­kto­ré dru­hy rast­lín napr. Ana­cha­ris den­sa a živo­čí­chov, naj­mä ulit­ní­kov a las­túr­ni­kov zni­žu­jú obsah Ca a Mg vo vode. Do svo­jich ulít sú schop­né kumu­lo­vať veľ­ké množ­stvo váp­ni­ka, veď sú prak­tic­ky na jeho výsky­te závis­lé. Ampul­la­rie doká­žu vo väč­šom množ­stvo via­zať do svo­jich ulít pomer­ne znač­né množ­stvo váp­ni­ka. Naopak pri jeho nedos­tat­ku chrad­nú, mäk­ne im schrán­ka. Raše­li­na zni­žu­je takis­to v malej mie­re tvrdo­sť vody. Mie­ša­nie vody mäk­šej je samoz­rej­me mož­né na dosia­hnu­tie niž­šej tvrdo­s­ti, fun­gu­je to line­ár­ne. Pre reál­nu prax máme v prin­cí­pe nasle­du­jú­ce možnosti.


If we want to chan­ge the water hard­ness, with com­mon ine­xpen­si­ve means, we can only inc­re­a­se it. We can inc­re­a­se the con­tent of cal­cium and mag­ne­sium with cal­cium car­bo­na­te – CaCO3, mag­ne­sium car­bo­na­te – MgCO3, cal­cium sul­fa­te – CaSO4, mag­ne­sium sul­fa­te – MgSO4, cal­cium chlo­ri­de – CaCl2. Natu­ral­ly, for exam­ple, with limes­to­ne. Howe­ver, if we want to achie­ve a quick chan­ge, we must use a stron­ger con­cen­tra­ti­on. Final­ly, effec­ti­ve com­mer­cial pro­ducts are avai­lab­le that can quick­ly inc­re­a­se hard­ness. Howe­ver, a much more dif­fi­cult ques­ti­on ari­ses if we intend to dec­re­a­se the hard­ness. It is possib­le to use pre­ci­pi­ta­ti­on with oxa­lic acid, but the equ­ilib­rium of this pro­cess is small. Howe­ver, if we were able to fil­ter this water mecha­ni­cal­ly with a very fine fil­ter, we might achie­ve the desi­red result. Boiling water to redu­ce hard­ness is very une­co­no­mi­cal. The effect is mini­mal. Boiling only pre­ci­pi­ta­tes car­bo­na­te hard­ness, up to a maxi­mum of 2.7 °dKH. In addi­ti­on, boiling also des­tro­ys the litt­le life that is in the water, so I do not recom­mend boiling. Acti­va­ted char­co­al par­tial­ly redu­ces water hard­ness, simi­lar­ly some types of plants such as Ana­cha­ris den­sa and ani­mals, espe­cial­ly snails and crus­ta­ce­ans, redu­ce the con­tent of Ca and Mg in the water. They are able to accu­mu­la­te lar­ge amounts of cal­cium in the­ir shells, as they are prac­ti­cal­ly depen­dent on its occur­ren­ce. Ampul­la­ria are able to bind a rela­ti­ve­ly lar­ge amount of cal­cium into the­ir shells in lar­ger quan­ti­ties. Con­ver­se­ly, in its absen­ce, the­ir shells sof­ten. Peat also redu­ces water hard­ness to a small extent. Mixing sof­ter water is of cour­se possib­le to achie­ve lower hard­ness, and it works line­ar­ly. For prac­ti­cal pur­po­ses, we have the fol­lo­wing opti­ons in principle.


Wenn wir die Was­ser­här­te ändern wol­len, kön­nen wir mit gän­gi­gen kos­ten­güns­ti­gen Mit­teln nur deren Erhöhung erre­i­chen. Wir kön­nen den Gehalt an Cal­cium und Mag­ne­sium mit Cal­cium­car­bo­nat – CaCO3, Mag­ne­sium­car­bo­nat – MgCO3, Cal­cium­sul­fat – CaSO4, Mag­ne­sium­sul­fat – MgSO4, Cal­ciumch­lo­rid – CaCl2 erhöhen. Natür­lich, zum Beis­piel mit Kalks­te­in. Wenn wir jedoch eine schnel­le Ände­rung erre­i­chen wol­len, müs­sen wir eine stär­ke­re Kon­zen­tra­ti­on ver­wen­den. Sch­lie­ßlich ste­hen auch wirk­sa­me kom­mer­ziel­le Pro­duk­te zur Ver­fügung, die die Här­te schnell erhöhen kön­nen. Eine viel sch­wie­ri­ge­re Fra­ge stellt sich jedoch, wenn wir die Här­te ver­rin­gern möch­ten. Es ist mög­lich, eine Fäl­lung mit Oxal­sä­u­re zu ver­wen­den, aber das Gle­ich­ge­wicht die­ses Pro­zes­ses ist gering. Wenn wir jedoch die­ses Was­ser mecha­nisch mit einem sehr fei­nen Fil­ter fil­tern könn­ten, könn­ten wir das gewün­sch­te Ergeb­nis erzie­len. Das Abko­chen von Was­ser zur Ver­rin­ge­rung der Här­te ist sehr unef­fek­tiv. Der Effekt ist mini­mal. Beim Kochen fällt nur die Car­bo­nat­här­te aus, maxi­mal bis zu 2,7 °dKH. Darüber hinaus zers­tört das Kochen auch das weni­ge Leben im Was­ser, daher emp­feh­le ich es nicht. Aktiv­koh­le redu­ziert die Was­ser­här­te tei­lwe­i­se, eben­so eini­ge Arten von Pflan­zen wie Ana­cha­ris den­sa und Tie­re, ins­be­son­de­re Schnec­ken und Kreb­stie­re, redu­zie­ren den Gehalt an Ca und Mg im Was­ser. Sie sind in der Lage, gro­ße Men­gen Cal­cium in ihren Scha­len anzu­sam­meln, da sie prak­tisch von des­sen Auft­re­ten abhän­gig sind. Ampul­la­ria sind in der Lage, in größe­ren Men­gen eine rela­tiv gro­ße Men­ge Cal­cium in ihre Scha­len zu bin­den. Umge­ke­hrt erwe­i­chen sich ihre Scha­len bei des­sen Feh­len. Torf ver­rin­gert eben­falls die Was­ser­här­te in gerin­gem Maße. Das Mis­chen von wei­che­rem Was­ser ist natür­lich mög­lich, um eine gerin­ge­re Här­te zu erre­i­chen, und es funk­ti­oniert line­ar. Für prak­tis­che Zwec­ke haben wir im Prin­zip fol­gen­de Möglichkeiten.


Des­ti­lá­cia – v des­ti­lač­nej koló­ne sa voda zba­vu­je iónov. Pri des­ti­lá­cii dochá­dza ku pro­duk­cii znač­né­ho množ­stva odpa­do­vej vody. Pou­ží­va­nie veľ­kých obje­mov vody je nut­né, pre­to­že pri des­ti­lá­cii dochá­dza ku veľ­kých tep­lo­tám, kto­ré je nut­né ochla­dzo­vať. Des­ti­lač­ná koló­na je pomer­ne znač­ná inves­tí­cia, pou­ží­va­jú ju cho­va­te­lia, kto­rí majú väč­šie množ­stvo nádr­ží. Účin­nosť des­ti­lá­cie je veľ­mi vyso­ká. Je nut­né však pove­dať, že des­ti­lo­va­ná voda nie je veľ­mi vhod­ná pre akva­ris­tic­ké úče­ly. Je to voda totiž ste­ril­ná, a aj veľ­mi labil­ná. Pre­to je dob­ré túto vodu mie­šať. Pre ten­to dôvod je ide­ál­na reverz­ná osmó­za. Tech­nic­ká des­ti­lo­va­ná voda z obcho­du nie je veľ­mi vhod­ná pre akva­ris­tov. Pre­vádz­ka samot­nej des­ti­lač­nej koló­ny nepod­lie­ha nija­kým veľ­kých opot­re­be­niam, kaž­do­pád­ne pri nor­mál­nom pou­ží­va­ní nevy­ža­du­je vyso­ké násled­né investície.


Dis­til­la­ti­on – In the dis­til­la­ti­on column, water is strip­ped of ions. Dis­til­la­ti­on gene­ra­tes a sig­ni­fi­cant amount of was­te­wa­ter. The use of lar­ge volu­mes of water is neces­sa­ry becau­se dis­til­la­ti­on invol­ves high tem­pe­ra­tu­res that need to be cooled. The dis­til­la­ti­on column is a con­si­de­rab­le inves­tment, used by bre­e­ders who have a lar­ger num­ber of tanks. The effi­cien­cy of dis­til­la­ti­on is very high. Howe­ver, it must be said that dis­til­led water is not very suitab­le for aqu­arium pur­po­ses. It is ste­ri­le water and very labi­le. The­re­fo­re, it is good to mix this water. Rever­se osmo­sis is ide­al for this rea­son. Tech­ni­cal dis­til­led water from the sto­re is not very suitab­le for aqu­arists. The ope­ra­ti­on of the dis­til­la­ti­on column itself does not under­go any sig­ni­fi­cant wear and tear, and in any case, under nor­mal use, it does not requ­ire high sub­se­qu­ent investments.


Des­til­la­ti­on – In der Des­til­la­ti­ons­sä­u­le wird Was­ser von Ionen bef­re­it. Die Des­til­la­ti­on erze­ugt eine bet­rächt­li­che Men­ge an Abwas­ser. Die Ver­wen­dung gro­ßer Was­ser­men­gen ist erfor­der­lich, da bei der Des­til­la­ti­on hohe Tem­pe­ra­tu­ren auft­re­ten, die gekü­hlt wer­den müs­sen. Die Des­til­la­ti­ons­sä­u­le ist eine erheb­li­che Inves­ti­ti­on, die von Züch­tern ver­wen­det wird, die eine größe­re Anzahl von Tanks haben. Die Effi­zienz der Des­til­la­ti­on ist sehr hoch. Es muss jedoch gesagt wer­den, dass des­til­lier­tes Was­ser für Aqu­arien­zwec­ke nicht sehr gee­ig­net ist. Es han­delt sich um ste­ri­les Was­ser und ist sehr labil. Daher ist es gut, die­ses Was­ser zu mis­chen. Die Umkeh­ros­mo­se ist aus die­sem Grund ide­al. Tech­nis­ches des­til­lier­tes Was­ser aus dem Laden ist für Aqu­aria­ner nicht sehr gee­ig­net. Der Bet­rieb der Des­til­la­ti­ons­sä­u­le selbst unter­liegt kei­nem sig­ni­fi­kan­ten Versch­le­iß und erfor­dert unter nor­ma­len Bedin­gun­gen kei­ne hohen ansch­lie­ßen­den Investitionen.


Reverz­ná osmó­za – pro­ces, pri kto­rom sa využí­va semi­per­me­a­bi­li­ta – polo­prie­pust­nosť. Osmó­za je zná­my pro­ces, pri kto­rom nastá­va výme­na látok pôso­be­ním osmo­tic­ké­ho tla­ku za pred­po­kla­du polo­prie­pust­nos­ti medzi dvo­ma sústa­va­mi. Pre vysvet­le­nie – nemô­že dôjsť ku jed­no­du­chej difú­zii, ku zmie­ša­niu, pre­to­že medzi dvo­ma sys­té­ma­mi exis­tu­je hra­ni­ca, pre­káž­ka. Ale vply­vom toho, že táto hra­ni­ca je polo­prie­pust­ná, vďa­ka osmo­tic­ké­ho tla­ku doj­de ku toku látok. Toto využí­va aj reverz­ná osmó­za, no s tým roz­die­lom, že pri reverz­nej osmó­ze dochá­dza ku odčer­pa­niu iónov cel­kom, nedo­chá­dza ku vyrov­na­niu osmo­tic­ké­ho tla­ku na jed­nej aj dru­hej stra­ne. Tak­to zís­ka­ná je vhod­ná pre akva­ris­tu. Napo­kon ani jej účin­nosť nie je taká vyso­ká ako pri des­ti­lá­cii. Voda z reverz­ky zvy­čaj­ne dosa­hu­je zvy­čaj­ne 110 % pôvod­nej hod­no­ty vodi­vos­ti. Na trhu exis­tu­jú komerč­ne dostup­né osmo­tic­ké koló­ny, kto­ré je mož­né si zakú­piť. Obje­mo­vo neza­be­ra­jú tak veľa mies­ta ako des­ti­lač­né sústa­vy. Opro­ti des­ti­lač­nej sústa­ve majú jed­nu veľ­kú nevý­ho­du v trvan­li­vos­ti – mem­brá­ny a fil­trač­né média osmo­tic­kej koló­ny je nut­né časom meniť, pre­to­že inak reverz­ka pre­sta­ne plniť svo­ju funkciu.


Rever­se osmo­sis – a pro­cess that uti­li­zes semi­per­me­a­bi­li­ty. Osmo­sis is a kno­wn pro­cess in which the exchan­ge of sub­stan­ces occurs due to osmo­tic pre­ssu­re assu­ming semi­per­me­a­bi­li­ty bet­we­en two sys­tems. For cla­ri­fi­ca­ti­on – sim­ple dif­fu­si­on, mixing can­not occur becau­se the­re is a boun­da­ry, an obstac­le bet­we­en two sys­tems. But due to the fact that this boun­da­ry is semi­per­me­ab­le, thanks to osmo­tic pre­ssu­re, the flow of sub­stan­ces occurs. Rever­se osmo­sis also uti­li­zes this, but with the dif­fe­ren­ce that in rever­se osmo­sis, ions are com­ple­te­ly remo­ved, the­re is no equ­ali­za­ti­on of osmo­tic pre­ssu­re on both sides. The water obtai­ned in this way is suitab­le for aqu­arists. Final­ly, its effi­cien­cy is not as high as in dis­til­la­ti­on. Water from a rever­se osmo­sis sys­tem typi­cal­ly rea­ches 110% of the ori­gi­nal con­duc­ti­vi­ty value. The­re are com­mer­cial­ly avai­lab­le rever­se osmo­sis units on the mar­ket that can be pur­cha­sed. They do not take up as much spa­ce as dis­til­la­ti­on sys­tems. Howe­ver, com­pa­red to dis­til­la­ti­on sys­tems, they have one major disad­van­ta­ge in terms of dura­bi­li­ty – mem­bra­nes and fil­tra­ti­on media of the rever­se osmo­sis unit need to be repla­ced over time becau­se other­wi­se, the rever­se osmo­sis sys­tem will fail to func­ti­on properly.


Rever­sos­mo­se – ein Pro­zess, der die Semi­per­me­a­bi­li­tät nutzt. Osmo­se ist ein bekann­ter Pro­zess, bei dem der Aus­tausch von Sub­stan­zen aufg­rund des osmo­tis­chen Drucks unter der Annah­me von Semi­per­me­a­bi­li­tät zwis­chen zwei Sys­te­men erfolgt. Zur Klars­tel­lung – ein­fa­che Dif­fu­si­on, Mis­chung kann nicht auft­re­ten, weil es eine Gren­ze, ein Hin­der­nis zwis­chen zwei Sys­te­men gibt. Aber aufg­rund der Tat­sa­che, dass die­se Gren­ze semi­per­me­a­bel ist, kommt es dank des osmo­tis­chen Drucks zum Fluss von Sub­stan­zen. Die Umkeh­ros­mo­se nutzt dies eben­falls, jedoch mit dem Unters­chied, dass bei der Umkeh­ros­mo­se Ionen volls­tän­dig ent­fernt wer­den, es kei­ne Ausg­le­i­chung des osmo­tis­chen Drucks auf bei­den Sei­ten gibt. Das auf die­se Wei­se gewon­ne­ne Was­ser ist für Aqu­aria­ner gee­ig­net. Sch­lie­ßlich ist sei­ne Effi­zienz nicht so hoch wie bei der Des­til­la­ti­on. Was­ser aus einer Umkeh­ros­mo­se­an­la­ge erre­icht in der Regel 110% des urs­prün­gli­chen Leit­fä­hig­ke­it­swerts. Auf dem Mar­kt sind kom­mer­ziell erhält­li­che Umkeh­ros­mo­se­an­la­gen erhält­lich, die gekauft wer­den kön­nen. Sie neh­men nicht so viel Platz ein wie Des­til­la­ti­ons­sys­te­me. Im Verg­le­ich zu Des­til­la­ti­ons­sys­te­men haben sie jedoch einen wesen­tli­chen Nach­te­il in Bez­ug auf die Halt­bar­ke­it – Mem­bra­nen und Fil­ter­me­dien der Umkeh­ros­mo­se­an­la­ge müs­sen im Lau­fe der Zeit aus­ge­tauscht wer­den, da sonst die Umkeh­ros­mo­se­an­la­ge nicht ord­nungs­ge­mäß funktioniert.


Ion­to­me­ni­čom (Ione­xom) – elek­tro­ly­tic­ká úpra­va cez katexanex, z kto­rých jeden je zápor­ne nabi­tý a pri­ťa­hu­je kati­ó­ny a dru­hý klad­ne a pri­ťa­hu­je ani­ó­ny. Voda pre­chá­dza tými­to dvo­ma hlav­ný­mi čas­ťa­mi a ióny sa na jed­not­li­vých čas­tiach via­žu. Tým sa dosiah­ne demi­ne­ra­li­zá­cia od iónov. Ionex by sa dal aj naj­ľah­šie zosta­viť aj ama­tér­sky. Prob­lé­mom je, že katex a anex má svo­ju kapa­ci­tu. Časom sa musí rege­ne­ro­vať, aby si zacho­val svo­je fyzi­kál­ne vlast­nos­ti a celý sys­tém bol účin­ný. Rege­ne­rá­cia sa vyko­ná­va pôso­be­ním rôz­nych špe­ci­fic­kých látok, v nie­kto­rých prí­pa­doch kuchyn­skou soľou. Ako ionex (menič) na váp­nik sa pou­ží­va napr. per­mu­tit, wofa­tit, cabu­nit. Selek­tív­ne ión­to­me­ni­če sú urče­né pre eli­mi­ná­ciu nie­kto­rých prv­kov – zlo­žiek vody. Na dusík – N je vhod­ný mon­mo­ril­lo­nitcli­nop­ti­olit.


Ion exchan­ge (Ionex) – elect­ro­ly­tic tre­at­ment via a cat­hex and anex, one of which is nega­ti­ve­ly char­ged and att­racts cati­ons, and the other is posi­ti­ve­ly char­ged and att­racts ani­ons. Water pas­ses through the­se two main parts, and ions are bound to the indi­vi­du­al parts. This achie­ves demi­ne­ra­li­za­ti­on from ions. Ionex could also be easi­ly assem­bled ama­te­urish­ly. The prob­lem is that cat­hex and anex have the­ir capa­ci­ty. Over time, it must be rege­ne­ra­ted to main­tain its phy­si­cal pro­per­ties and the enti­re sys­tem to be effec­ti­ve. Rege­ne­ra­ti­on is car­ried out by the acti­on of vari­ous spe­ci­fic sub­stan­ces, in some cases, kit­chen salt. As an ion exchan­ge (chan­ger) for cal­cium, per­mu­tit, wofa­tit, and cabu­nit are used, for exam­ple. Selec­ti­ve ion exchan­gers are desig­ned to eli­mi­na­te cer­tain ele­ments – com­po­nents in water. For nit­ro­gen – N, mon­mo­ril­lo­ni­te, and cli­nop­ti­oli­te are suitable.


Ion­tausch (Ionex) – elek­tro­ly­tis­che Behand­lung über eine Kat­hex und Anex, von denen eine nega­tiv gela­den ist und Kati­onen anzieht, und die ande­re posi­tiv gela­den ist und Ani­onen anzieht. Was­ser durch­lä­uft die­se bei­den Haupt­te­i­le, und Ionen sind an die ein­zel­nen Tei­le gebun­den. Dadurch wird eine Ent­mi­ne­ra­li­sie­rung von Ionen erre­icht. Ionex könn­te auch leicht ama­te­ur­haft zusam­men­ge­baut wer­den. Das Prob­lem ist, dass Kat­hex und Anex ihre Kapa­zi­tät haben. Im Lau­fe der Zeit muss es rege­ne­riert wer­den, um sei­ne phy­si­ka­lis­chen Eigen­schaf­ten zu erhal­ten und das gesam­te Sys­tem effek­tiv zu machen. Die Rege­ne­ra­ti­on erfolgt durch die Wir­kung vers­chie­de­ner spe­zi­fis­cher Sub­stan­zen, in eini­gen Fäl­len durch Spe­i­se­salz. Als Ione­naus­taus­cher (Wechs­ler) für Cal­cium wer­den beis­piel­swe­i­se Per­mu­tit, Wofa­tit und Cabu­nit ver­wen­det. Selek­ti­ve Ione­naus­taus­cher sind darauf aus­ge­legt, bes­timm­te Ele­men­te – Kom­po­nen­ten im Was­ser zu eli­mi­nie­ren. Für Sticks­toff – N sind Mon­mo­ril­lo­nit und Cli­nop­ti­olit geeignet.


Zní­že­nie vodi­vos­ti sa dosa­hu­je rov­na­ký­mi metó­da­mi ako je opí­sa­né pri tvrdo­s­ti vody. Zvý­še­nie vodi­vos­ti det­to. Zdro­jo­vá voda, kto­rú máme k dis­po­zí­cii dis­po­nu­je zväč­ša mier­ne zása­di­tým pH pit­nej vodo­vod­nej vody je oby­čaj­ne oko­lo 7.5. Pre mno­ho rýb je vhod­né zvý­šiť kys­losť na hod­no­ty oko­lo 6.5. Máme nie­koľ­ko mož­nos­tí – buď zme­niť pH čis­to che­mic­ky, ale­bo pri­ro­dze­nej­šie. Zme­na pH je efek­tív­nej­šia vte­dy, keď voda obsa­hu­je menej roz­pus­te­ných látok. Ak obsa­hu­je množ­stvo solí, zme­na pH bude o nie­čo men­šia a prí­pad­né kolí­sa­nie tej­to hod­no­ty bude men­šie. Pôso­be­nie NaCl – soľ na pH vody je pre akva­ris­tu nehod­no­ti­teľ­né, pre­to­že ide o soľ sil­nej zása­dy – NaOH a sil­nej kyse­li­ny – HCl, čiže pro­duk­tov zhru­ba rov­na­kej sily, čiže pH neovp­lyv­ňu­je. Prak­tic­ky na pH pôso­bí, ale len vďa­ka tomu, že aj akvá­ri­ová voda je vod­ný roz­tok obsa­hu­jú­ci rôz­ne lát­ky, s kto­rý­mi NaCl rea­gu­je. Toto pôso­be­nie je však malé a ťaž­ko predpokladateľné.


Reduc­ti­on of con­duc­ti­vi­ty is achie­ved by the same met­hods as desc­ri­bed for water hard­ness. Simi­lar­ly, inc­re­a­sing con­duc­ti­vi­ty. The sour­ce water avai­lab­le to us typi­cal­ly has a slight­ly alka­li­ne pH, with drin­king tap water usu­al­ly around 7.5. For many fish, it is suitab­le to inc­re­a­se the aci­di­ty to valu­es around 6.5. We have seve­ral opti­ons – eit­her chan­ge the pH pure­ly che­mi­cal­ly or more natu­ral­ly. pH chan­ge is more effec­ti­ve when water con­tains fewer dis­sol­ved sub­stan­ces. If it con­tains a lot of salts, the pH chan­ge will be some­what smal­ler, and any fluc­tu­ati­ons in this value will be smal­ler. The effect of NaCl – salt on the pH of water is neg­li­gib­le for the aqu­arist becau­se it is a salt of a strong base – NaOH and a strong acid – HCl, so it does not affect the pH. Prac­ti­cal­ly, NaCl affects pH only becau­se aqu­arium water is a solu­ti­on con­tai­ning vari­ous sub­stan­ces with which NaCl reacts. Howe­ver, this effect is small and dif­fi­cult to predict.


Die Reduk­ti­on der Leit­fä­hig­ke­it wird durch die gle­i­chen Met­ho­den erre­icht wie für die Was­ser­här­te besch­rie­ben. Eben­so die Erhöhung der Leit­fä­hig­ke­it. Das Aus­gang­swas­ser, das uns zur Ver­fügung steht, hat in der Regel einen leicht alka­lis­chen pH-​Wert, wobei das Trink­was­ser aus dem Was­ser­hahn in der Regel bei etwa 7,5 liegt. Für vie­le Fis­che ist es gee­ig­net, die Säu­re auf Wer­te um 6,5 zu erhöhen. Wir haben meh­re­re Mög­lich­ke­i­ten – ent­we­der den pH-​Wert rein che­misch zu ändern oder natür­li­cher. Die pH-​Wert-​Änderung ist wirk­sa­mer, wenn das Was­ser weni­ger gelös­te Sub­stan­zen ent­hält. Wenn es vie­le Sal­ze ent­hält, wird die pH-​Wert-​Änderung etwas kle­i­ner sein, und Sch­wan­kun­gen in die­sem Wert wer­den kle­i­ner sein. Die Wir­kung von NaCl – Salz auf den pH-​Wert des Was­sers ist für den Aqu­aria­ner ver­nach­läs­sig­bar, da es sich um ein Salz einer star­ken Base – NaOH und einer star­ken Säu­re – HCl han­delt und den pH-​Wert nicht bee­in­flusst. Prak­tisch bee­in­flusst NaCl den pH-​Wert nur, weil das Aqu­arien­was­ser eine Lösung ist, die vers­chie­de­ne Sub­stan­zen ent­hält, mit denen NaCl rea­giert. Die­ser Effekt ist jedoch gering und sch­wer vorhersehbar.


Pre zní­že­nie pH je vhod­né pou­ži­tie sla­bej kyse­li­ny 3‑hydrogen fos­fo­reč­nej – H3PO4. H3PO4 je sla­bá kyse­li­na. O tom aké množ­stvo je nut­né sa pre­sved­čiť expe­ri­men­tom. Zme­na pH akým­koľ­vek pôso­be­ním totiž závi­sí aj obsa­hu solí, čias­toč­ne od tep­lo­ty, tla­ku. Len veľ­mi zhru­ba mož­no pove­dať, že ak chce­me zní­žiť pH v 100 lit­ro­vej nádr­ži, apli­ku­je­me H3PO4 rádo­vo v mili­lit­roch. Pou­ži­tie iných kyse­lín neod­po­rú­čam, kaž­do­pád­ne by sa malo jed­nať aj z hľa­dis­ka vašej bez­peč­nos­ti o sla­bé kyse­li­ny jed­no­du­ché­ho zlo­že­nia. H3PO4 je vše­obec­ne pou­ží­va­ná lát­ka na zní­že­nie tvrdo­s­ti. Ak pou­ži­je­me H3PO4 dochá­dza pri tom aj ku tým­to reak­ciám (pri uve­de­ných reak­ciách je mož­né váp­nik Ca nahra­diť za hor­čík Mg): 2H3PO4 + 3Ca(HCO3)2 = Ca3(PO4)2 + 6H2CO3 – kyse­li­na rea­gu­je s dihyd­ro­ge­nuh­li­či­ta­nom vápe­na­tým za vzni­ku roz­pust­né­ho difos­fo­reč­na­nu vápe­na­té­ho a sla­bej kyse­li­ny uhli­či­tej. H2CO3 je nesta­bil­ná a môže sa roz­pad­núť na vodu a oxid uhli­či­tý. Vznik­nu­tý fos­fo­reč­nan môže byť hno­ji­vom pre ryby, sini­ce, ale­bo ria­sy, prí­pad­ne zdro­jom fos­fo­ru pre ryby. 2H3PO4 + Ca(HCO3)2 = Ca(H2PO4)2 + 6H2CO3 - vzni­ká roz­pust­ný dihyd­ro­gen­fos­fo­reč­nan vápe­na­tý. H3PO4 + Ca(HCO3)2 = CaH­PO4 + 2H2CO3 – vzni­ká neroz­pust­ný hyd­ro­gen­fos­fo­reč­nan vápe­na­tý. Ak by sme pred­sa len pou­ži­li sil­né kyse­li­ny: 2HCl + Ca(HCO3)2 = CaCl2 + 2H2CO3 – reak­ci­ou kyse­li­ny chlo­ro­vo­dí­ko­vej (soľ­nej) vzni­ká chlo­rid vápe­na­tý. H2SO4 + Ca(HCO3)2 = CaSO4 + 2H2CO3 - reak­ci­ou kyse­li­ny síro­vej vzni­ká síran vápe­na­tý. Ak zdro­jo­vá voda obsa­hu­je vápe­nec, pre­ja­ví sa puf­rač­ná kapa­ci­ta vody – uhli­či­tan vápe­na­tý CaCO3 totiž rea­gu­je so vznik­nu­tou kyse­li­nou uhli­či­tou za vzni­ku hyd­ro­ge­nuh­li­či­ta­nu, čím sa dostá­va­me do kolo­be­hu – vlast­ne do cyk­lu kyse­li­ny uhli­či­tej. Tým­to spô­so­bom sú naše mož­nos­ti ovplyv­niť pH limi­to­va­né. Na urči­tý čas sa pH aj v takom­to prí­pa­de zní­ži, ale nie nadl­ho, to závi­sí naj­mä na kon­cen­trá­cii hyd­ro­ge­nuh­li­či­ta­nov (od UT) a množ­stva pou­ži­tej kyse­li­ny – je len samoz­rej­mé že puf­rač­ná schop­nosť má svo­je limi­ty. V prí­pa­de vyso­kej tvrdo­s­ti vody je účin­nej­šie pou­žiť neus­tá­le pôso­be­nie CO2.


For redu­cing pH, it is suitab­le to use weak phosp­ho­ric acid (H₃PO₄). H₃PO₄ is a weak acid. The amount neces­sa­ry should be deter­mi­ned by expe­ri­men­ta­ti­on. The pH chan­ge by any means also depends on the salt con­tent, par­tial­ly on tem­pe­ra­tu­re, and pre­ssu­re. It can be rough­ly esti­ma­ted that to lower the pH in a 100-​liter tank, H₃PO₄ should be app­lied in mil­li­li­ters. I do not recom­mend using other acids; howe­ver, for your safe­ty, it should also be a weak acid of sim­ple com­po­si­ti­on. H₃PO₄ is com­mon­ly used to redu­ce hard­ness. When using H₃PO₄, the fol­lo­wing reac­ti­ons occur (in the lis­ted reac­ti­ons, cal­cium Ca can be repla­ced with mag­ne­sium Mg):

2H₃PO₄ + 3Ca(HCO₃)₂ = Ca₃(PO₄)₂ + 6H₂CO₃ – acid reacts with cal­cium bicar­bo­na­te to form solub­le cal­cium phosp­ha­te and weak car­bo­nic acid. H₂CO₃ is uns­tab­le and can bre­ak down into water and car­bon dioxi­de. The resul­ting phosp­ha­te can be fer­ti­li­zer for fish, algae, or a sour­ce of phosp­ho­rus for fish.

2H₃PO₄ + Ca(HCO₃)₂ = Ca(H₂PO₄)₂ + 6H₂CO₃ – solub­le dihyd­ro­gen phosp­ha­te cal­cium is formed.

H₃PO₄ + Ca(HCO₃)₂ = CaH­PO₄ + 2H₂CO₃ – inso­lub­le cal­cium hyd­ro­gen phosp­ha­te is formed.

If we were to use strong acids:

2HCl + Ca(HCO₃)₂ = CaC­l₂ + 2H₂CO₃ – reac­ti­on of hyd­ro­ch­lo­ric acid (muria­tic acid) forms cal­cium chloride.

H₂SO₄ + Ca(HCO₃)₂ = CaSO₄ + 2H₂CO₃ – reac­ti­on of sul­fu­ric acid forms cal­cium sulfate.

If the sour­ce water con­tains limes­to­ne, the wate­r’s buf­fe­ring capa­ci­ty will be evi­dent – cal­cium car­bo­na­te CaCO₃ reacts with the resul­ting car­bo­nic acid to form bicar­bo­na­te, ente­ring the car­bo­nic acid cyc­le. In this way, our opti­ons to influ­en­ce pH are limi­ted. pH will dec­re­a­se for a cer­tain time, but not for long; this main­ly depends on the con­cen­tra­ti­on of bicar­bo­na­tes (from CO₂) and the amount of acid used – it’s obvi­ous that the buf­fe­ring capa­ci­ty has its limits. In the case of high water hard­ness, con­ti­nu­ous CO₂ tre­at­ment is more effective.


Für die Redu­zie­rung des pH-​Werts ist die Ver­wen­dung von sch­wa­cher Phosp­hor­sä­u­re (H₃PO₄) gee­ig­net. H₃PO₄ ist eine sch­wa­che Säu­re. Die erfor­der­li­che Men­ge soll­te durch Expe­ri­men­te ermit­telt wer­den. Die pH-​Änderung durch jedes Mit­tel hängt auch vom Salz­ge­halt, tei­lwe­i­se von der Tem­pe­ra­tur und dem Druck ab. Es kann grob ges­chätzt wer­den, dass zur Sen­kung des pH-​Werts in einem 100-​Liter-​Tank H₃PO₄ in Mil­li­li­tern ver­wen­det wer­den soll­te. Ich emp­feh­le nicht, ande­re Säu­ren zu ver­wen­den; jedoch soll­te es aus Sicher­he­itsg­rün­den auch eine sch­wa­che Säu­re mit ein­fa­cher Zusam­men­set­zung sein. H₃PO₄ wird häu­fig zur Redu­zie­rung der Här­te ver­wen­det. Bei der Ver­wen­dung von H₃PO₄ tre­ten die fol­gen­den Reak­ti­onen auf (in den auf­ge­fü­hr­ten Reak­ti­onen kann Cal­cium Ca durch Mag­ne­sium Mg ersetzt werden):

2H₃PO₄ + 3Ca(HCO₃)₂ = Ca₃(PO₄)₂ + 6H₂CO₃ – die Säu­re rea­giert mit Cal­cium­bi­car­bo­nat und bil­det lös­li­ches Cal­ciump­hosp­hat und sch­wa­che Koh­len­sä­u­re. H₂CO₃ ist ins­ta­bil und kann in Was­ser und Koh­len­di­oxid zer­fal­len. Das ents­te­hen­de Phosp­hat kann Dün­ger für Fis­che, Algen oder eine Phosp­ho­rqu­el­le für Fis­che sein.

2H₃PO₄ + Ca(HCO₃)₂ = Ca(H₂PO₄)₂ + 6H₂CO₃ – lös­li­ches Dihyd­ro­genp­hosp­hat­cal­cium entsteht.

H₃PO₄ + Ca(HCO₃)₂ = CaH­PO₄ + 2H₂CO₃ – unlös­li­ches Cal­cium­di­hyd­ro­genp­hosp­hat entsteht.

Wenn wir star­ke Säu­ren ver­wen­den würden:

2HCl + Ca(HCO₃)₂ = CaC­l₂ + 2H₂CO₃ – Reak­ti­on von Salz­sä­u­re (Chlor­was­sers­toff­sä­u­re) bil­det Calciumchlorid.

H₂SO₄ + Ca(HCO₃)₂ = CaSO₄ + 2H₂CO₃ – Reak­ti­on von Sch­we­fel­sä­u­re bil­det Calciumsulfat.

Wenn das Aus­gang­swas­ser Kalks­te­in ent­hält, wird die Puf­fer­ka­pa­zi­tät des Was­sers offen­sicht­lich sein – Cal­cium­car­bo­nat CaCO₃ rea­giert mit der ents­te­hen­den Koh­len­sä­u­re zu Bicar­bo­nat und gelangt in den Koh­len­sä­u­re­zyk­lus. Auf die­se Wei­se sind unse­re Mög­lich­ke­i­ten zur Bee­in­flus­sung des pH-​Werts beg­renzt. Der pH-​Wert wird für eine bes­timm­te Zeit sin­ken, aber nicht lan­ge; dies hängt haupt­säch­lich von der Kon­zen­tra­ti­on der Bicar­bo­na­te (aus CO₂) und der ver­wen­de­ten Säu­re­men­ge ab – es ist offen­sicht­lich, dass die Puf­fer­ka­pa­zi­tät ihre Gren­zen hat. Bei hoher Was­ser­här­te ist eine kon­ti­nu­ier­li­che CO₂-​Behandlung wirksamer.


Pri­ro­dze­ne sa dá zní­žiť pH takis­to. Vhod­né sú napr. jel­šo­vé šiš­ky, zahní­va­jú­ce dre­vo, raše­li­na, výluh z raše­li­ny atď. Všet­ko závi­sí od pozna­nia dru­ho­vých náro­kov jed­not­li­vých rýb a rast­lín. Nie­kto­ré ryby nezná­ša­jú raše­li­no­vý extrakt. Raše­li­no­vý výluh sa čas­to pou­ží­va pre výte­ry napr. tet­ro­vi­tých rýb. Raše­li­na zni­žu­je pH. Zahní­va­jú­ce dre­vo má svo­je úska­lia. Vše­obec­ne sa však dá pove­dať naj­mä pre začí­na­jú­cich akva­ris­tov, že pou­ži­tie rôz­nych mate­riá­lov v akvá­riu nie je také nebez­peč­né ako si väč­ši­na z nich mys­lí. Naopak, svo­jou dlho­do­bej­šou a pozvoľ­nou čin­nos­ťou je ich úči­nok na zme­nu pH ove­ľa pri­ja­teľ­nej­ší ako pri pou­ži­tí čis­tej ché­mie. Navy­še cha­rak­ter kyse­lín, kto­ré sa lúhu­jú z tých­to mate­riá­lov čas­to bla­ho­dar­ne vplý­va­jú aj na zdra­vie rýb, na rast rast­lín. Humí­no­vé kyse­li­ny, orga­nic­ké kom­ple­xy, che­lá­ty a ostat­né orga­nic­ké lát­ky, kto­ré sú čas­to pri­ro­dze­nou súčas­ťou našich rýb a rast­lín aj v ich domovine.


Natu­ral­ly, pH can also be lowe­red. Suitab­le opti­ons inc­lu­de alder cones, deca­y­ing wood, peat, peat extract, etc. Howe­ver, eve­ryt­hing depends on unders­tan­ding the spe­ci­fic requ­ire­ments of indi­vi­du­al fish and plants. Some fish do not tole­ra­te peat extract. Peat extract is often used for dips, for exam­ple, for tet­ra fish. Peat redu­ces pH. Deca­y­ing wood has its dra­wbacks. Howe­ver, it can gene­ral­ly be said, espe­cial­ly for begin­ning aqu­arists, that using vari­ous mate­rials in the aqu­arium is not as dan­ge­rous as most peop­le think. On the con­tra­ry, the­ir long-​term and gra­du­al acti­vi­ty makes the­ir effect on pH chan­ge much more accep­tab­le than using pure che­mi­cals. More­over, the natu­re of the acids lea­ched from the­se mate­rials often has a bene­fi­cial effect on fish health and plant gro­wth. Humic acids, orga­nic com­ple­xes, che­la­tes, and other orga­nic sub­stan­ces that are often a natu­ral part of our fish and plants, even in the­ir nati­ve habi­tats, play a role in this process.


Natür­lich kann der pH-​Wert auch auf natür­li­che Wei­se gesenkt wer­den. Gee­ig­ne­te Opti­onen sind zum Beis­piel Erlen­zap­fen, ver­rot­ten­des Holz, Torf, Tor­faus­zug usw. Alles hängt jedoch von der Kenn­tnis der spe­zi­fis­chen Anfor­de­run­gen ein­zel­ner Fis­che und Pflan­zen ab. Eini­ge Fis­che ver­tra­gen kei­nen Tor­faus­zug. Tor­faus­zug wird oft für Bäder ver­wen­det, zum Beis­piel für Tetra-​Fische. Torf senkt den pH-​Wert. Ver­rot­ten­des Holz hat sei­ne Nach­te­i­le. Im All­ge­me­i­nen kann jedoch beson­ders für Anfänger-​Aquarianer gesagt wer­den, dass die Ver­wen­dung vers­chie­de­ner Mate­ria­lien im Aqu­arium nicht so gefähr­lich ist, wie die meis­ten den­ken. Im Gegen­te­il, durch ihre langf­ris­ti­ge und sch­ritt­we­i­se Akti­vi­tät ist ihr Ein­fluss auf die pH-​Änderung viel akzep­tab­ler als bei Ver­wen­dung rei­ner Che­mi­ka­lien. Außer­dem haben die Säu­ren, die aus die­sen Mate­ria­lien aus­ge­laugt wer­den, oft einen posi­ti­ven Ein­fluss auf die Gesund­he­it der Fis­che und das Wachs­tum der Pflan­zen. Humin­sä­u­ren, orga­nis­che Kom­ple­xe, Che­la­te und ande­re orga­nis­che Sub­stan­zen, die oft natür­li­cher Bes­tand­te­il unse­rer Fis­che und Pflan­zen sind, auch in ihrer Heimat.


Na zvý­še­nie pH sa pou­ží­va sóda bikar­bó­na – NaHCO3. Čo sa však týka zvy­šo­va­nie pH, pou­ží­va sa v ove­ľa men­šej mie­re tým­to čis­to che­mic­kým spô­so­bom. Pri­ro­dze­ným spô­so­bom sa dá zvý­šiť pH naj­lep­šie sub­strá­tom. Uhli­či­ta­ny obsia­hnu­té vo vápen­ci, tra­ver­tí­ne posú­va­jú hod­no­ty pH až na úro­veň nad 8 úpl­ne bež­ne. Veľ­mi jed­no­du­chá úpra­va vody je pou­ži­tie soli. Ak chce­me dosiah­nuť stá­lu hla­di­nu soli, neza­bú­daj­te soľ pri výme­ne a dolie­va­ní vody dopĺňať. Soľ sa pou­ží­va pre nie­kto­ré dru­hy rýb, pre­dov­šet­kým pre bra­kic­ké dru­hy. Bra­kic­ké dru­hy žijú v prí­ro­de na prie­ni­ku slad­kej vody a mor­skej, napr. v ústiach veľ­kých riek do mora. Aj pre nie­kto­ré živo­rod­ky sa odpo­rú­ča vodu soliť. Živo­rod­ky žijú v Juž­nej a Sever­nej Ame­ri­ke vo vodách stred­ne tvr­dých. Vhod­ná dáv­ka pre gup­ky je 2 – 3 poliev­ko­vé lyži­ce soli na 40 lit­rov vody. Pre black­mol­ly – typic­ký bra­kic­ký druh ešte o nie­čo viac – 5 lyžíc na 40 lit­rov vody. Soľ môže­me pou­žiť kuchyn­skú aj mor­skú, kto­rú dostať v potra­vi­nách. Ak začí­na­me s apli­ká­ci­ou soli, buď­me zo začiat­ku opatr­ný, postu­puj­me obo­zret­ne, na soľ ryby zvy­kaj­me rad­šej postup­ne, pre­to­že osmo­tic­ký tlak je zrad­ný. Pri náh­lej zme­ne vodi­vos­ti spô­so­be­nej náh­lym prí­ras­tkom NaCl dôj­de k nega­tív­ne­mu stre­su – naj­mä povrch – koža rýb je náchyl­ná na poško­de­nie. Táto vlast­nosť sa využí­va pri lieč­be.


To inc­re­a­se pH, baking soda – NaHCO3 is used. Howe­ver, when it comes to rai­sing pH, this pure­ly che­mi­cal met­hod is used to a much les­ser extent. Natu­ral­ly, pH can be best inc­re­a­sed by using a sub­stra­te. Car­bo­na­tes con­tai­ned in limes­to­ne, tra­ver­ti­ne com­mon­ly shift pH valu­es​to levels abo­ve 8. A very sim­ple water adjus­tment is the use of salt. If we want to achie­ve a cons­tant level of salt, do not for­get to add salt during water chan­ges and top-​ups. Salt is used for some types of fish, espe­cial­ly for brac­kish spe­cies. Brac­kish spe­cies live in natu­re at the inter­sec­ti­on of fresh and salt­wa­ter, for exam­ple, at the mouths of lar­ge rivers into the sea. Salt is also recom­men­ded for some live­be­a­rers. Live­be­a­rers live in waters of mode­ra­te hard­ness in South and North Ame­ri­ca. The app­rop­ria­te dosa­ge for gup­pies is 2 – 3 tab­les­po­ons of salt per 40 liters of water. For black mol­lies – a typi­cal brac­kish spe­cies – even a litt­le more, 5 tab­les­po­ons per 40 liters of water. We can use both tab­le and sea salt, which can be obtai­ned in sto­res. When star­ting with salt app­li­ca­ti­on, let’s be cau­ti­ous at first, pro­ce­ed care­ful­ly, and let the fish gra­du­al­ly get used to the salt, as osmo­tic pre­ssu­re is tric­ky. A sud­den chan­ge in con­duc­ti­vi­ty cau­sed by a sud­den inc­re­a­se in NaCl will lead to nega­ti­ve stress – espe­cial­ly the sur­fa­ce – the fis­h’s skin is sus­cep­tib­le to dama­ge. This pro­per­ty is uti­li­zed in treatment.


Um den pH-​Wert zu erhöhen, wird Back­pul­ver – NaHCO3 ver­wen­det. Wenn es jedoch darum geht, den pH-​Wert zu erhöhen, wird die­se rein che­mis­che Met­ho­de in viel gerin­ge­rem Maße ver­wen­det. Natür­lich kann der pH-​Wert am bes­ten durch die Ver­wen­dung eines Sub­strats erhöht wer­den. Car­bo­na­te, die in Kalks­te­in und Tra­ver­tin ent­hal­ten sind, vers­chie­ben die pH-​Werte häu­fig auf Wer­te über 8. Eine sehr ein­fa­che Mög­lich­ke­it der Was­se­ran­pas­sung ist die Ver­wen­dung von Salz. Wenn wir einen kons­tan­ten Salz­ge­halt erre­i­chen wol­len, soll­ten wir nicht ver­ges­sen, beim Was­ser­wech­sel und Nach­fül­len Salz hin­zu­zu­fügen. Salz wird für eini­ge Fis­char­ten ver­wen­det, ins­be­son­de­re für Brack­was­se­rar­ten. Brack­was­se­rar­ten leben in der Natur an der Schnitts­tel­le von Süß- und Sal­zwas­ser, zum Beis­piel an den Mün­dun­gen gro­ßer Flüs­se ins Meer. Auch für eini­ge lebend­ge­bä­ren­de Arten wird Salz emp­foh­len. Lebend­ge­bä­ren­de Arten leben in Gewäs­sern mitt­le­rer Här­te in Süd- und Nor­da­me­ri­ka. Die rich­ti­ge Dosie­rung für Gup­pys bet­rägt 2 – 3 Ess­löf­fel Salz pro 40 Liter Was­ser. Für sch­war­ze Mol­lys – eine typis­che Brack­was­se­rart – etwas mehr, 5 Ess­löf­fel pro 40 Liter Was­ser. Wir kön­nen sowohl Tafel- als auch Meer­salz ver­wen­den, das in Ges­chäf­ten erhält­lich ist. Wenn wir mit der Anwen­dung von Salz begin­nen, soll­ten wir zuerst vor­sich­tig vor­ge­hen, vor­sich­tig vor­ge­hen und die Fis­che all­mäh­lich an das Salz gewöh­nen, da der osmo­tis­che Druck tüc­kisch ist. Eine plötz­li­che Ände­rung der Leit­fä­hig­ke­it durch einen plötz­li­chen Ans­tieg von NaCl führt zu nega­ti­vem Stress – ins­be­son­de­re die Oberf­lä­che – die Haut der Fis­che ist anfäl­lig für Schä­den. Die­se Eigen­schaft wird bei der Behand­lung genutzt.


Soľ sa odpo­rú­ča afric­kých jazer­ným cich­li­dám. Obsa­hu­jú pomer­ne vyso­ké kon­cen­trá­cie sodí­ka – Na. V lite­ra­tú­re sa uvá­dza až 0.5 kg na 100 lit­rov vody, ja odpo­rú­čam jed­nu poliev­ko­vú lyži­cu na 40 lit­rov vody. Soľ pôso­bí zrej­me ako tran­s­por­tér meta­bo­lic­kých pro­ce­sov a kata­ly­zá­tor. NaCl naj­skôr diso­ciu­je na kati­ón sodí­ka a ani­ón chló­ru. Chlór pôso­bí ako dez­ifen­kcia a sodík sa podie­ľa na bio­lo­gic­kých reak­ciách. Orga­nic­ké far­bi­vá, lie­či­vá môže­me úspeš­ne odstrá­niť aktív­nym uhlím, čias­toč­ne raše­li­nou. Aktív­ne uhlie vôbec má širo­ké pole uplat­ne­nia. Je pomer­ne účin­nou pre­ven­ci­ou voči náka­ze, pre­to­že adsor­bu­je na seba množ­stvo škod­li­vín. Fun­gu­je ako fil­ter. Má takú štruk­tú­ru, že oplý­va obrov­ským povr­chom, jeden mm3 posky­tu­je až 100150 m² plo­chy. Pou­ží­va sa aj v komerč­ne pre­dá­va­ných fil­troch. Doká­že čias­toč­ne zní­žiť aj tvrdo­sť vody. Tre­ba si však uve­do­miť, že jeho pôso­be­nie je naj­mä v nádr­žiach s rast­li­na­mi nežia­du­ce prá­ve kvô­li svo­jej adsorpč­nej schop­nos­ti. Aktív­ne uhlie totiž okrem iné­ho odo­be­rá rast­li­nám živi­ny. Samoz­rej­me, jeho schop­nos­ti sú vyčer­pa­teľ­né – po istom čase sa kapa­ci­ta nasý­ti a je nut­né aktív­ne uhlie buď rege­ne­ro­vať, ale­bo vyme­niť. Rege­ne­rá­cia je pro­ces che­mic­ký, pre akva­ris­tu prí­liš náklad­ný, vlast­ne zby­toč­ný. Čias­toč­ne by sa dalo rege­ne­ro­vať aktív­ne uhlie varom, ale aj to je dosť neprie­chod­né. Ak máme k dis­po­zí­cii práš­ko­vú for­mu aktív­ne­ho uhlia, máme vyhra­né – jeho účin­nosť je prak­tic­ky naj­vyš­šia a môže­me ho teda pou­žiť naj­men­ší objem. Rie­še­ním je imple­men­tá­cia do fil­tra, ale aj napr. nasy­pa­nie do pan­ču­chy a umiest­ne­nie do nádr­že. Ak sa nám časť rozp­tý­li, nezú­faj­me, aktív­ne uhlie je neškod­né, vodu nekalí.


Salt is recom­men­ded for Afri­can lake cich­lids. They con­tain rela­ti­ve­ly high con­cen­tra­ti­ons of sodium – Na. In lite­ra­tu­re, up to 0.5 kg per 100 liters of water is men­ti­oned, but I recom­mend one tab­les­po­on per 40 liters of water. Salt appe­ars to act as a tran­s­por­ter of meta­bo­lic pro­ces­ses and a cata­lyst. NaCl dis­so­cia­tes first into sodium cati­on and chlo­ri­ne ani­on. Chlo­ri­ne acts as a disin­fec­tant, and sodium par­ti­ci­pa­tes in bio­lo­gi­cal reac­ti­ons. Orga­nic dyes, drugs can be suc­cess­ful­ly remo­ved by acti­va­ted car­bon, par­tial­ly by peat. Acti­va­ted car­bon has a wide ran­ge of app­li­ca­ti­ons. It is a rela­ti­ve­ly effec­ti­ve pre­ven­ti­on against infec­ti­on becau­se it adsorbs a lot of harm­ful sub­stan­ces. It works as a fil­ter. It has such a struc­tu­re that it has a huge sur­fa­ce area, one mm3 pro­vi­des up to 100150 m² of area. It is also used in com­mer­cial­ly avai­lab­le fil­ters. It can also par­tial­ly redu­ce water hard­ness. Howe­ver, it should be rea­li­zed that its acti­on is unde­si­rab­le, espe­cial­ly in tanks with plants, due to its adsorp­ti­on capa­ci­ty. Acti­va­ted car­bon also remo­ves nut­rients from plants. Of cour­se, its capa­bi­li­ties are exhaus­tib­le – after some time, the capa­ci­ty beco­mes satu­ra­ted, and it is neces­sa­ry to eit­her rege­ne­ra­te or repla­ce the acti­va­ted car­bon. Rege­ne­ra­ti­on is a che­mi­cal pro­cess, too cost­ly for the aqu­arist, actu­al­ly unne­ces­sa­ry. Acti­va­ted car­bon could be par­tial­ly rege­ne­ra­ted by boiling, but this is quite imprac­ti­cal. If we have powde­red acti­va­ted car­bon avai­lab­le, we have won – its effi­cien­cy is prac­ti­cal­ly the hig­hest, and the­re­fo­re we can use the smal­lest volu­me. The solu­ti­on is to imple­ment it into the fil­ter, but also for exam­ple, to pour it into a stoc­king and pla­ce it in the tank. If some of it dis­per­ses, do not des­pair, acti­va­ted car­bon is harm­less, it does not cloud the water.


Salz wird afri­ka­nis­chen See­bunt­bars­chen emp­foh­len. Sie ent­hal­ten rela­tiv hohe Natrium­kon­zen­tra­ti­onen – Na. In der Lite­ra­tur wird bis zu 0,5 kg pro 100 Liter Was­ser erwähnt, aber ich emp­feh­le einen Ess­löf­fel pro 40 Liter Was­ser. Salz sche­int als Tran­s­por­te­ur von Stof­fwech­selp­ro­zes­sen und als Kata­ly­sa­tor zu wir­ken. NaCl dis­so­zi­iert zuerst in Natrium-​Kation und Chlorid-​Anion. Chlor wir­kt als Desin­fek­ti­ons­mit­tel, und Natrium nimmt an bio­lo­gis­chen Reak­ti­onen teil. Orga­nis­che Farb­stof­fe, Medi­ka­men­te kön­nen erfolg­re­ich durch Aktiv­koh­le, tei­lwe­i­se durch Torf ent­fernt wer­den. Aktiv­koh­le hat eine Viel­zahl von Anwen­dun­gen. Es ist eine rela­tiv effek­ti­ve Vor­be­ugung gegen Infek­ti­onen, da es vie­le schäd­li­che Sub­stan­zen adsor­biert. Es funk­ti­oniert wie ein Fil­ter. Es hat eine Struk­tur, die eine rie­si­ge Oberf­lä­che bie­tet, ein mm3 bie­tet bis zu 100150 m² Flä­che. Es wird auch in kom­mer­ziell erhält­li­chen Fil­tern ver­wen­det. Es kann auch den Här­teg­rad des Was­sers tei­lwe­i­se redu­zie­ren. Es soll­te jedoch erkannt wer­den, dass sei­ne Wir­kung in Tanks mit Pflan­zen uner­wün­scht ist, aufg­rund sei­ner Adsorp­ti­on­ska­pa­zi­tät. Aktiv­koh­le ent­fernt auch Nährs­tof­fe aus Pflan­zen. Natür­lich sind ihre Fähig­ke­i­ten beg­renzt – nach eini­ger Zeit wird die Kapa­zi­tät gesät­tigt, und es ist not­wen­dig, die Aktiv­koh­le zu rege­ne­rie­ren oder zu erset­zen. Die Rege­ne­ra­ti­on ist ein che­mis­cher Pro­zess, zu teuer für den Aqu­aria­ner, eigen­tlich unnötig. Aktiv­koh­le könn­te tei­lwe­i­se durch Kochen rege­ne­riert wer­den, aber das ist ziem­lich unp­rak­tisch. Wenn etwas davon zers­tre­ut wird, ver­zwe­i­feln Sie nicht, Aktiv­koh­le ist harm­los, sie trübt das Was­ser nicht.


Vo vode z vodo­vod­nej sie­te sa nachá­dza­jú rôz­ne plyn­né zlož­ky, kto­ré sú urče­né pre­dov­šet­kým pre dez­ifen­kciu. Pre člo­ve­ka sú nut­nos­ťou, ale z hľa­dis­ka živo­ta v akvá­ria je ich vplyv nežia­du­ci. Jed­ným z tých­to ply­nov je vše­obec­ne zná­my chlór. Je do jedo­va­tý plyn, aj pre člo­ve­ka, kto­rý však v níz­kych dáv­kach člo­ve­ku neško­dí a zabí­ja bak­té­rie. Pit­ná voda ho obsa­hu­je oby­čaj­ne 0.10.2 mg/​l, maxi­mál­ne do 0.5 mg/​l. Chlór ško­dí naj­mä žiab­ram rýb. Na to, aby sme sa chló­ru zba­vi­li, je napr. odstá­tie vhod­né. Exis­tu­jú na trhu príp­rav­ky na báze thi­osí­ra­nu sod­né­ho – Na2S2O3, kto­ré doká­žu zba­viť vody chló­ru. Odstá­tím vody sa zba­ví­me chló­ru pri­bliž­ne za jeden deň. Vode len musí­me dovo­liť, aby ply­ny mali kade uni­kať – tak­že žiad­ne uzav­re­té ban­das­ky. Čias­toč­ne pri okam­ži­tom napúš­ťa­ní vody, pomô­že čo naj­dl­h­ší tran­s­port vody v hadi­ci. Znač­ná časť chló­ru sa tak­to odpa­rí. Vo vode sa nachá­dza­jú aj iné ply­ny – k doko­na­lé­mu odply­ne­niu odstá­tím dôj­de po šty­roch dňoch. Pre výte­ry nie­kto­rých dru­hov sa pou­ží­va­jú rôz­ne výlu­hy, napr. výlu­hy vod­ných rast­lín. Tie doká­žu vodu doslo­va pri­pra­viť – sta­bi­li­zo­vať, poskyt­núť žia­da­né lát­ky, napr. sto­po­vé lát­ky, resp. doká­že snáď via­zať prí­pad­ne škod­li­vej­šie súčas­ti. Pou­ží­va sa aj dre­vo, dub, jel­ša, vŕba. Hodí sa aj hne­dé uhlie. Raše­li­na fun­gu­je ako čias­toč­ný adsor­bent. Na dru­hej stra­ne vode dodá­va humí­no­vé kyse­li­ny a iné orga­nic­ké lát­ky. Naj­mä v posled­nej dobe sa využí­va svet­lo ultra­fia­lo­vé na úpra­vu vody. Čas­to aj na jej ste­ri­li­zá­ciu od cho­ro­bo­plod­ných zárod­kov. Môže sa využiť aj tým spô­so­bom – kedy zasa­hu­je celý objem vody – napr. v prí­pa­de akút­nej cho­ro­by, no zväč­ša sa UV lam­pa pou­ží­va ako fil­ter, kto­rý účin­ne zba­vu­je vodu roz­lič­ných zárod­kov orga­niz­mov. Voda ošet­re­ná dosta­toč­ne sil­nou UV lam­pou sa napr. neza­ria­su­je. Jej pou­ži­tie eli­mi­nu­je mik­ro­biál­ne náka­zy na mini­mum. UV lam­py mož­no dostať bež­ne na trhu s akva­ris­tic­ký­mi potre­ba­mi. Ako sil­nú lam­pu – s akým prí­ko­nom nám urču­je objem nádr­že. UV lam­pu neod­po­rú­čam pou­ží­vať nepretržite.


In the water from the muni­ci­pal water supp­ly, vari­ous gase­ous com­po­nents are pre­sent, pri­ma­ri­ly inten­ded for disin­fec­ti­on. They are essen­tial for humans, but the­ir impact on aqu­arium life is unde­si­rab­le. One of the­se gases is chlo­ri­ne, which is a well-​known toxic gas, even for humans, but in low doses, it is harm­less to humans and kills bac­te­ria. Drin­king water usu­al­ly con­tains chlo­ri­ne in the ran­ge of 0.10.2 mg/​l, with a maxi­mum of up to 0.5 mg/​l. Chlo­ri­ne is par­ti­cu­lar­ly harm­ful to fish gills. To rid water of chlo­ri­ne, for exam­ple, let­ting it stand is suitab­le. The­re are pro­ducts on the mar­ket based on sodium thi­osul­fa­te – Na2S2O3, which can remo­ve chlo­ri­ne from water. Allo­wing water to stand will rid it of chlo­ri­ne in app­ro­xi­ma­te­ly one day. We just need to allow gases to esca­pe – so no clo­sed con­tai­ners. Par­tial­ly, imme­dia­te water fil­ling will help, with the lon­gest possib­le tran­s­port of water in the hose. A sig­ni­fi­cant por­ti­on of chlo­ri­ne will eva­po­ra­te this way. The­re are also other gases in the water – com­ple­te degas­sing by stan­ding occurs after four days. Vari­ous infu­si­ons are used for the swabs of some spe­cies, such as infu­si­ons of aqu­atic plants. The­se can lite­ral­ly pre­pa­re water – sta­bi­li­ze it, pro­vi­de desi­red sub­stan­ces, such as tra­ce ele­ments, or possib­ly bind more harm­ful com­po­nents. Wood is also used, oak, alder, wil­low. Bro­wn coal is also suitab­le. Peat acts as a par­tial adsor­bent. On the other hand, it adds humic acids and other orga­nic sub­stan­ces to the water. Espe­cial­ly recen­tly, ultra­vi­olet light has been used for water tre­at­ment. Often also for its ste­ri­li­za­ti­on from pat­ho­gens. It can also be used in such a way – when the enti­re volu­me of water is affec­ted – for exam­ple, in the case of an acu­te dise­a­se, but usu­al­ly, the UV lamp is used as a fil­ter, which effec­ti­ve­ly rids the water of vari­ous orga­nism pat­ho­gens. Water tre­a­ted with a suf­fi­cien­tly strong UV lamp, for exam­ple, does not beco­me clou­dy. Its use mini­mi­zes mic­ro­bial infec­ti­ons. UV lamps are rea­di­ly avai­lab­le on the mar­ket for aqu­arium supp­lies. As for a strong lamp – the wat­ta­ge is deter­mi­ned by the volu­me of the tank. I do not recom­mend using the UV lamp continuously.


Im Was­ser aus der städ­tis­chen Was­ser­ver­sor­gung sind vers­chie­de­ne gas­för­mi­ge Bes­tand­te­i­le vor­han­den, die haupt­säch­lich zur Desin­fek­ti­on bes­timmt sind. Sie sind für Men­schen uner­läss­lich, aber ihr Ein­fluss auf das Aqu­arium­le­ben ist uner­wün­scht. Eines die­ser Gase ist Chlor, das ein bekann­tes gif­ti­ges Gas ist, auch für Men­schen, aber in gerin­gen Dosen ist es für Men­schen harm­los und tötet Bak­te­rien ab. Trink­was­ser ent­hält nor­ma­ler­we­i­se Chlor im Bere­ich von 0,10,2 mg/​l, maxi­mal bis zu 0,5 mg/​l. Chlor ist beson­ders schäd­lich für die Kie­men der Fis­che. Um Was­ser von Chlor zu bef­re­ien, ist es beis­piel­swe­i­se gee­ig­net, es ste­hen zu las­sen. Es gibt Pro­duk­te auf dem Mar­kt, die auf Natriumt­hi­osul­fat – Na2S2O3, basie­ren und Chlor aus Was­ser ent­fer­nen kön­nen. Das Ste­hen­las­sen von Was­ser wird es in unge­fähr einem Tag von Chlor bef­re­ien. Wir müs­sen nur den Gasen erlau­ben zu ent­we­i­chen – also kei­ne gesch­los­se­nen Behäl­ter. Tei­lwe­i­se wird das sofor­ti­ge Befül­len mit Was­ser hel­fen, mit dem läng­stmög­li­chen Tran­s­port von Was­ser im Sch­lauch. Auf die­se Wei­se ver­duns­tet ein erheb­li­cher Teil des Chlors. Es gibt auch ande­re Gase im Was­ser – das volls­tän­di­ge Entga­sen durch Ste­hen­las­sen erfolgt nach vier Tagen. Für Abs­tri­che eini­ger Arten wer­den vers­chie­de­ne Infu­si­onen ver­wen­det, wie z.B. Infu­si­onen von Was­serpf­lan­zen. Die­se kön­nen das Was­ser buchs­täb­lich vor­be­re­i­ten – es sta­bi­li­sie­ren, gewün­sch­te Sub­stan­zen bere­its­tel­len, wie z.B. Spu­re­ne­le­men­te, oder mög­li­cher­we­i­se schäd­li­che­re Kom­po­nen­ten bin­den. Auch Holz wird ver­wen­det, Eiche, Erle, Wei­de. Braun­koh­le ist eben­falls gee­ig­net. Torf wir­kt als tei­lwe­i­ser Adsor­bens. Auf der ande­ren Sei­te fügt es dem Was­ser Humin­sä­u­ren und ande­re orga­nis­che Sub­stan­zen hin­zu. Beson­ders in letz­ter Zeit wird ultra­vi­olet­tes Licht zur Was­se­rauf­be­re­i­tung ver­wen­det. Oft auch zur Ste­ri­li­sa­ti­on von Kran­khe­it­ser­re­gern. Es kann auch so ver­wen­det wer­den – wenn das gesam­te Was­ser­vo­lu­men bet­rof­fen ist – zum Beis­piel im Fall einer aku­ten Kran­khe­it, aber in der Regel wird die UV-​Lampe als Fil­ter ver­wen­det, der das Was­ser effek­tiv von vers­chie­de­nen Organismus-​Erregern bef­re­it. Was­ser, das mit einer aus­re­i­chend star­ken UV-​Lampe behan­delt wird, wird zum Beis­piel nicht trüb. Ihr Ein­satz mini­miert mik­ro­biel­le Infek­ti­onen. UV-​Lampen sind auf dem Mar­kt für Aqu­arium­zu­be­hör leicht erhält­lich. Was eine star­ke Lam­pe bet­rifft – die Leis­tung wird durch das Volu­men des Tanks bes­timmt. Ich emp­feh­le nicht, die UV-​Lampe kon­ti­nu­ier­lich zu verwenden.

Use Facebook to Comment on this Post

Akvaristika, Biológia

Kyslík v živote rýb – pozitíva i negatíva

Hits: 12569

Autor prís­pev­ku: Róbert Toman

Pozi­tív­ne pôso­be­nie kys­lí­ka na živé orga­niz­my je vše­obec­ne zná­me. Ryby potre­bu­jú k svoj­mu živo­tu kys­lík rov­na­ko ako sucho­zem­ské sta­vov­ce, hoci spô­sob ich dýcha­nia je úpl­ne odliš­ný. Keď­že nema­jú pľú­ca, kys­lík musí pre­ni­kať z vody do krvi pria­mo cez tka­ni­vá, kto­ré sú v pria­mom kon­tak­te s vodou, teda cez žiab­re. Kys­lík, kto­rý má difun­do­vať do krvi cez žiab­re musí byť samoz­rej­me roz­pus­te­ný, pre­to­že ryby nema­jú schop­nosť pri­jí­mať kys­lík vo for­me bub­li­niek. Odchyt rýb, tran­s­port a ich chov v zaja­tí má váž­ne meta­bo­lic­ké náro­ky v moz­gu, sva­loch, srd­ci, žiab­rach a ďal­ších tka­ni­vách. Vše­obec­ne ich nazý­va­me stres, ale fyzi­olo­gic­ká situ­ácia je omno­ho kom­pli­ko­va­nej­šia. Stres spo­je­ný s odchy­tom a vypus­te­ním rýb do iné­ho pro­stre­dia môže pris­pieť k úmr­tnos­ti rýb. Pocho­pe­nie ener­ge­tic­ké­ho meta­bo­liz­mu rýb a fak­to­rov, kto­ré ho ovplyv­ňu­jú sú dôle­ži­té pre správ­ne zaob­chá­dza­nie s ryba­mi ich ošet­re­nie po odchy­te. Pred zhod­no­te­ním rizík, kto­ré súvi­sia s kys­lí­kom vo vode a pre ich pocho­pe­nie si pri­blíž­me aspoň v krát­kos­ti fyzi­olo­gic­ké pocho­dy spo­je­né s fun­kci­ou kys­lí­ka v orga­niz­me rýb.

Ener­ge­tic­ký meta­bo­liz­mus a potre­ba kyslíka 

Ener­gia, kto­rá sa pou­ží­va na zabez­pe­če­nie všet­kých bun­ko­vých fun­kcií sa zís­ka­va z ade­no­zín­tri­fos­fá­tu (ATP). Je potreb­ný na kon­trak­cie sva­lov, vede­nie ner­vo­vých impul­zov v moz­gu, čin­nosť srd­ca, na prí­jem kys­lí­ka žiab­ra­mi atď. Ak bun­ka potre­bu­je ener­giu, roz­po­je­ním väzieb v ATP sa uvoľ­ní ener­gia. Ved­ľaj­ším pro­duk­tom tej­to reak­cie je ade­no­zín­di­fos­fát (ADP) a anor­ga­nic­ký fos­fát. V bun­ke ADP a fos­fát môžu zno­va rea­go­vať cez kom­pli­ko­va­né meta­bo­lic­ké deje a tvo­rí sa ATP. Väč­ši­na slad­ko­vod­ných rýb potre­bu­je veľ­ké množ­stvo kys­lí­ka v pro­stre­dí. Ten­to kys­lík je potreb­ný hlav­ne ako pali­vo” pre bio­che­mic­ké mecha­niz­my spo­je­né s pro­ces­mi cyk­lu ener­gie. Ener­ge­tic­ký meta­bo­liz­mus, kto­rý je spo­je­ný s kys­lí­kom je vyso­ko účin­ný a zabez­pe­ču­je trva­lé dodá­va­nie ener­gie, kto­rú potre­bu­je ryba na základ­né fyzi­olo­gic­ké fun­kcie. Ten­to meta­bo­liz­mus sa ozna­ču­je aerób­ny metabolizmus.

Nie všet­ka pro­duk­cia ener­gie vyža­du­je kys­lík. Bun­ky majú vyvi­nu­tý mecha­niz­mus udr­žia­vať dodáv­ku ener­gie počas krát­ke­ho obdo­bia, keď je hla­di­na kys­lí­ka níz­ka (hypo­xia). Ana­e­rób­ny ale­bo hypo­xic­ký ener­ge­tic­ký meta­bo­liz­mus je málo účin­ný a nie je schop­ný pro­du­ko­vať dosta­tok ener­gie pre tka­ni­vá počas dlhé­ho obdo­bia. Ryby potre­bu­jú kon­štant­ný prí­sun ener­gie. K tomu potre­bu­jú stá­le a dosta­toč­né množ­stvo kys­lí­ka. Nedos­ta­tok kys­lí­ka rých­lo zba­vu­je ryby ener­gie, kto­rú potre­bu­jú k živo­tu. Ryby sú schop­né plá­vať nepretr­ži­te na dlhé vzdia­le­nos­ti bez úna­vy v znač­nej rých­los­ti. Ten­to typ plá­va­nia ryby využí­va­jú pri nor­mál­nom plá­va­ní a na dlhé vzdia­le­nos­ti. Sva­ly, kto­ré sa na tom­to pohy­be podie­ľa­jú, využí­va­jú veľ­ké množ­stvo kys­lí­ka na syn­té­zu ener­gie. Ak majú ryby dosta­tok kys­lí­ka, nikdy sa neuna­via pri dlho­do­bom plá­va­ní. Rých­le, prud­ké a vyso­ko inten­zív­ne plá­va­nie trvá nor­mál­ne iba nie­koľ­ko sekúnd, prí­pad­ne minút a kon­čí fyzic­kým sta­vom vyčer­pa­nia. Ten­to typ plá­va­nia využí­va­jú ryby pri love, mig­rá­cii pro­ti prú­du ale­bo pri úte­ku. Ten­to typ pohy­bu úpl­ne vyčer­pá ener­ge­tic­ké záso­by. Obno­va môže trvať hodi­ny, nie­ke­dy aj dni, čo závi­sí na prí­stup­nos­ti kys­lí­ka, trva­ní rých­le­ho plá­va­nia a stup­ni vyčer­pa­nia ener­ge­tic­kých zásob. Ak sa naprí­klad ryba, kto­rá bola pri odchy­te úpl­ne zba­ve­ná ener­gie, umiest­ni do inej nádr­že, potre­bu­je množ­stvo kys­lí­ka a pokoj­né mies­to, kde by obno­vi­la záso­by ener­gie. Ak sa však umiest­ni do nádo­by, kde je málo kys­lí­ka, nedo­ká­že obno­viť ener­giu a skôr či neskôr hynie. Nie nedos­ta­tok kys­lí­ka zabí­ja rybu, ale nedos­ta­tok ener­gie a neschop­nosť obno­viť ener­ge­tic­ké záso­by. Je jas­né, že to sú pod­mien­ky, kto­ré extrém­ne stre­su­jú ryby.

Fak­to­ry ovplyv­ňu­jú­ce obno­vu energie

Spo­lu so stra­tou ener­ge­tic­kých zásob počas rých­le­ho plá­va­nia naras­tá v tka­ni­vách a krvi hla­di­na lak­tá­tu. Keď­že sa jed­ná o kyse­li­nu, pro­du­ku­je ióny vodí­ka, kto­ré zni­žu­jú pH tka­nív a dodá­va­nie ener­gie do bun­ky. Tiež zvy­šu­je vypla­vo­va­nie dôle­ži­tých meta­bo­li­tov z bun­ky, kto­ré sú potreb­né pri obno­ve ener­gie. Vylu­čo­va­nie lak­tá­tu a obno­va nor­mál­nej fun­kcie buniek môže trvať od 4 do 12 hodín. Pri tom­to pro­ce­se hrá dôle­ži­tú úlo­hu veľ­kosť tela, tep­lo­ta vody, tvrdo­sť a pH vody a dostup­nosť kyslíka.

  • Veľ­kosť tela – exis­tu­je pozi­tív­na kore­lá­cia medzi ana­e­rób­nym ener­ge­tic­kým meta­bo­liz­mom a potre­bou ener­gie. Väč­šie ryby teda potre­bu­jú viac ener­gie na rých­le plá­va­nie. To spô­so­bu­je vyš­ší výdaj ener­gie a dlh­ší čas obnovy
  • Tep­lo­ta vody – vylu­čo­va­nie lak­tá­tu a iných meta­bo­li­tov výraz­ne ovplyv­ňu­je tep­lo­ta vody. Väč­šie zme­ny tep­lo­ty výraz­ne ovplyv­ňu­jú schop­nosť rýb obno­viť ener­ge­tic­ké záso­by. Je pre­to potreb­né sa vyva­ro­vať veľ­kým zme­nám tep­lo­ty, kto­ré zni­žu­jú schop­nosť obno­vy energie.
  • Tvrdo­sť vody – zní­že­nie tvrdo­s­ti vody má dôle­ži­tý úči­nok na meta­bo­liz­mus a aci­do­bá­zic­kú rov­no­vá­hu krvi. Väč­ši­na prác sa zaobe­ra­la vply­vom na mor­ské dru­hy a nie je úpl­ne jas­né, či sú tie­to výsled­ky pre­nos­né aj na slad­ko­vod­né ryby. Keď sú slad­ko­vod­né ryby stre­so­va­né, voda pre­ni­ká cez bun­ko­vé mem­brá­ny, hlav­ne žia­bier a krv je red­šia. Toto zrie­de­nie krvi zvy­šu­je náro­ky na udr­žia­va­nie rov­no­vá­hy solí v orga­niz­me, čiže udr­žia­va­nie osmo­tic­kej rov­no­vá­hy. Viac sa dočí­ta­te nižšie.
  • pH vody – v kys­lej­šom pro­stre­dí sú ryby schop­né obno­viť ener­giu rých­lej­šie. Vyš­šie pH ten­to pro­ces výraz­ne spo­ma­ľu­je, čo je rizi­ko­vé pre dru­hy vyža­du­jú­ce vyš­šie pH, ako napr. afric­ké cich­li­dy jazier Mala­wi a Tanganika.

Regu­lá­cia osmo­tic­ké­ho tla­ku – udr­žia­va­nie rov­no­vá­hy solí stre­so­va­ných rýb

Regu­lá­cia hla­di­ny solí je zákla­dom živo­ta. Štruk­tú­ra a fun­kcia bun­ky úzko súvi­sí s vodou a látok v nej roz­pus­te­ných. Ryba pou­ží­va znač­nú ener­giu na kon­tro­lu zlo­že­nia vnút­ro­bun­ko­vých a mimo­bun­ko­vých teku­tín. U rýb táto osmo­re­gu­lá­cia spot­re­bu­je asi 2550% cel­ko­vé­ho meta­bo­lic­ké­ho výda­ja, čo je prav­de­po­dob­ne naj­viac spo­me­dzi živo­čí­chov. Mecha­niz­mus, kto­rý ryby využí­va­jú na udr­žia­va­nie rov­no­vá­hy solí je veľ­mi kom­pli­ko­va­ný a extrém­ne závis­lý na ener­gii. Pre­to­že účin­nosť ana­e­rób­ne­ho ener­ge­tic­ké­ho meta­bo­liz­mu je iba na úrov­ni 110 ener­ge­tic­ké­ho meta­bo­liz­mu v pro­stre­dí boha­tom na kys­lík, ener­ge­tic­ká potre­ba pre osmo­re­gu­lá­ciu tka­nív nie je mož­ná iba ana­e­rób­nym ener­ge­tic­kým meta­bo­liz­mom. Rých­ly pokles hla­di­ny ATP v bun­ke spô­so­bu­je spo­ma­le­nie až zasta­ve­nie fun­kcie bun­ko­vých ióno­vých púmp, kto­ré regu­lu­jú pohyb solí cez bun­ko­vú mem­brá­nu. Pre­ru­še­nie čin­nos­ti ióno­vej pum­py spô­so­bu­je stra­tu rov­no­vá­hy iónov v bun­ke a dochá­dza k rizi­ku smr­ti bun­ky a ryby.

Slad­ko­vod­né aj mor­ské ryby trva­lo čelia nut­nos­ti ióno­vej a osmo­tic­kej regu­lá­cie. Slad­ko­vod­né ryby, kto­rých kon­cen­trá­cia iónov v tka­ni­vách je omno­ho vyš­šia ako vo vode, musia regu­lo­vať prí­jem a stra­tu vody cez prie­pust­né epi­te­liál­ne tka­ni­vá a močom. Tie­to ryby pro­du­ku­jú veľ­ké množ­stvo moču, kto­ré­ho den­né množ­stvo tvo­rí 20% hmot­nos­ti tela. Oblič­ky rýb sú vyso­ko účin­né v odstra­ňo­va­ní vody z tela a sú takis­to účin­né aj v zadr­žia­va­ní solí v tele. Zatiaľ čo veľ­mi malé množ­stvo soli pre­ni­ká do moču, väč­ši­na osmo­re­gu­lač­ných dejov sa zabez­pe­ču­je žiab­ra­mi. Sodík je hlav­ný ión tka­nív. Tran­s­port sodí­ka cez bun­ko­vú mem­brá­nu je vyso­ko závis­lý na ener­gii a umož­ňu­je ho enzým Na/​K‑ATP-​áza. Ten­to enzým sa nachá­dza v bun­ko­vej mem­brá­ne a využí­va ener­giu, kto­rú dodá­va ATP na pre­nos sodí­ka jed­ným sme­rom cez bun­ko­vú mem­brá­nu. Dras­lík sa pohy­bu­je opač­ným sme­rom. Ten­to pro­ces umož­ňu­je sva­lo­vú kon­trak­ciu, posky­tu­je elek­tro­che­mic­ký gra­dient potreb­ný na čin­nosť srd­ca a umož­ňu­je pre­nos všet­kých sig­ná­lov v moz­gu a ner­voch. Väč­ši­na osmo­re­gu­lá­cie u rýb sa deje v žiab­rach a fun­gu­je nasle­dov­ne: Čpa­vok sa tvo­rí ako odpa­do­vý pro­dukt meta­bo­liz­mu rýb. Keď sú ryby v pohy­be, tvo­ria väč­šie množ­stvo čpav­ku a ten sa musí vylú­čiť z krvi. Na roz­diel od vyš­ších živo­čí­chov, ryby nevy­lu­ču­jú čpa­vok močom. Čpa­vok a väč­ši­na dusí­ka­tých odpa­do­vých látok pre­stu­pu­je cez mem­brá­nu žia­bier (asi 8090%). Čpa­vok sa vymie­ňa pri pre­cho­de cez mem­brá­nu žia­bier za sodík. Tak­to sa zni­žu­je množ­stvo čpav­ku v krvi a zvy­šu­je sa jeho kon­cen­trá­cia v bun­kách žia­bier. Naopak, sodík pre­chá­dza z buniek žia­bier do krvi. Aby sa nahra­dil sodík v bun­kách žia­bier a obno­vi­la sa rov­no­vá­ha solí, bun­ky žia­bier vylú­čia čpa­vok do vody a vyme­nia ho za sodík z vody. Podob­ným spô­so­bom sa vymie­ňa­jú chlo­ri­do­vé ióny za bikar­bo­nát. Pri dýcha­ní je ved­ľaj­ší pro­dukt CO2 a voda. Bikar­bo­nát sa tvo­rí, keď CO2 z bun­ko­vé­ho dýcha­nia rea­gu­je s vodou v bun­ke. Ryby nemô­žu, na roz­diel od sucho­zem­ských živo­čí­chov, vydých­nuť CO2 a mies­to toho sa zlu­ču­je s vodou a tvo­rí sa bikar­bo­ná­to­vý ión. Chlo­ri­do­vé ióny sa dostá­va­jú do bun­ky a bikar­bo­nát von z bun­ky do vody. Tým­to spô­so­bom sa zamie­ňa vodík za sodík, čím sa napo­má­ha kon­tro­le pH krvi.

Tie­to dva mecha­niz­my výme­ny iónov sa nazý­va­jú absor­pcia a sek­ré­cia a vysky­tu­jú sa v dvoch typoch buniek žia­bier, res­pi­rač­ných a chlo­ri­do­vých. Chlo­ri­do­vé bun­ky vylu­ču­jú soli, sú väč­šie a vyvi­nu­tej­šie u mor­ských dru­hov rýb. Res­pi­rač­né bun­ky, kto­ré sú potreb­né pre výme­nu ply­nov, odstra­ňo­va­nie dusí­ka­tých odpa­do­vých pro­duk­tov a udr­žia­va­nie aci­do­bá­zic­kej rov­no­vá­hy, sú vyvi­nu­tej­šie u slad­ko­vod­ných rýb. Sú záso­bo­va­né arte­riál­nou krvou a zabez­pe­ču­jú výme­nu sodí­ka a chlo­ri­dov za čpa­vok a bikar­bo­nát. Tie­to pro­ce­sy sú opäť vyso­ko závis­lé na prí­stup­nos­ti ener­gie. Ak nie je dosta­tok ener­gie na fun­go­va­nie ióno­vej pum­py, nemô­že dochá­dzať k ich výme­ne a voda zapla­ví” bun­ky difú­zi­ou a to spô­so­bí smrť rýb.

Dôsled­ky nedos­tat­ku kys­lí­ka v pro­ce­se osmoregulácie

Len nie­koľ­ko minút nedos­tat­ku kys­lí­ka, mem­brá­na buniek moz­gu strá­ca schop­nosť kon­tro­lo­vať rov­no­vá­hu iónov a uvoľ­ňu­jú sa neuro­trans­mi­te­ry, kto­ré urých­ľu­jú vstup váp­ni­ka do bun­ky. Zvý­še­ná hla­di­na váp­ni­ka v bun­kách spúš­ťa množ­stvo dege­ne­ra­tív­nych pro­ce­sov, kto­ré vedú k poško­de­niu ner­vo­vej sústa­vy a k smr­ti. Tie­to pro­ce­sy zahŕňa­jú poško­de­nie DNA, dôle­ži­tých bun­ko­vých pro­te­ínov a bun­ko­vej mem­brá­ny. Tvo­ria sa voľ­né radi­ká­ly a oxid dusi­tý, kto­ré poško­dzu­jú bun­ko­vé orga­ne­ly. Podob­né pro­ce­sy sa dejú aj v iných orgá­noch (pečeň, sva­ly, srd­ce a krv­né bun­ky). Ak sa dosta­ne do bun­ky váp­nik, je potreb­né veľ­ké množ­stvo ener­gie na jeho odstrá­ne­nie kal­ci­ový­mi pum­pa­mi, kto­ré vyža­du­jú ATP. Ďal­ší dôsle­dok hypo­xie je uvoľ­ňo­va­nie hor­mó­nov z hypo­fý­zy, z kto­rých u rýb pre­va­žu­je pro­lak­tín. Uvoľ­ne­nie toh­to hor­mó­nu ovplyv­ňu­je prie­pust­nosť bun­ko­vej mem­brá­ny v žiab­rach, koži, oblič­kách, čre­ve a ovplyv­ňu­je mecha­niz­mus tran­s­por­tu iónov. Jeho uvoľ­ne­nie napo­má­ha regu­lá­cii rov­no­vá­hy vody a iónov zni­žo­va­ním príj­mu vody a zadr­žia­va­ním dôle­ži­tých iónov, hlav­ne Na+ a Cl-. Tým pomá­ha udr­žia­vať rov­no­vá­hu solí v krvi a v tka­ni­vách a brá­ni nabobt­na­niu rýb vodou.

Naj­väč­šia hroz­ba pre slad­ko­vod­né ryby je stra­ta iónov difú­zi­ou do vody, skôr než vylu­čo­va­nie nad­byt­ku vody. Hoci regu­lá­cia rov­no­vá­hy vody môže mať význam, je sekun­dár­na vo vzťa­hu k zadr­žia­va­niu iónov. Pro­lak­tín zni­žu­je osmo­tic­kú prie­pust­nosť žia­bier zadr­žia­va­ním iónov a vylu­čo­va­ním vody. Zvy­šu­je tiež vylu­čo­va­nie hlie­nu žiab­ra­mi, čím napo­má­ha udr­žia­vať rov­no­vá­hu iónov a vody tým, že zabra­ňu­je pre­cho­du mole­kúl cez mem­brá­nu. U rýb, kto­ré boli stre­so­va­né chy­ta­ním, prud­kým plá­va­ním, sa z tka­nív odčer­pá­va ener­gia a trvá nie­koľ­ko hodín až dní, kým sa jej záso­by obno­via. Ana­e­rób­ny ener­ge­tic­ký meta­bo­liz­mus nie je schop­ný to zabez­pe­čiť v plnej mie­re a je potreb­né veľ­ké množ­stvo kys­lí­ka. Ak je ho nedos­ta­tok, vedie to k úhy­nu rýb. Nemu­sia však uhy­núť hneď. Rov­no­vá­ha solí sa nemô­že zabez­pe­čiť bez dostat­ku kyslíka.

Potre­ba kyslíka

Kys­lík je hlav­ným fak­to­rom, kto­rý ovplyv­ňu­je pre­ži­tie rýb v stre­se. Nie tep­lo­ta vody ani hla­di­na soli. Pred­sa však je tep­lo­ta hlav­ný uka­zo­va­teľ toho, koľ­ko kys­lí­ka vo vode je pre ryby dostup­né­ho a ako rých­lo ho budú môcť využiť. Maxi­mál­ne množ­stvo roz­pus­te­né­ho kys­lí­ka vo vode sa ozna­ču­je hla­di­na satu­rá­cie. Táto kle­sá so stú­pa­ním tep­lo­ty. Napr. pri tep­lo­te 21°C je voda nasý­te­ná kys­lí­kom pri jeho kon­cen­trá­cii 8,9 mg/​l, pri 26°C je to pri kon­cen­trá­cii 8 mg/​l a pri 32°C len 7,3 mg/​l. Pri vyš­ších tep­lo­tách sa zvy­šu­je meta­bo­liz­mus rýb a rých­lej­šie využí­va­jú aj kys­lík. Kon­cen­trá­cia kys­lí­ka pod 5 mg/​l pri 26°C môže byť rých­lo smrteľná.

Vzduch a kys­lík vo vode – môže aj ško­diť. Pri cho­ve cich­líd sa čas­to cho­va­teľ sna­ží zabez­pe­čiť maxi­mál­ne pre­vzduš­ne­nie vody veľ­mi sil­ným vzdu­cho­va­ním. Nie­kto­rí cho­va­te­lia využí­va­jú mož­nos­ti pri­sá­va­nia vzdu­chu pred vyús­te­ním vývo­du inter­né­ho ale­bo exter­né­ho fil­tra, iní pou­ží­va­jú samos­tat­né vzdu­cho­vé kom­pre­so­ry, kto­rý­mi vhá­ňa­jú vzduch do vody cez vzdu­cho­va­cie kame­ne s veľ­mi jem­ný­mi pór­mi. Oba spô­so­by vzdu­cho­va­nia sú schop­né vytvo­riť obrov­ské množ­stvo mik­ro­sko­pic­kých bub­li­niek. Veľ­kosť bub­lín kys­lí­ka ale­bo vzdu­chu môže význam­ne zme­niť ché­miu vody, stu­peň pre­no­su ply­nov a kon­cen­trá­ciu roz­pus­te­ných ply­nov. Rizi­ko poško­de­nia zdra­via a úhy­nu rýb vzni­ká naj­mä pri tran­s­por­te v uzav­re­tých nádo­bách, do kto­rých sa vhá­ňa vzduch ale­bo kys­lík pod tla­kom. Urči­té rizi­ko však vzni­ká aj pri nad­mer­nom jem­nom vzdu­cho­va­ní v akvá­riách. Mik­ro­sko­pic­ké bub­lin­ky ply­nu sa môžu pri­le­piť na žiab­re, skre­ly, kožu a oči a spô­so­bo­vať trau­mu a ply­no­vú embó­liu. Poško­de­nie žia­bier a ply­no­vá embó­lia nega­tív­ne ovplyv­ňu­jú zdra­vie rýb a pre­ží­va­teľ­nosť, obme­dzu­jú výme­nu ply­nov pri dýcha­ní a vedú k hypo­xii, zadr­žia­va­niu CO2 a res­pi­rač­nej aci­dó­ze. Čis­tý kys­lík je účin­né oxi­do­vad­lo. Mik­ro­sko­pic­ké bub­lin­ky obsa­hu­jú­ce čis­tý kys­lík sa môžu pri­chy­tiť na lís­t­ky žia­bier, vysu­šu­jú ich, dráž­dia, oxi­du­jú a spô­so­bu­jú che­mic­ké popá­le­nie jem­né­ho epi­te­liál­ne­ho tka­ni­va. Ak voda vyze­rá mlieč­ne zaka­le­ná s množ­stvom minia­túr­nych bub­lín, kto­ré sa pri­le­pu­jú na skre­ly a žiab­re ale­bo na vnú­tor­né ste­ny nádo­by, je potreb­né tie­to pod­mien­ky pova­žo­vať za poten­ciál­ne toxic­ké a vše­obec­ne nezdra­vé pre ryby. Ak je pôso­be­nie ply­nu v tom­to sta­ve dlh­šie trva­jú­ce a par­ciál­ny tlak kys­lí­ka sa pohy­bu­je oko­lo 1 atmo­sfé­ry (namies­to 0,2 atm., ako je vo vzdu­chu), šan­ca pre­ži­tia pre ryby kle­sá. Stla­če­ný vzduch je vhod­ný, ak sa dopĺňa kon­ti­nu­ál­ne v roz­me­dzí bez­peč­nej kon­cen­trá­cie kys­lí­ka, ale pôso­be­ním stla­če­né­ho vzdu­chu ale­bo dodá­va­né­ho pod vyso­kým par­ciál­nym tla­kom vo vode, môžu ryby pre­stať dýchať, čím sa zvy­šu­je kon­cen­trá­cia CO2 v ich orga­niz­me. To môže viesť k zme­nám aci­do­bá­zic­kej rov­no­vá­hy (res­pi­rač­nej aci­dó­zy) v orga­niz­me rýb a zvy­šo­vať úhyn. Čis­tý stla­če­ný kys­lík obsa­hu­je 5‑násobne vyš­ší obsah kys­lí­ka ako vzduch. Pre­to je potre­ba jeho dodá­va­nia asi 15 pri čis­tom kys­lí­ku opro­ti záso­bo­va­niu vzdu­chom. Veľ­mi malé bub­li­ny kys­lí­ka sa roz­púš­ťa­jú rých­lej­šie než väč­šie, pre­to­že majú väč­ší povrch vzhľa­dom k obje­mu, ale kaž­dá ply­no­vá bub­li­na potre­bu­je na roz­pus­te­nie vo vode dosta­toč­ný pries­tor. Ak ten­to pries­tor chý­ba ale­bo je nedos­ta­toč­ný, mik­ro­bub­li­ny môžu zostať v sus­pen­zii vo vode, pri­chy­tá­va­jú sa k povr­chom pred­me­tov vo vode ale­bo poma­ly stú­pa­jú k hladine.

Mik­ro­sko­pic­ké bub­lin­ky ply­nu sa roz­púš­ťa­jú vo vode rých­lej­šie a dodá­va­jú viac ply­nu do roz­to­ku než väč­šie bub­li­ny. Tie­to pod­mien­ky môžu pre­sy­co­vať vodu kys­lí­kom, ak množ­stvo bub­li­niek ply­nu tvo­rí hmlu” vo vode a zostá­va­jú rozp­tý­le­né (v sus­pen­zii) a kys­lík s vyso­kým tla­kom môže byť toxic­ký kvô­li tvor­be voľ­ných radi­ká­lov. Mik­ro­sko­pic­ké vzdu­cho­vé bub­lin­ky môžu tiež spô­so­biť ply­no­vú embó­liu. Arte­riál­na ply­no­vá embó­lia a emfy­zém tka­nív môžu byť reál­ne a tvo­ria nebez­pe­čen­stvo naj­mä pri tran­s­por­te živých rýb. Je pre­to potreb­né sa vyhnúť sus­pen­zii ply­no­vých bub­lín v tran­s­port­nej vode. Prob­lém arte­riál­nej ply­no­vej embó­lie počas tran­s­por­tu vzni­ká aj pre­to, že ryby nema­jú mož­nosť sa poto­piť do väč­šej hĺb­ky (ako to robia ryby vypus­te­né do jaze­ra), kde je vyš­ší tlak vody, kto­rý by roz­pus­til jem­né bub­lin­ky v obe­ho­vom sys­té­me. Dva kľú­čo­vé body zlep­šu­jú poho­du veľ­ké­ho počtu odchy­te­ných a stre­so­va­ných rýb pri transporte:

  • Zvý­šiť par­ciál­ny tlak O2 nad nasý­te­nie stla­če­ným kys­lí­kom a doda­nie dosť veľ­kých bub­lín, aby unik­li povr­chom vody. Vzduch tvo­rí naj­mä dusík a mik­ro­sko­pic­ké bub­lin­ky dusí­ka tiež môžu pri­lip­núť na žiab­re. Bub­lin­ky aké­ho­koľ­vek ply­nu pri­chy­te­né na žiab­re môžu ovplyv­niť dýcha­nie a naru­šiť zdra­vie rýb. Ak sa tran­s­por­tu­jú ryby vo vode pre­sý­te­nej bub­lin­ka­mi, vzni­ká prav­de­po­dob­nosť vzni­ku hypo­xie, hyper­kar­bie, res­pi­rač­nej aci­dó­zy, ocho­re­nia a smrti.
  • Zvý­šiť sla­nosť vody na 3 – 5 mg/​l. Soľ (sta­čí aj neiodi­do­va­ná NaCl) je vhod­ná pri tran­s­por­te rýb. V stre­se ryby strá­ca­jú ióny a toto môže byť pre ne viac stre­su­jú­ce. Ener­ge­tic­ká potre­ba tran­s­por­tu iónov cez mem­brá­ny buniek môže pred­sta­vo­vať význam­nú stra­tu ener­gie vyža­du­jú­cu ešte viac kys­lí­ka. Tran­s­port rýb v nádo­bách, kto­ré obsa­hu­jú hmlu mik­ro­sko­pic­kých bub­lín, môžu byť nebez­peč­ná pre tran­s­por­to­va­né ryby zvy­šo­va­ním mož­nos­ti one­sko­re­nej smr­ti po vypus­te­ní. Ryby tran­s­por­to­va­né v ako­by mlieč­ne zaka­le­nej vode sú stre­so­va­né, dochá­dza k ich fyzic­ké­mu poško­de­niu, zvy­šu­je sa cit­li­vosť k infek­ciám, ocho­re­niu a úhyn po vypus­te­ní po tran­s­por­te. Po vypus­te­ní rýb, kto­ré pre­ži­li prvot­ný toxic­ký vplyv kys­lí­ka, po tran­s­por­te môžu byť kvô­li poško­de­ným žiab­ram cit­li­vej­šie na rôz­ne pato­gé­ny a násled­ne sa môže vysky­to­vať zvý­še­ný úhyn počas nie­koľ­kých dní až týž­dňov po tran­s­por­te. Veľ­mi pre­vzduš­ne­ná voda nezna­me­ná pre­kys­li­če­ná. Veľ­mi pre­vzduš­ne­ná voda je čas­to pre­sý­te­ná plyn­ným dusí­kom, kto­rý môže spô­so­biť ocho­re­nie. Mik­ro­sko­pic­ké bub­lin­ky obsa­hu­jú­ce naj­mä dusík, môžu spô­so­biť emfy­zém tka­nív pri tran­s­por­te, podob­ne, ako je tomu u potápačov.

Aut­hor of the post: Róbert Toman

The posi­ti­ve impact of oxy­gen on living orga­nisms is gene­ral­ly well-​known. Fish, like ter­res­trial ver­teb­ra­tes, need oxy­gen for the­ir sur­vi­val, alt­hough the way they bre­at­he is enti­re­ly dif­fe­rent. Sin­ce they lack lungs, oxy­gen must penet­ra­te from the water into the blo­od direct­ly through tis­su­es that are in direct con­tact with the water, such as gills. Oxy­gen, which is sup­po­sed to dif­fu­se into the blo­od through the gills, must be dis­sol­ved, as fish can­not take in oxy­gen in the form of bubb­les. The cap­tu­re, tran­s­por­ta­ti­on, and cap­ti­vi­ty of fish have seri­ous meta­bo­lic demands on the brain, musc­les, heart, gills, and other tis­su­es. We com­mon­ly refer to them as stress, but the phy­si­olo­gi­cal situ­ati­on is much more com­pli­ca­ted. Stress asso­cia­ted with the cap­tu­re and rele­a­se of fish into a dif­fe­rent envi­ron­ment can con­tri­bu­te to fish mor­ta­li­ty. Unders­tan­ding the ener­gy meta­bo­lism of fish and the fac­tors that influ­en­ce it is cru­cial for the pro­per hand­ling and tre­at­ment of fish after cap­tu­re. Befo­re eva­lu­ating the risks asso­cia­ted with oxy­gen in the water and unders­tan­ding them, let’s brief­ly out­li­ne the phy­si­olo­gi­cal pro­ces­ses rela­ted to the func­ti­on of oxy­gen in the fis­h’s body.

Ener­gy Meta­bo­lism and Oxy­gen Requirement

The ener­gy used to ensu­re all cel­lu­lar func­ti­ons are per­for­med is deri­ved from ade­no­si­ne trip­hosp­ha­te (ATP). It is requ­ired for musc­le con­trac­ti­ons, trans­mis­si­on of ner­ve impul­ses in the brain, heart acti­vi­ty, and oxy­gen inta­ke through the gills, among other func­ti­ons. When a cell needs ener­gy, bre­a­king the bonds in ATP rele­a­ses ener­gy. The by-​products of this reac­ti­on are ade­no­si­ne dip­hosp­ha­te (ADP) and inor­ga­nic phosp­ha­te. In the cell, ADP and phosp­ha­te can react again through com­plex meta­bo­lic pro­ces­ses to form ATP. Most fres­hwa­ter fish requ­ire a sig­ni­fi­cant amount of oxy­gen in the­ir envi­ron­ment. This oxy­gen is needed pri­ma­ri­ly as fuel” for bio­che­mi­cal mecha­nisms asso­cia­ted with ener­gy cyc­le pro­ces­ses. The ener­gy meta­bo­lism asso­cia­ted with oxy­gen is high­ly effi­cient and ensu­res a con­ti­nu­ous supp­ly of ener­gy needed for the fis­h’s basic phy­si­olo­gi­cal func­ti­ons. This meta­bo­lism is refer­red to as aero­bic metabolism.

Not all ener­gy pro­duc­ti­on requ­ires oxy­gen. Cells have deve­lo­ped a mecha­nism to main­tain ener­gy supp­ly during short peri­ods when oxy­gen levels are low (hypo­xia). Ana­e­ro­bic or hypo­xic ener­gy meta­bo­lism is less effi­cient and can­not pro­du­ce enough ener­gy for tis­su­es over a long peri­od. Fish need a cons­tant supp­ly of ener­gy, requ­iring a con­ti­nu­ous and suf­fi­cient amount of oxy­gen. Oxy­gen defi­cien­cy quick­ly dep­ri­ves fish of the ener­gy they need to live. Fish are capab­le of swim­ming con­ti­nu­ous­ly for long dis­tan­ces wit­hout fati­gue at con­si­de­rab­le spe­ed. They use this type of swim­ming during nor­mal acti­vi­ty and for long-​distance tra­vel. The musc­les invol­ved in this move­ment uti­li­ze a lar­ge amount of oxy­gen for ener­gy synt­he­sis. If fish have enough oxy­gen, they never tire during pro­lon­ged swim­ming. Rapid, inten­se swim­ming lasts nor­mal­ly only a few seconds or minu­tes and ends in a sta­te of phy­si­cal exhaus­ti­on. Fish use this type of move­ment during hun­ting, ups­tre­am mig­ra­ti­on, or esca­pe. This type of move­ment com­ple­te­ly dep­le­tes ener­gy reser­ves. Reco­ve­ry can take hours, some­ti­mes even days, depen­ding on oxy­gen avai­la­bi­li­ty, the dura­ti­on of rapid swim­ming, and the degree of dep­le­ti­on of ener­gy reser­ves. For exam­ple, if a fish com­ple­te­ly dep­le­ted of ener­gy during cap­tu­re is pla­ced in anot­her tank, it needs a sig­ni­fi­cant amount of oxy­gen and a calm pla­ce to reple­nish ener­gy reser­ves. Howe­ver, if pla­ced in a con­tai­ner with low oxy­gen, it can­not res­to­re ener­gy and sooner or later dies. It is cle­ar that the­se are con­di­ti­ons that extre­me­ly stress fish.

Fac­tors Influ­en­cing Ener­gy Recovery

Along with the dep­le­ti­on of ener­gy reser­ves during rapid swim­ming, the levels of lac­ta­te in tis­su­es and blo­od inc­re­a­se. As lac­ta­te is an acid, it pro­du­ces hyd­ro­gen ions that lower the pH of tis­su­es and impe­de the deli­ve­ry of ener­gy to the cell. It also inc­re­a­ses the eff­lux of impor­tant meta­bo­li­tes from the cell, neces­sa­ry for ener­gy reco­ve­ry. The eli­mi­na­ti­on of lac­ta­te and the res­to­ra­ti­on of nor­mal cell func­ti­on can take from 4 to 12 hours. In this pro­cess, body size, water tem­pe­ra­tu­re, water hard­ness and pH, and oxy­gen avai­la­bi­li­ty play cru­cial roles.

  • Body Size: The­re is a posi­ti­ve cor­re­la­ti­on bet­we­en ana­e­ro­bic ener­gy meta­bo­lism and ener­gy demand. Lar­ger fish, the­re­fo­re, requ­ire more ener­gy for rapid swim­ming. This results in hig­her ener­gy expen­di­tu­re and a lon­ger reco­ve­ry time.
  • Water Tem­pe­ra­tu­re: The exc­re­ti­on of lac­ta­te and other meta­bo­li­tes is sig­ni­fi­can­tly influ­en­ced by water tem­pe­ra­tu­re. Sub­stan­tial chan­ges in tem­pe­ra­tu­re sig­ni­fi­can­tly affect the fis­h’s abi­li­ty to reple­nish ener­gy reser­ves. It is neces­sa­ry to avo­id lar­ge tem­pe­ra­tu­re fluc­tu­ati­ons, which redu­ce the abi­li­ty to reco­ver energy.
  • Water Hard­ness: Dec­re­a­sing water hard­ness has a sig­ni­fi­cant effect on meta­bo­lism and the acid-​base balan­ce of blo­od. Most stu­dies have focu­sed on the impact on mari­ne spe­cies, and it is not enti­re­ly cle­ar whet­her the­se results are trans­fe­rab­le to fres­hwa­ter fish. When fres­hwa­ter fish are stres­sed, water penet­ra­tes through cell mem­bra­nes, espe­cial­ly gills, and the blo­od beco­mes dilu­ted. This blo­od dilu­ti­on inc­re­a­ses the demands on main­tai­ning salt balan­ce in the body, i.e., main­tai­ning osmo­tic balan­ce. More infor­ma­ti­on on this is pro­vi­ded below.
  • Water pH: In an aci­dic envi­ron­ment, fish can reco­ver ener­gy more quick­ly. Hig­her pH sig­ni­fi­can­tly slo­ws down this pro­cess, which poses a risk for spe­cies requ­iring hig­her pH, such as Afri­can cich­lids from the Mala­wi and Tan­ga­ny­i­ka lakes.

Osmo­tic Pre­ssu­re Regu­la­ti­on – Main­tai­ning Salt Balan­ce in Stres­sed Fish

Regu­la­ti­on of salt levels is fun­da­men­tal to life. The struc­tu­re and func­ti­on of cells are clo­se­ly rela­ted to the water and dis­sol­ved sub­stan­ces wit­hin them. Fish expend sig­ni­fi­cant ener­gy to con­trol the com­po­si­ti­on of intra­cel­lu­lar and extra­cel­lu­lar flu­ids. In fish, osmo­re­gu­la­ti­on con­su­mes about 25 – 50% of the total meta­bo­lic expen­di­tu­re, like­ly the hig­hest among ani­mals. The mecha­nism fish use to main­tain salt balan­ce is high­ly com­plex and extre­me­ly energy-​dependent. Sin­ce the effi­cien­cy of ana­e­ro­bic ener­gy meta­bo­lism is only about 110 of the ener­gy meta­bo­lism in an oxygen-​rich envi­ron­ment, the ener­gy requ­ire­ment for tis­sue osmo­re­gu­la­ti­on is not fea­sib­le through ana­e­ro­bic ener­gy meta­bo­lism alo­ne. A rapid dec­re­a­se in ATP levels in the cell slo­ws down or stops the func­ti­on of cel­lu­lar ion pumps that regu­la­te the move­ment of salts across the cell mem­bra­ne. The inter­rup­ti­on of ion pump acti­vi­ty leads to an imba­lan­ce of ions in the cell, posing a risk of cell and fish death.

Both fres­hwa­ter and mari­ne fish cons­tan­tly face the need for ion and osmo­tic regu­la­ti­on. Fres­hwa­ter fish, with ion con­cen­tra­ti­ons in tis­su­es much hig­her than in water, must regu­la­te water inta­ke and loss through per­me­ab­le epit­he­lial tis­su­es and uri­ne. The­se fish pro­du­ce a lar­ge amount of uri­ne, with dai­ly amounts cons­ti­tu­ting 20% of body weight. Fish kid­ne­ys are high­ly effi­cient in remo­ving water from the body and are also effec­ti­ve in retai­ning salts. Whi­le very litt­le salt penet­ra­tes into the uri­ne, most osmo­re­gu­la­to­ry pro­ces­ses are faci­li­ta­ted by the gills. Sodium is the main ion in tis­su­es. The tran­s­port of sodium across the cell mem­bra­ne is high­ly depen­dent on ener­gy and is faci­li­ta­ted by the enzy­me Na/​K‑ATPase. This enzy­me is loca­ted in the cell mem­bra­ne and uses the ener­gy supp­lied by ATP to tran­s­port sodium uni­di­rec­ti­onal­ly across the cell mem­bra­ne. Potas­sium moves in the oppo­si­te direc­ti­on. This pro­cess enab­les musc­le con­trac­ti­on, pro­vi­des the elect­ro­che­mi­cal gra­dient neces­sa­ry for heart func­ti­on, and allo­ws the trans­mis­si­on of all sig­nals in the brain and ner­ves. Most osmo­re­gu­la­ti­on in fish occurs in the gills and works as fol­lo­ws: Ammo­nia is pro­du­ced as a was­te pro­duct of fish meta­bo­lism. When fish are in moti­on, a lar­ger amount of ammo­nia is pro­du­ced, and it must be exc­re­ted from the blo­od. Unli­ke hig­her ani­mals, fish do not exc­re­te ammo­nia through uri­ne. Ammo­nia and most nit­ro­ge­nous was­te sub­stan­ces pass through the gill mem­bra­ne (about 80 – 90%). As ammo­nia pas­ses through the gill mem­bra­ne, it is exchan­ged for sodium. This redu­ces the amount of ammo­nia in the blo­od and inc­re­a­ses its con­cen­tra­ti­on in gill cells. Con­ver­se­ly, sodium pas­ses from gill cells to the blo­od. To repla­ce sodium in gill cells and res­to­re salt balan­ce, gill cells exc­re­te ammo­nia into the water and exchan­ge it for sodium from the water. Simi­lar­ly, chlo­ri­de ions are exchan­ged for bicar­bo­na­te. During res­pi­ra­ti­on, the byp­ro­duct is CO2 and water. Bicar­bo­na­te is for­med when CO2 from cel­lu­lar res­pi­ra­ti­on reacts with water in the cell. Fish can­not, unli­ke ter­res­trial ani­mals, exha­le CO2 and ins­te­ad com­bi­ne it with water to form bicar­bo­na­te ions. Chlo­ri­de ions enter the cell, and bicar­bo­na­te exits the cell into the water. This exchan­ge of hyd­ro­gen for sodium helps con­trol blo­od pH.

The­se two mecha­nisms of ion exchan­ge are cal­led absorp­ti­on and sec­re­ti­on, occur­ring in two types of gill cells: res­pi­ra­to­ry and chlo­ri­de cells. Chlo­ri­de cells, res­pon­sib­le for exc­re­ting salts, are lar­ger and more deve­lo­ped in mari­ne fish spe­cies. Res­pi­ra­to­ry cells, cru­cial for gas exchan­ge, remo­val of nit­ro­ge­nous was­te pro­ducts, and main­tai­ning acid-​base balan­ce, are more deve­lo­ped in fres­hwa­ter fish. They are supp­lied by arte­rial blo­od and faci­li­ta­te the exchan­ge of sodium and chlo­ri­de for ammo­nia and bicar­bo­na­te. The­se pro­ces­ses are again high­ly depen­dent on ener­gy acces­si­bi­li­ty. If the­re is not enough ener­gy for the ion pump to func­ti­on, the exchan­ge can­not occur, and water flo­ods” the cells through dif­fu­si­on, lea­ding to the death of the fish.

Con­se­qu­en­ces of Oxy­gen Shor­ta­ge in Osmoregulation

Just a few minu­tes of oxy­gen dep­ri­va­ti­on cau­se the brain cell mem­bra­ne to lose the abi­li­ty to con­trol ion balan­ce, rele­a­sing neuro­trans­mit­ters that acce­le­ra­te cal­cium entry into the cell. Ele­va­ted cal­cium levels in cells trig­ger nume­rous dege­ne­ra­ti­ve pro­ces­ses that lead to dama­ge to the ner­vous sys­tem and death. The­se pro­ces­ses inc­lu­de DNA dama­ge, impor­tant cel­lu­lar pro­te­ins, and the cell mem­bra­ne. Free radi­cals and nit­ro­gen oxi­de are for­med, dama­ging cel­lu­lar orga­nel­les. Simi­lar pro­ces­ses occur in other organs (liver, musc­les, heart, and blo­od cells). If cal­cium enters the cell, a lar­ge amount of ener­gy is needed to remo­ve it with cal­cium pumps, which requ­ire ATP. Anot­her con­se­qu­en­ce of hypo­xia is the rele­a­se of hor­mo­nes from the pitu­ita­ry gland, with pro­lac­tin pre­vai­ling in fish. The rele­a­se of this hor­mo­ne affects the per­me­a­bi­li­ty of the cell mem­bra­ne in the gills, skin, kid­ne­ys, intes­ti­nes, influ­en­cing the ion tran­s­port mecha­nism. Its rele­a­se helps regu­la­te the balan­ce of water and ions by redu­cing water inta­ke and retai­ning impor­tant ions, main­ly Na+ and Cl-. This helps main­tain salt balan­ce in the blo­od and tis­su­es and pre­vents fish from swel­ling with water.

The big­gest thre­at to fres­hwa­ter fish is the loss of ions through dif­fu­si­on into the water rat­her than exc­re­ti­on of excess water. Alt­hough water balan­ce regu­la­ti­on may be impor­tant, it is secon­da­ry to ion reten­ti­on. Pro­lac­tin redu­ces the osmo­tic per­me­a­bi­li­ty of the gills by retai­ning ions and exc­re­ting water. It also inc­re­a­ses mucus sec­re­ti­on in the gills, hel­ping main­tain the balan­ce of ions and water by pre­ven­ting the pas­sa­ge of mole­cu­les through the mem­bra­ne. In fish stres­sed by cap­tu­re or vigo­rous swim­ming, ener­gy is dep­le­ted from the tis­su­es, and it takes seve­ral hours to days for its reser­ves to reple­nish. Ana­e­ro­bic ener­gy meta­bo­lism can­not ful­ly pro­vi­de for this, requ­iring a sub­stan­tial amount of oxy­gen. A lack of oxy­gen leads to fish mor­ta­li­ty. Howe­ver, they may not die imme­dia­te­ly. Salt balan­ce can­not be main­tai­ned wit­hout an ade­qu­ate supp­ly of oxygen.

The need for oxy­gen is a cri­ti­cal fac­tor that influ­en­ces the sur­vi­val of fish under stress, more so than water tem­pe­ra­tu­re or sali­ni­ty levels. Howe­ver, water tem­pe­ra­tu­re is a key indi­ca­tor of how much oxy­gen is avai­lab­le to fish and how quick­ly they can uti­li­ze it. The maxi­mum amount of dis­sol­ved oxy­gen in water is kno­wn as the satu­ra­ti­on level, and it dec­re­a­ses as the water tem­pe­ra­tu­re rises. For exam­ple, at a tem­pe­ra­tu­re of 21°C, water is satu­ra­ted with oxy­gen at a con­cen­tra­ti­on of 8.9 mg/​l, at 26°C, it’s satu­ra­ted at 8 mg/​l, and at 32°C, it drops to only 7.3 mg/​l. Hig­her tem­pe­ra­tu­res inc­re­a­se the meta­bo­lism of fish, lea­ding to a fas­ter uti­li­za­ti­on of oxy­gen. A con­cen­tra­ti­on of oxy­gen below 5 mg/​l at 26°C can be rapid­ly lethal.

Air and Oxy­gen in Water – Can Harm Too

In some cich­lid bre­e­ding setups, hob­by­ists often aim for maxi­mum water aera­ti­on through power­ful air pumps. Some use air inta­ke befo­re the out­let of inter­nal or exter­nal fil­ters, whi­le others employ sepa­ra­te air com­pres­sors to inject air into the water through air sto­nes with very fine pores. Both aera­ti­on met­hods can cre­a­te a vast num­ber of mic­ros­co­pic bubb­les. The size of oxy­gen or air bubb­les can sig­ni­fi­can­tly alter water che­mis­try, gas exchan­ge effi­cien­cy, and the con­cen­tra­ti­on of dis­sol­ved gases. Risks to the health and sur­vi­val of fish ari­se, espe­cial­ly during tran­s­por­ta­ti­on in clo­sed con­tai­ners whe­re air or oxy­gen is for­ced into the water under pre­ssu­re. The­re­’s also a risk with exces­si­ve and fine aera­ti­on in aqu­ariums. Mic­ros­co­pic gas bubb­les can adhe­re to gills, sca­les, skin, and eyes, cau­sing trau­ma and gas embo­lism. Dama­ged gills and gas embo­lism nega­ti­ve­ly affect fish health and sur­vi­va­bi­li­ty, limi­ting gas exchan­ge during bre­at­hing and lea­ding to hypo­xia, CO2 reten­ti­on, and res­pi­ra­to­ry aci­do­sis. Pure oxy­gen is an effec­ti­ve oxi­di­zer. Mic­ros­co­pic bubb­les con­tai­ning pure oxy­gen can attach to gill fila­ments, dry­ing them out, irri­ta­ting them, cau­sing oxi­da­ti­on, and resul­ting in che­mi­cal burns to the deli­ca­te epit­he­lial tis­sue. If the water appe­ars mil­ky with nume­rous tiny bubb­les stic­king to sca­les, gills, or the tan­k’s inner walls, the­se con­di­ti­ons should be con­si­de­red poten­tial­ly toxic and gene­ral­ly unhe­alt­hy for fish. If the acti­on of gas is pro­lon­ged and the par­tial pre­ssu­re of oxy­gen hovers around 1 atmo­sp­he­re (ins­te­ad of the nor­mal 0.2 atm. in air), the chan­ces of fish sur­vi­val dec­re­a­se. Com­pres­sed air is suitab­le if it is con­ti­nu­ous­ly supp­lied wit­hin a safe oxy­gen con­cen­tra­ti­on ran­ge. Howe­ver, the acti­on of com­pres­sed air or oxy­gen supp­lied under high pre­ssu­re into the water can cau­se fish to stop bre­at­hing, inc­re­a­sing the con­cen­tra­ti­on of CO2 in the­ir bodies. This can lead to chan­ges in the acid-​base balan­ce (res­pi­ra­to­ry aci­do­sis) in fish, rai­sing mor­ta­li­ty. Pure com­pres­sed oxy­gen con­tains five times more oxy­gen than air. The­re­fo­re, the need for its supp­ly is about 15 of that for air. Very small oxy­gen bubb­les dis­sol­ve fas­ter than lar­ger ones becau­se they have a lar­ger sur­fa­ce area rela­ti­ve to volu­me. Howe­ver, each gas bubb­le needs suf­fi­cient spa­ce to dis­sol­ve in water. If this spa­ce is lac­king or insuf­fi­cient, mic­ro­bubb­les may remain in sus­pen­si­on in the water, adhe­re to sur­fa­ces in the water, or slo­wly rise to the surface.

Mic­ros­co­pic gas bubb­les dis­sol­ve in water quick­ly, deli­ve­ring more gas into the solu­ti­on than lar­ger bubb­les. The­se con­di­ti­ons can over­sa­tu­ra­te water with oxy­gen if the quan­ti­ty of gas bubb­les cre­a­tes a mist” in the water and remains dis­per­sed (in sus­pen­si­on). High-​pressure oxy­gen can be toxic due to the for­ma­ti­on of free radi­cals. Mic­ros­co­pic oxy­gen bubb­les can also cau­se gas embo­lism. Arte­rial gas embo­lism and tis­sue emp­hy­se­ma can be real dan­gers, espe­cial­ly during the tran­s­port of live fish. It is neces­sa­ry to avo­id the sus­pen­si­on of gas bubb­les in tran­s­port water. The prob­lem of arte­rial gas embo­lism during tran­s­port ari­ses becau­se fish do not have the oppor­tu­ni­ty to sub­mer­ge into dee­per waters (as fish rele­a­sed into a lake might), whe­re the water pre­ssu­re is hig­her, hel­ping to dis­sol­ve fine bubb­les in the cir­cu­la­to­ry sys­tem. Two key points impro­ve the well-​being of a lar­ge num­ber of caught and stres­sed fish during transport:

  • Inc­re­a­sing the Par­tial Pre­ssu­re of O2 Abo­ve Satu­ra­ti­on with Com­pres­sed Oxy­gen and Supp­ly­ing Suf­fi­cien­tly Lar­ge Bubb­les to Esca­pe the Water Sur­fa­ce. Air main­ly con­sists of nit­ro­gen, and mic­ros­co­pic nit­ro­gen bubb­les can also adhe­re to the gills. Bubb­les of any gas atta­ched to the gills can affect bre­at­hing and dis­rupt the health of fish. If fish are tran­s­por­ted in water over­sa­tu­ra­ted with bubb­les, the­re is a like­li­ho­od of hypo­xia, hyper­car­bia, res­pi­ra­to­ry aci­do­sis, dise­a­ses, and death.
  • Inc­re­a­sing the Sali­ni­ty of Water to 3 – 5 mg/​l. Salt (non-​iodized NaCl is suf­fi­cient) is suitab­le for fish tran­s­port. In stress, fish lose ions, which can be more stress­ful for them. The ener­gy requ­ired for ion tran­s­port through cell mem­bra­nes can repre­sent a sig­ni­fi­cant loss of ener­gy, requ­iring even more oxy­gen. Tran­s­por­ting fish in con­tai­ners con­tai­ning a mist of mic­ros­co­pic bubb­les can be dan­ge­rous for tran­s­por­ted fish, inc­re­a­sing the like­li­ho­od of dela­y­ed mor­ta­li­ty after rele­a­se. Fish tran­s­por­ted in water that appe­ars mil­ky and con­tains mic­ro­bubb­les are stres­sed, expe­rien­ce phy­si­cal dama­ge, and have inc­re­a­sed sus­cep­ti­bi­li­ty to infec­ti­ons, ill­nes­ses, and post-​transport mortality.

After the rele­a­se of fish that sur­vi­ved the ini­tial toxic effects of oxy­gen during tran­s­port, they may be more sen­si­ti­ve to vari­ous pat­ho­gens. As a result, inc­re­a­sed mor­ta­li­ty may occur in the days to weeks fol­lo­wing tran­s­port. Very aera­ted water does not mean oxy­ge­na­ted water. High­ly aera­ted water is often over­sa­tu­ra­ted with gase­ous nit­ro­gen, which can cau­se ill­ness. Mic­ros­co­pic bubb­les con­tai­ning main­ly nit­ro­gen can cau­se tis­sue emp­hy­se­ma during tran­s­port, simi­lar to what hap­pens to divers.


Lite­ra­tú­ra

Cech, J.J. Jr., Cast­le­ber­ry, D.T., Hop­kins, T.E. 1994. Tem­pe­ra­tu­re and CO2 effects on blo­od O2 equ­ilib­ria in squ­awfish, Pty­cho­che­i­lus ore­go­nen­sis. In: Can. J. Fish. Aqu­at. Sci., 51, 1994, 13 – 19.
Cech, J.J. Jr., Cast­le­ber­ry, D.T., Hop­kins, T.E., Peter­sen, J.H. 1994. Nort­hern squ­awfish, Pty­cho­che­i­lus ore­go­nen­sis, O2 con­sump­ti­on and res­pi­ra­ti­on model: effects of tem­pe­ra­tu­re and body size. In: Can. J. Fish. Aqu­at. Sci., 51, 1994, 8 – 12.
Croc­ker, C.E., Cech, J.J. Jr. 1998. Effects of hyper­cap­nia on blood-​gas and acid-​base sta­tus in the whi­te stur­ge­on, Aci­pen­ser trans­mon­ta­nus. In: J. Comp. Phy­si­ol., B168, 1998, 50 – 60.
Croc­ker, C.E., Cech, J.J. Jr. 1997. Effects of envi­ron­men­tal hypo­xia on oxy­gen con­sump­ti­on rate and swim­ming acti­vi­ty in juve­ni­le whi­te stur­ge­on, Aci­pen­ser trans­mon­ta­nus, in rela­ti­on to tem­pe­ra­tu­re and life inter­vals. In: Env. Biol. Fish., 50, 1997, 383 – 389.
Croc­ker, C.E., Far­rell, A.P., Gam­perl, A.K., Cech, J.J. Jr. 2000. Car­di­ores­pi­ra­to­ry res­pon­ses of whi­te stur­ge­on to envi­ron­men­tal hyper­cap­nia. In: Amer. J. Phy­si­ol. Regul. Integr. Comp. Phy­si­ol., 279, 2000, 617 – 628.
Fer­gu­son, R.A, Kief­fer, J.D., Tufts, B.L. 1993. The effects of body size on the acid-​base and meta­bo­lic sta­tus in the whi­te musc­le of rain­bow trout befo­re and after exhaus­ti­ve exer­ci­se. In: J. Exp. Biol., 180, 1993, 195 – 207.
Hyl­land, P., Nils­son, G.E., Johans­son, D. 1995. Ano­xic brain fai­lu­re in an ectot­her­mic ver­teb­ra­te: rele­a­se of ami­no acids and K+ in rain­bow trout tha­la­mus. In: Am. J. Phy­si­ol., 269, 1995, 1077 – 1084.
Kief­fer, J.D., Cur­rie, S., Tufts, B.L. 1994. Effects of envi­ron­men­tal tem­pe­ra­tu­re on the meta­bo­lic and acid-​base res­pon­ses on rain­bow trout to exhaus­ti­ve exer­ci­se. In: J. Exp. Biol., 194, 1994, 299 – 317.
Krum­schna­bel, G., Sch­warz­baum, P.J., Lisch, J., Bia­si, C., Wei­ser, W. 2000. Oxygen-​dependent ener­ge­tics of anoxia-​intolerant hepa­to­cy­tes. In: J. Mol. Biol., 203, 2000, 951 – 959.
Laiz-​Carrion, R., Sangiao-​Alvarellos, S., Guz­man, J.M., Mar­tin, M.P., Migu­ez, J.M., Soen­gas, J.L., Man­ce­ra, J.M. 2002. Ener­gy meta­bo­lism in fish tis­su­es rela­ed to osmo­re­gu­la­ti­on and cor­ti­sol acti­on: Fish gro­wth and meta­bo­lism. Envi­ron­men­tal, nut­ri­ti­onal and hor­mo­nal regu­la­ti­on. In: Fish Phy­si­ol. Bio­chem., 27, 2002, 179 – 188.
Mac­Cor­mack, T.J., Drie­dzic, W.R. 2002. Mito­chon­drial ATP-​sensitive K+ chan­nels influ­en­ce for­ce deve­lop­ment and ano­xic con­trac­ti­li­ty in a flat­fish, yel­lo­wtail floun­der Liman­da fer­ru­gi­nea, but not Atlan­tic cod Gadus mor­hua heart. In: J. Exp. Biol., 205, 2002, 1411 – 1418.
Man­zon, L.A. 2002. The role of pro­lac­tin in fish osmo­re­gu­la­ti­on: a review. In: : Gen. Com­par. Endoc­rin., 125, 2002, 291 – 310.
Mil­li­gan, C.L. 1996. Meta­bo­lic reco­ve­ry from exhaus­ti­ve exer­ci­se in rain­bow trout: Review. In: Comp. Bio­chem. Physiol.,113A, 1996, 51 – 60.
Mor­gan, J.D., Iwa­ma, G.K. 1999. Ener­gy cost of NaCl tran­s­port in iso­la­ted gills of cutth­ro­at trout. In: Am. J. Phy­si­ol., 277, 1999, 631 – 639.
Nils­son, G.E., Perez-​Pinzon, M., Dim­berg, K., Win­berg, S. 1993. Brain sen­si­ti­vi­ty to ano­xia in fish as ref­lec­ted by chan­ges in extra­cel­lu­lar potassium-​ion acti­vi­ty. In: Am. J. Phy­si­ol., 264, 1993, 250 – 253.

Use Facebook to Comment on this Post

Akvaristika, Biológia, Organizmy, Príroda, Ryby, Živočíchy

Správanie rýb

Hits: 32315

Sprá­va­nie rýb môže kaž­dý z nás pozo­ro­vať. Svo­jím sprá­va­ním vlast­ne ryby s nami komu­ni­ku­jú. Keď­že nedo­ká­že­me zachy­tiť ich prí­pad­né zvu­ko­vé pre­ja­vy, nemá­me inú mož­nosť. Ak sa nie­čo dozvie­me o ich sprá­va­ní, bude­me vedieť im lep­šie pomôcť, pomô­že nám to v odha­de ich kon­dí­cie, vo fyzi­olo­gic­kých potre­bách apod. Pre­to sa posna­žím pre­dos­trieť vám zopár svo­jich postre­hov. Cel­ko­vé sprá­va­nie rýb je dru­ho­vo špe­ci­fic­ké, napr. laby­rint­ky sú za bež­ných pod­mie­nok pokoj­né, tet­ro­vi­té sú čas­to hej­no­vé, spo­lo­čen­ské typy. Nie­kto­ré ryby svoj život­ný pries­tor nachá­dza­jú v rôz­nych čas­tiach vod­né­ho stĺp­ca. Sum­če­ky obý­va­jú pre­važ­ne dno, tet­ry plá­va­jú v stre­de akvá­ria, dánia v hor­nej čas­ti, mren­ky prak­tic­ky v celom vod­nom stĺp­ci. Ryby sa z času na čas otie­ra­jú o pev­ný pod­klad. V prí­pa­de, že túto akti­vi­tu zvý­šia, zrej­me nepôj­de o sociál­ne sprá­va­nie, ale o vzni­ka­jú­cu, prí­pad­ne už jes­tvu­jú­cu ples­ňo­vú ale­bo inú náka­zu napá­da­jú­cu povrch tela.

V prí­pa­de, že máme v nádr­ži prí­liš malý počet rýb, môžu sa sprá­vať vyľa­ka­ne a bojaz­li­vo. Situ­ácia závi­sí od stav­by akvá­ria – deko­rá­cie, roz­miest­ne­nia rast­lín, ich veľ­kos­ti, mor­fo­ló­gie, veľ­kos­ti akvá­ria, no samoz­rej­me aj od oko­li­tých rýb. V takom prí­pa­de je zrej­me vhod­né zasiah­nuť, zvý­šiť počet úkry­tov (nie­ke­dy ale aj zní­žiť, ale­bo zme­niť), nechať viac zarásť nádrž, prí­pad­ne šetr­nej­šie zapí­nať osvet­le­nie, zní­žiť tok fil­tra, vzdu­cho­va­nia, ale­bo jed­no­du­cho zvý­šiť počet rýb v akvá­riu. Pozor však, nie­kto­ré dru­hy rýb sú vyslo­ve­nie bojaz­li­vé, prí­pad­ne sa vyzna­ču­jú viac-​menej noč­ným živo­tom – napr. via­ce­ré dru­hy sumcovitých.

Ryby aj rast­li­ny rea­gu­jú na svet­lo viac-​menej pozi­tív­ne. Rast­li­ny foto­syn­te­ti­zu­jú a dýcha­jú, prí­pad­ne sa obra­ca­jú za svet­lom atď. Ryby počas dostat­ku svet­la inten­zív­ne plá­va­jú, vyko­ná­va­jú väč­ši­nu akti­vít. Sve­tel­né šoky nezná­ša­jú, pre­to nie­kto­rí akva­ris­ti pou­ží­va­jú stmie­va­če – takým­to spô­so­bom zmier­ňu­jú prí­pad­ný náh­ly prí­sun svet­la. Imi­tu­je sa tým východ a západ sln­ka. Kaž­do­pád­ne pomô­že, ak ume­lé osvet­le­nie zapne­me ešte pre zotme­ním. Hor­ší prí­pad totiž je náh­ly prí­sun svet­la, ako jeho náh­ly nedos­ta­tok. Pomô­že aj to, ak najprv zapne­me stol­nú lam­pu mimo akvá­ria (slab­ší zdroj svet­la), prí­pad­ne lus­ter, a nako­niec samot­né svet­lo nad akvá­ri­om. Na náh­ly nárast svet­la rea­gu­jú ryby podráž­de­ne – prud­ko začnú plá­vať, nie­kto­ré dru­hy sa sna­žia vysko­čiť, vte­dy môže dôjsť k úra­zu spô­so­be­né­ho deko­rá­ci­ou. Ryby nie sú síce schop­né zatvo­riť oči, ale v noci spia. Zjav­ne to závi­sí na množ­stve svet­la – ove­ľa viac ako na zacho­va­ní pri­ro­dze­né­ho strie­da­nia napr. 12 hodi­no­vé­ho cyk­lu. Čiže, tým že svie­ti­me viac než je pri­ro­dze­né, resp. nepra­vi­del­ne, ryby una­vu­je­me, pre­to­že ich núti­me nespať. Drvi­vá väč­ši­na dru­hov mení v noci aj svo­je sfar­be­nie – strá­ca sa kon­trast, fareb­nosť, cel­ko­vo oby­čaj­ne ryba stmavne.

Je zau­jí­ma­vé ako sa ryby budia. Je zná­me, že mno­hé dru­hy sa sko­ro ráno trú. Nie­kto­ré dru­hy sa zobú­dza­jú veľ­mi rých­lo, iné naopak veľ­mi ťaž­ko. Ľah­ko to môže­me vypo­zo­ro­vať počas noci, keď zra­zu zasvie­ti­me. Živo­rod­ky, tet­ry, mren­ky nám zakrát­ko potom oži­jú, pri­čom ska­lá­rom, ostat­ným cich­li­dám pre­bú­dza­nie bude trvať ove­ľa dlh­šie – ako­by neochot­ne. Sprá­va­nie rýb ovplyv­ňu­je aj roč­né obdo­bie. My to len veľ­mi ťaž­ko vie­me napo­dob­niť. V prí­ro­de čas­to dochá­dza k roz­mno­žo­va­niu na kon­ci obdo­bia sucha, ryby sa čas­to vyví­ja­jú počas prvých dní daž­ďo­vé­ho obdo­bia. Pre väč­ši­nu dru­hov je naj­pri­ro­dze­nej­šia doba na tre­nie v zaja­tí jar. Vte­dy je aj ich hor­mo­nál­na akti­vi­ta pohlav­ných fun­kcií na naj­vyš­šej úrov­ni. Tre­ba si uve­do­miť, že dru­hy, kto­ré cho­vá­me sú z tro­pic­kých a subt­ro­pic­kých oblas­tí, kde nie sú roč­né obdo­bia ako u nás. Pre­to, ak chce­me byť dôsled­ný, dbaj­me na túto skutočnosť.

V prí­ro­de je čas­tá pro­mis­ku­ita, nie­kto­ré dru­hy sú však ver­né – tvo­ria páry na celý život. Ten­to jav je čas­tý u ame­ric­kých cich­líd. Počas obdo­bia páre­nia, kto­ré môže byť časo­vo ohra­ni­če­né, ale nemu­sí sa ryby samoz­rej­me sprá­va­jú inak. Čas­to menia aj svo­je sfar­be­nie. V tom­to obdo­bí je jas­nej­šie, kraj­šie, naj­mä samec sa sna­ží uká­zať pred samič­kou v plnej krá­se. Napr. sam­ce gupiek Poeci­lia reti­cu­la­ta pre­na­sle­du­jú samič­ky čas­to hodi­ny a hodi­ny. Kaž­do­pád­ne sprá­va­nie počas páre­nia, a sna­žia­ce sa o zís­ka­nie priaz­ne je spre­vá­dza­né zní­že­nou obo­zret­nos­ťou voči nebez­pe­čen­stvu, sam­ce sú čas­to krát ako­by v tran­ze, tre­pú celým telom, naj­mä plut­va­mi, neus­tá­le zís­ka­va­jú vhod­nej­ší pozí­ciu pre oči vyhliad­nu­tej samič­ky, resp. pre via­ce­ro samíc. Doslo­va sa pred­bie­ha­jú v pred­vá­dza­ní, na obdiv vysta­vu­jú čo naj­viac. Samot­ný roz­mno­žo­va­cí akt takis­to pre­bie­ha rôz­ne. Napr. samič­ka po neus­tá­lom pre­na­sle­do­va­ní vypúš­ťa ikry do voľ­nej vody a samec rea­gu­je vylu­čo­va­ním sper­mií rov­na­ko do voľ­né­ho pries­to­ru. Ikry môžu ryby lepiť na lis­ty, na kame­ne, do vrch­nú stra­nu kve­ti­ná­ča zospo­du, fan­tá­zií sa medze nekla­dú. Avšak vrá­tim sa k sprá­va­niu – nie­kto­ré dru­hy sa pred vypus­te­ním pohlav­ných buniek pri­blí­žia k sebe, bruš­ka­mi sa dot­knú a vte­dy nasta­ne prud­ké trhnu­tie, počas kto­ré­ho dôj­de k oplod­ne­niu. Ale­bo sam­ček pre­ho­dí časť svoj­ho tela cez samič­ku, nasta­ne prud­ké trhnu­tie a situ­ácia je podobná.

Pri roz­mno­žo­va­ní papu­ľov­cov pozo­ru­je­me z náš­ho pohľa­du orál­ny sex. Samič­ka pri ňom vypúš­ťa ikry, samec vypúš­ťa sper­mie, oba­ja tie­to pro­duk­ty nabe­ra­jú do úst, samec ich napo­kon oby­čaj­ne pre­ne­chá samič­ke. Pome­no­va­ním papu­ľov­ce sa ozna­ču­jú dru­hy, kto­ré držia svo­je potom­stvo v úst­nej duti­ne – v papuľ­ke. Nepat­ria sem len cich­li­dy, ale aj nie­kto­ré bojov­ni­ce. Zau­jí­ma­vé sprá­va­nie – pre­jav džen­tl­men­stva pozo­ru­je­me u bojov­níc, o kto­rých je zná­me, že sam­ce zvá­dza­jú neľú­tost­né boje. Avšak bojov­ni­ca pomo­cou laby­rin­tu dýcha atmo­sfé­ric­ký kys­lík, a keď počas také­ho­to boja naň­ho doľah­ne bio­lo­gic­ká potre­ba, boj na chví­ľu utích­ne a sok úpl­ne akcep­tu­je svoj­ho pro­tiv­ní­ka, keď sa ide na hla­di­nu nadých­nuť. Potom boj pokračuje.

Drvi­vá väč­ši­na dru­hov rýb sa nesta­rá o svo­je potom­stvo po akte oplod­ne­nia. No z dru­hov, kto­ré tak činia, väč­ši­nou sa v prvej fáze sta­rá o potom­stvo samič­ka, neskôr pre­be­rá zod­po­ved­nosť skôr sami­ca. Avšak čas­to sa pri afric­kých papu­ľov­coch sta­ne, že rodi­čov­ský inštinkt im vydr­ží len počas doby, kým ma samič­ka mla­dé v papu­li, naj­mä pri mala­ws­kých dru­hoch. Tan­ga­nic­ké cich­li­dy a pre­dov­šet­kým ame­ric­ké cich­li­dy majú vyš­šiu potre­bu po odcho­va­ní potom­stva. Čas­to svo­je mla­dé držia v papu­li, nie­ke­dy ich vypus­tia a zno­vu nabe­rú, jed­nak ich učia pre­žiť, jed­nak tak robia, dokiaľ ich vlá­dzu vôbec udr­žať. Názor­ným prí­kla­dom je rod Neolam­pro­lo­gus, kto­rý urput­ne brá­ni svo­je potom­stvo voči votrel­com. Neuve­ri­teľ­ne bojov­ne sa doká­že sprá­vať voči neškod­ným prí­sav­ní­kom. Zau­jí­ma­vým sprá­va­ním pri ochra­ne vlast­né­ho potom­stva pri prin­cez­nách (Neolam­pro­lo­gus bri­char­di). U nich je zná­me, že svo­je potom­stvo doká­žu nie­len úspeš­ne brá­niť, ale dokon­ca star­ší potom­ko­via pomá­ha­jú nie­ke­dy brá­niť mlad­šie potom­stvo. Sám som bol neraz sved­kom pomer­ne komic­ké­ho javu, kedy 0.5 cm jedin­ce spo­mí­na­nej Neolam­pro­lo­gus bri­char­di zastra­šo­va­li 1020 cm jedin­ce iných dru­hov, čím pomá­ha­li naj­mä rodi­čom chrá­niť ešte men­šie dru­hy. Ten­to jav nepo­zo­ru­jem, keď cho­vám prin­cez­ny v samos­tat­nej nádr­ži. Avšak aj v nej pozo­ru­jem jav, kto­rý popi­su­jem na inom mies­te. Keď totiž prin­cez­ny dospe­jú, doká­žu sa až fyzic­ky lik­vi­do­vať veľ­mi úspešne.

Ak si kla­die­te logic­kú otáz­ku, pre­čo mečov­ky, pla­ty, tet­ry, aj cich­li­dy si čas­to svo­je potom­stvo požie­ra­jú a násled­ne sa zno­vu vrha­jú do roz­mno­žo­va­nia, tak vedz­te že je tomu tak pre­to­že akvá­ri­um posky­tu­je iba malý život­ný pries­tor. Keď poro­dí živo­rod­ka v prí­ro­de, ale­bo keď sa vypu­dia ikry, resp. rozp­lá­va plô­dik, vo vod­nom toku, v jaze­re je dosta­tok pries­to­ru na to, aby sa ikry, ryby v tom obje­me stra­ti­li – zachrá­ni­li. V akvá­riu sú ich mož­nos­ti obmedzené.

Riva­li­ta medzi ryba­mi exis­tu­je. Väč­ši­nou sa jed­ná o vnút­rod­ru­ho­vú, ale nie je nezná­ma ani medzid­ru­ho­vá. Jes­tvu­jú medzi ryba­mi nezná­šan­li­vé dru­hy, kto­ré nezne­sú pri sebe v akvá­riu niko­ho. Vše­obec­ne sa za také­to pova­žu­jú mäsož­ra­vé pira­ne. Na samot­né pira­ne je v ich domo­vi­ne vyví­ja­ný tiež pre­dač­ný tlak. Domá­ci majú väč­ší rešpekt pred iný­mi druh­mi ako sú pira­ne. Aj v akvá­riu sú ale dru­hy, s kto­rý­mi sú schop­né pira­ne exis­to­vať za urči­tých pod­mie­nok. V prvom rade nesmú byť hlad­né, z čoho vyplý­va že sa roz­ho­du­jú pod­ľa dostup­nos­ti potra­vy, ak jej majú dosta­tok, doká­žu naží­vať s bež­ný­mi druh­mi rýb. Vhod­né sú napr. Astro­no­tu­sy, Hemic­hro­mi­sy. Názna­ky riva­li­ty, kon­ku­ren­cie môže­me vidieť aj pri mie­ru­mi­lov­ných dru­hoch. Čas­to sa snáď aj z komerč­ných dôvo­dov ozna­ču­jú nie­kto­ré dru­hy za dru­hy takz­va­ne spo­lo­čen­ské – mys­lí sa tým, že ich bojov­nosť medzi sebou je mini­mál­na. Zara­dil by som sem napr. dánia, kar­di­nál­ky, neón­ky, gup­ky, mečov­ky, black­mol­ly, gura­my. Iné dru­hy sú viac nezná­šan­li­vé, iné menej. Ako som spo­mí­nal na inom mies­te – napr. nie­kto­ré ame­ric­ké cich­li­dy sú nezná­šan­li­vé voči všet­kým, aj voči svoj­mu dru­hu, aj voči iným dru­hom. Naopak u veľa afric­kých cich­líd sa riva­li­ta pre­ja­vu­je naj­mä v rám­ci jed­né­ho dru­hu. Typic­kým prí­kla­dom sú Trop­he­usy.. Nie­ke­dy sa však sta­ne, že sam­ca nie­kto­ré­ho dru­hu si vez­mú ostat­né dru­hy na paš­kál via­ce­ré jedin­ce a ten­to jedi­nec má, ak si to nevšim­ne­me, zrej­me zrá­ta­né. Napo­kon ak neja­ká ryba dosta­ne tým­to spô­so­bom zabrať, je mož­né že sa sta­ne apa­tic­kou – až do takej mie­ry, že ďal­šie úto­ky rezig­no­va­ne zná­ša – vlast­ne čaká na smrť ubi­tím – nedo­ká­že sa brá­niť. Boje medzi sebou zvá­dza­jú ryby o potom­stvo, o potra­vu, o pries­tor atď. Pre­ja­vy sú rôz­ne, od mier­nych až po suro­vé nekom­pro­mis­né. Také­to sprá­va­nie je závis­lé aj od veku, čím sú ryby star­šie, tým tole­ru­jú menej. Napr. Neolam­pro­lo­gus bri­char­di je druh, kto­rý je priam rodin­ným vzo­rom v mla­dom veku, no ako mla­dé prin­cez­né dospie­va­jú, začnú sa u nich pre­ja­vo­vať nevra­ži­vosť. Doslo­va lik­vi­dač­né sprá­va­nie.

Na to, aby sa agre­si­vi­ta medzi jedin­ca­mi zní­ži­la, je vhod­né zvý­še­nie množ­stva úkry­tov. Pre afric­ké cich­li­dy pla­tí, že agre­si­vi­tu napr. rodov Trop­he­us, Pse­udot­rop­he­us eli­mi­nu­je väč­šie množ­stvo jedin­cov rov­na­ké­ho dru­hu. Toto množ­stvo však musí byť dosta­toč­né, pre­to­že inak je mož­né, že docie­li­me opak. Pre Trop­he­usy je odpo­rú­ča­ný mini­mál­ny počet, desať cho­va­ných jedin­cov v jed­nom akvá­riu. Dôle­ži­tý je aj pomer pohla­ví, odpo­rú­ča­ný je v tom­to prí­pa­de tri sam­ce ku sied­mim sami­ciam. Pre mbu­na cich­li­dy odpo­rú­čam kom­bi­ná­ciu jeden sam­ce na dve – tri sami­ce. V prí­pa­de nedos­tat­ku pries­to­ru hro­zí naj­mä u nie­kto­rých väč­ších dru­hov prí­liš­ná agre­si­vi­ta – kom­bi­ná­cia dvoch sam­cov akar mod­rých s jed­nou sami­cou je v malom pries­to­re nežia­du­ca, podob­ne ako kom­bi­ná­cia dvoch samíc akar a jed­né­ho sam­ca. Napr. aj na prvý pohľad mie­ru­mi­lov­né sam­ce mečov­ky mexic­kej, doká­žu medzi sebou vytvá­rať prí­snu hie­rar­chiu, v kto­rej prí­pad­né slab­šie jedin­ce sú utlá­ča­né. U nie­kto­rých dru­hov exis­tu­je sociál­na hie­rar­chia, kde je pánom domi­nant­ný samec, prí­pad­ne domi­nant­ná sami­ca. U dru­hov, kde je sil­ný pre­jav von­kaj­šie­ho pohlav­né­ho dimor­fiz­mu, môže napriek tomu vyvo­lať fakt, že sam­ce sú čas­to sfar­be­né ako sami­ce. Ak však domi­nant­ný samec pre­sta­ne exis­to­vať v prí­tom­nos­ti pred­tým rece­sív­nych sam­cov, môže sa stať, že naraz sa zra­zu sfar­bí aj nie­koľ­ko ďal­ších sam­cov. Situ­ácia sa môže neskôr zopa­ko­vať, keď si opäť vybo­ju­je neja­ký samec výsad­nú domi­nan­ciu, a nedo­vo­lí” ostat­ným sam­com byť vyfar­be­ný­mi ako sam­ce. Pri roz­mno­žo­va­ní sa stá­va, že domi­nant­ný samec sa trie s nie­koľ­ký­mi sami­ca­mi, no ostat­né sam­ce ostá­va­jú bokom.

Teri­to­ria­li­tou sa pre­ja­vu­je aj u rýb. Teri­to­ria­li­ta je jav, kedy orga­niz­mus sa viac zau­jí­ma o urči­tý život­ný pries­tor, kto­rý prí­pad­ne čas­to háji. Teri­to­ria­li­ta sa čas­to pre­ja­ví veľ­mi nega­tív­ne aj v akvá­riu, kde je čas­to málo pries­to­ru. Pre uzav­re­tý pries­tor to môže skon­čiť tra­gic­ky. Znač­nou teri­to­ria­li­tou sa pre­ja­vu­jú skôr dru­hy veľ­kých jazier a mohut­ných tokov, čas­to cich­li­dy. Svo­je vybra­né teri­tó­rium doká­žu brá­niť veľ­mi vehe­men­tne. Veľ­kosť teri­tó­ria závi­sí aj od kon­ku­ren­cie iných jedin­cov, môže zabe­rať jeden kameň, jed­nu uli­tu, ale aj celé akvá­ri­um. Ak sa neja­ké­mu jedin­co­vi poda­rí obsa­diť teri­tó­rium, je vo veľ­kej výho­de. Vše­obec­ne sa dá pove­dať, že jedin­ce pri­da­né do spo­lo­čen­stva akvá­ria neskôr si ťaž­šie nachá­dza­jú svo­je mies­to, a to aj v prí­pa­de že sú sil­né. Ak chce­me teri­tó­rium naru­šiť, sta­čí čas­to zme­niť sta­veb­né prv­ky v akvá­riu – deko­rá­ciu, pre­sa­diť rast­li­ny, pre­miest­niť tech­ni­ku. Čas­to sta­čí pre­su­núť kameň, pri­dať nový kameň, to závi­sí od kon­krét­ne­ho prí­pa­du. Aj malá zme­na čas­to cel­kom zme­ní sprá­va­nie, čo vlast­ne doka­zu­je sil­nú teri­to­ria­li­tu rýb. Samoz­rej­me nie­kto­ré dru­hy sa tak­to pre­ja­vu­jú menej, ale­bo vôbec, iné viac. Bojov­ni­ce, resp. sam­ce bojov­níc Bet­ta splen­dens si svo­je náro­ky obha­ju­jú veľ­mi vehe­men­tne. V nádr­ži, kde nie je pre viac sam­cov dosta­tok život­né­ho pries­to­ru nie je mies­to pre viac sam­cov. Na to aby kon­dí­cia našich bojov­níc bola čo naj­lep­šia, aby plut­vy krás­ne vyni­ka­li, ale­bo na to aby sme moh­li pozo­ro­vať sprá­va­nie sa bojov­níc, vez­mi­me zrkad­lo a nastav­me ho sam­co­vi bojov­ni­ce. Ten­to bude hro­ziť svoj­mu dom­ne­lé­mu soko­vi, aj naň­ho zrej­me zaútočí.

Úlo­ha uče­nia nie je u rýb až tak vyvi­nu­tá ako u cicav­cov, prí­pad­ne u vtá­kov, ale exis­tu­je. Ryby napo­dob­ňu­jú star­šie jedin­ce. Počas život­né­ho cyk­lu rýb sa pre­ja­vu­jú aj nacvi­čo­va­ním rôz­nych situ­ácií – súbo­jov, roz­mno­žo­va­cie­ho sprá­va­nia. Svo­ju úlo­hu iste hrá inštinkt. Ryby nám doká­žu pred­viesť aj svo­je gene­tic­ky vpe­ča­te­né ritu­ály, kto­rý­mi sa sna­žia zalie­čať svo­jim par­tne­rom, ale­bo v kto­rých pred­vá­dza­jú svo­ju silu pre sokom. Tie­to pre­ja­vy sú naj­sil­nej­šie u dru­hov, kto­rých sociál­ne sprá­va­nie je výraz­nej­šie. Dodnes sa nevie dosta­toč­ne vysvet­liť, ako sa doká­žu napr. neón­ky čer­ve­né v jedi­nom momen­te ” dohod­núť” a zme­niť smer plá­va­nia. Napo­kon aj mno­hé mor­ské dru­hy žijú­ce v sku­pi­nách.

Drvi­vá väč­ši­na dru­hov úpl­ne samoz­rej­me rea­gu­je pri pre­no­se v sieť­ke veľ­mi nega­tív­ne. Je to úpl­ne pocho­pi­teľ­né, z ich pohľa­du im ide o život. No ak rybám poskyt­ne­me opo­ru v podo­bu našej ruky, doká­žu sa skôr upo­ko­jiť. Mož­no ste si nie­ke­dy všim­li ako cho­va­teľ chy­tá ryby lyžič­kou, ale­bo rukou. Pre rybu je to v kaž­dom prí­pa­de tole­ran­tnej­šie. Zrej­me nere­a­gu­jú len na samot­nú mecha­nic­kú pod­po­ru, ale snáď aj na tep­lo ľud­skej ruky, mož­no aj na iné fyzi­kál­ne, mož­no aj che­mic­ké vlast­nos­ti také­ho­to pre­no­su. Veľa­krát som tak­to pre­ná­šal naj­mä samič­ky afric­kých cichlíd.

Nie­kto­ré dru­hy správania

Hej­no­vi­tosť – mno­ho dru­hov rýb sa vyzna­ču­je takým­to sociál­nym sprá­va­ním. Iste ste v tele­ví­zii vide­li ako sa obrov­ské kvan­tá rýb zosku­pu­jú a v prie­be­hu oka­mi­hu rea­gu­jú – menia smer. V malom merít­ku to môže­me pozo­ro­vať aj v našom akvá­riu. Naj­mä ak cho­vá­te neja­ké tet­ro­vi­té ryby, napr. pra­vé neón­ky, aj tet­ry neóno­vé sú typic­ké hej­no­vé dru­hy. Ten­to jav sa stup­ňu­je s počet­nos­ťou spo­lo­čen­stva – 5 neóniek sa bude cho­vať inak, ako 200 jedincov.

Samos­tat­nosť - dru­hy rýb, kto­ré žijú viac-​menej samos­tat­ne, prí­pad­ne v pároch. Takých­to dru­hov je naj­viac. Úzko to súvi­sí s teritorialitou.

Ukrý­va­nie – počas svo­jich bež­ných cho­va­teľ­ských čin­nos­tí som mal mož­nosť porov­nať rôz­ne sprá­va­nie rýb pri tak bež­nom úko­ne ako je chy­ta­nie rýb sieť­kou. Väč­ši­na dru­hov rýb ak vlo­ží­me do vody sieť­ku sa sprá­va pomer­ne vystra­še­ne a zbr­k­lo. Len málo dru­hov svoj útek vyko­ná­va cie­ľa­ve­do­mej­šie. V tých­to situ­áciách sa občas sta­ne, že nám ryby vyska­ku­jú z akvá­ria. Iným prí­pa­dom je sprá­va­nie sa mbu­na cich­líd. Sú to dru­hy, kto­ré žijú v ska­lách afric­ké­ho jaze­ra Mala­wi. Tie­to sa sna­žia scho­vať do svoj­ho pri­ro­dze­né­ho pro­stre­dia – do skál. Ostat­né ryby majú ten­den­ciu sa scho­vať maxi­mál­ne za fil­ter, ale mbu­na cich­li­dy sa scho­va­jú šikov­nej­šie. Doká­žu sa scho­vať pod pomer­ne malý kameň. Vy tes­ne oko­lo nich neus­tá­le pre­chá­dza­te, ale ryba, kto­rá je pod svo­jím úkry­tom pomer­ne pokoj­ne čaká. Ak má pries­tor a nik ju neata­ku­je, čaká na odoz­ne­nie oba­vy – na vytia­hnu­tie sieť­ky. Toto sprá­va­nie je čas­to zre­teľ­né aj v pre­daj­ni. Pova­žu­jem to za pre­jav inte­li­gen­cie. Mož­no sa už aj vám sta­lo, že ste sa sna­ži­li chy­tiť podob­ne rybu v nádr­ži plnej úkry­tov a po hodi­ne ste to vzda­li. Inak rea­gu­jú ryby aj na far­bu sieť­ky. Bež­ne sa pou­ží­va­jú sieť­ky zele­né, bie­le a čier­ne. Za najv­hod­nej­šie pova­žu­jem sieť­ky zele­né. Bie­le a čier­ne sú prí­liš kon­trast­né. No aj na tak­to sfar­be­né sieť­ky si doká­žu ryby zvyk­núť. Ak však nie sú na napr. bie­lu sieť­ku zvyk­nu­té, je prav­de­po­dob­né, že sa tej­to výraz­nej­šej sieť­ky budú báť viac.


Beha­vi­or of fish can be obser­ved by each of us. By the­ir beha­vi­or, fish actu­al­ly com­mu­ni­ca­te with us. Sin­ce we can­not cap­tu­re the­ir possib­le sound expres­si­ons, we have no other opti­on. If we learn somet­hing about the­ir beha­vi­or, we will be able to help them bet­ter, it will help us esti­ma­te the­ir con­di­ti­on, phy­si­olo­gi­cal needs, etc. The­re­fo­re, I will try to pre­sent you with some of my obser­va­ti­ons. The ove­rall beha­vi­or of fish is species-​specific, for exam­ple, laby­rinth fish are usu­al­ly pea­ce­ful under nor­mal con­di­ti­ons, tetras are often sho­aling, social types. Some fish find the­ir living spa­ce in vari­ous parts of the water column. Cat­fish main­ly inha­bit the bot­tom, tetras swim in the midd­le of the aqu­arium, dani­os in the upper part, and min­no­ws prac­ti­cal­ly throug­hout the water column. Fish occa­si­onal­ly rub against a solid sub­stra­te. If this acti­vi­ty inc­re­a­ses, it pro­bab­ly won’t be social beha­vi­or, but the emer­gen­ce or exis­ting fun­gal or other infec­ti­on attac­king the body surface.

In case the tank has too few fish, they may beha­ve sca­red and timid. The situ­ati­on depends on the aqu­arium struc­tu­re – deco­ra­ti­ons, dis­tri­bu­ti­on of plants, the­ir size, morp­ho­lo­gy, aqu­arium size, but of cour­se also on the sur­roun­ding fish. In such a case, it is pro­bab­ly app­rop­ria­te to inter­ve­ne, inc­re­a­se the num­ber of hiding pla­ces (some­ti­mes even dec­re­a­se or chan­ge them), let the tank get more over­gro­wn, or gen­tly turn off the ligh­ting, redu­ce fil­ter flow, aera­ti­on, or sim­ply inc­re­a­se the num­ber of fish in the aqu­arium. Howe­ver, some fish spe­cies are express­ly timid, or they exhi­bit more or less noc­tur­nal beha­vi­or – for exam­ple, seve­ral spe­cies of catfish.

Fish and plants gene­ral­ly react more or less posi­ti­ve­ly to light. Plants pho­to­synt­he­si­ze and res­pi­re, turn towards the light, etc. Fish, during suf­fi­cient light, swim inten­si­ve­ly and per­form most acti­vi­ties. They do not tole­ra­te light shocks, so some aqu­arists use dim­mers – this way, they miti­ga­te any sud­den light influx. It imi­ta­tes the sun­ri­se and sun­set. In any case, it helps if we turn on arti­fi­cial ligh­ting even befo­re it gets dark. The wor­se case is a sud­den light influx rat­her than its sud­den shor­ta­ge. It also helps if we first turn on a desk lamp out­si­de the aqu­arium (a wea­ker light sour­ce) or a chan­de­lier, and final­ly the light abo­ve the aqu­arium. Fish react irri­tab­ly to a sud­den inc­re­a­se in light – they start swim­ming rapid­ly, some spe­cies try to jump, which can cau­se inju­ry from deco­ra­ti­ons. Alt­hough fish can­not clo­se the­ir eyes, they sle­ep at night. Appa­ren­tly, it depends on the amount of light – much more than main­tai­ning a natu­ral cyc­le, e.g., a 12-​hour cyc­le. So, by shi­ning more than is natu­ral, or irre­gu­lar­ly, we tire the fish becau­se we for­ce them not to sle­ep. Most spe­cies chan­ge the­ir color at night – con­trast, color­ful­ness, gene­ral­ly the fish usu­al­ly darkens.

It is inte­res­ting how fish wake up. It is kno­wn that many spe­cies tend to spa­wn ear­ly in the mor­ning. Some spe­cies wake up very quick­ly, whi­le others wake up very slo­wly. You can easi­ly obser­ve this during the night when sud­den­ly we turn on the light. Live­be­a­rers, tetras, and min­no­ws liven up short­ly after­ward, whi­le angel­fish, other cich­lids, waking up will take much lon­ger – as if reluc­tan­tly. The beha­vi­or of fish is also influ­en­ced by the sea­sons. We find it very dif­fi­cult to mimic it. In natu­re, repro­duc­ti­on often occurs at the end of the dry sea­son, and fish often deve­lop during the first days of the rai­ny sea­son. For most spe­cies, the most natu­ral time for spa­wning in cap­ti­vi­ty is spring. Hor­mo­nal acti­vi­ty of sexu­al func­ti­ons is at its hig­hest during this time. It is essen­tial to rea­li­ze that the spe­cies we keep come from tro­pi­cal and subt­ro­pi­cal regi­ons, whe­re the­re are no sea­sons like ours. The­re­fo­re, if we want to be con­sis­tent, let’s keep this in mind.

In natu­re, pro­mis­cu­ity is com­mon, but some spe­cies are faith­ful – they form pairs for a life­ti­me. This phe­no­me­non is com­mon in Ame­ri­can cich­lids. During the spa­wning peri­od, which can be time-​limited, but not neces­sa­ri­ly, fish beha­ve dif­fe­ren­tly. They often chan­ge the­ir color during this peri­od. For exam­ple, male gup­pies Poeci­lia reti­cu­la­ta often cha­se fema­les for hours. Nevert­he­less, beha­vi­or during spa­wning and try­ing to gain favor is accom­pa­nied by redu­ced vigi­lan­ce against dan­ger, males are often in a trance-​like sta­te, vib­ra­ting the­ir enti­re bodies, espe­cial­ly the­ir fins, cons­tan­tly gai­ning a bet­ter posi­ti­on for the sought-​after fema­le or for mul­tip­le fema­les. They lite­ral­ly com­pe­te in disp­la­y­ing them­sel­ves for admiration.

The act of repro­duc­ti­on itself also varies. For exam­ple, the fema­le rele­a­ses eggs into the free water, and the male res­ponds by rele­a­sing sperm into the free spa­ce. Fish can lay eggs on lea­ves, sto­nes, the upper side of a flo­wer­pot from below, the­re are no limits to ima­gi­na­ti­on. Howe­ver, I will return to beha­vi­or – some spe­cies app­ro­ach each other befo­re rele­a­sing the­ir game­tes, touch bel­lies, and then a sud­den twitch occurs, during which fer­ti­li­za­ti­on takes pla­ce. Or the male flips part of his body over the fema­le, a sud­den twitch occurs, and the situ­ati­on is similar.

When repro­du­cing mouthb­ro­oders, the male usu­al­ly pre­fers the one he wants to mate with, and after a com­pli­ca­ted series of ges­tu­res, the fema­le rele­a­ses the eggs, and the male picks them up and car­ries them in his mouth. The pro­cess is repe­a­ted for some time. Even if a male and fema­le of the same spe­cies are in the same tank, it is not cer­tain that they will suc­ce­ed. It also depends on the­ir con­di­ti­on and, espe­cial­ly, on the type of envi­ron­ment. Some­ti­mes the fema­les hide” for the males by swim­ming in a water column inac­ces­sib­le to the males. Some­ti­mes it is not easy for males to app­ro­ach fema­les, for exam­ple, due to the pre­sen­ce of other males. Each fish has its ter­ri­to­rial ins­tinct, and alt­hough it is not as deve­lo­ped as in turt­les or espe­cial­ly in repti­les, fish are also ter­ri­to­rial to a gre­a­ter or les­ser extent. Even spe­cies that do not seem ter­ri­to­rial at all may be so. They may have a need for pri­va­te spa­ce, e.g., a spe­ci­fic hole or a pie­ce of the sho­re. The best exam­ple of this is the sto­ne pic­ker. They need the­ir per­so­nal sto­ne to hide under, and if we chan­ge the sto­nes, they react agi­ta­ted­ly. This also app­lies to other bottom-​dwelling species.

Fish, howe­ver, may have dif­fe­rent ter­ri­to­ries during the day than at night. No mat­ter how bad we can esti­ma­te this, fish recog­ni­ze each other very well, espe­cial­ly indi­vi­du­als of the same spe­cies. This hap­pens very often when we intro­du­ce a new indi­vi­du­al into the aqu­arium – the newco­mers are imme­dia­te­ly accep­ted, or on the con­tra­ry, the­re is agg­res­si­on from all sides. The same spe­cies of fish usu­al­ly form groups. Each group has its order of hie­rar­chy. This order is often com­plex, and it depends on the size of indi­vi­du­als, the­ir sex, age, but also on other cir­cum­stan­ces. Often, but not alwa­ys, the big­gest fish is the most domi­nant. Domi­nan­ce can also chan­ge, espe­cial­ly when we chan­ge the sex ratio in the aqu­arium. It is not uncom­mon for males to be domi­nant, and some­ti­mes, espe­cial­ly with some small spe­cies, the most domi­nant indi­vi­du­al is fema­le. More­over, it is not uncom­mon for both sexes to have the­ir own hie­rar­chy – the­re are more domi­nant and more sub­mis­si­ve fema­les as well as males. Eve­ry hie­rar­chy is based on social ties. Indi­vi­du­als of dif­fe­rent ranks are in cons­tant inte­rac­ti­on with each other, often this is pla­y­ed out even during hunting.

It is very dif­fi­cult to dis­tin­gu­ish the courts­hip beha­vi­or of the sexes. Fema­les some­ti­mes play dead to att­ract males, some­ti­mes they just swim near them, give them a wink”, a few circ­ling and cha­sing move­ments, etc. Simi­lar beha­vi­or occurs in males. Some of them dan­ce around fema­les, show off the­ir colors, expand the­ir fins. Often the courts­hip ends with a kind of wed­ding para­de”, whe­re the male tries to lead the fema­le to a spe­ci­fic spot whe­re the fema­le lays the eggs and the male fer­ti­li­zes them. Other spe­cies of fish are also very intri­gu­ing. If we com­pa­re cat­fish to live­be­a­rers, we see a sig­ni­fi­cant dif­fe­ren­ce. Cat­fish build nests in cavi­ties, tun­nels, pla­ces they pre­pa­re for spa­wning. The cons­truc­ti­on of a good cat­fish male can take seve­ral days. If he is a matu­re male, he quick­ly lets the fema­le know. If she is inte­res­ted, they mate. After the fema­le lays the eggs, the male col­lects them and pla­ces them in the hole or at the entran­ce to the cave. The­re is a cer­tain peri­od of rest”. During this time, the male looks after the eggs and care­ful­ly aera­tes them by cons­tan­tly chan­ging them and car­ry­ing them in his mouth.

If the male is ine­xpe­rien­ced, he may acci­den­tal­ly swal­low some eggs. If he is expe­rien­ced, he will not do this. If somet­hing hap­pens to the male, and the eggs are left unat­ten­ded, it can end bad­ly. It depends on the type of cat­fish whet­her the male will let any other fish in, whet­her he will attack them, etc. In natu­re, cat­fish are very vul­ne­rab­le during this peri­od. They often do not eat at all, lose a lot of body weight, and some­ti­mes they are cove­red with algae. The situ­ati­on is simi­lar for seve­ral cich­lids. Howe­ver, unli­ke cat­fish, cich­lids are very agg­res­si­ve. They agg­res­si­ve­ly dri­ve away any fish that app­ro­ach the­ir nests. They care about the offs­pring join­tly – the fema­le defends the nest, the male col­lects new offs­pring in his mouth and, if neces­sa­ry, car­ries the eggs or fry in his mouth. It also hap­pens that the fema­le takes turns with the male, and they alter­na­te in the nest. In other cases, the male does not rele­a­se the fema­le from the vici­ni­ty of the nest and even the fry are the­re for some time until they are quite lar­ge. The abo­ve desc­rip­ti­on is very brief, but it con­tains the most impor­tant infor­ma­ti­on. I hope that the­se beha­vi­ors will help you inter­pret the obser­ved phe­no­me­na in the aqu­arium better.


Das Ver­hal­ten von Fis­chen kann jeder von uns beobach­ten. Durch ihr Ver­hal­ten kom­mu­ni­zie­ren die Fis­che tat­säch­lich mit uns. Da wir ihre mög­li­chen Klan­gä­u­ße­run­gen nicht erfas­sen kön­nen, haben wir kei­ne ande­re Opti­on. Wenn wir etwas über ihr Ver­hal­ten ler­nen, wer­den wir in der Lage sein, ihnen bes­ser zu hel­fen. Es hilft uns auch, ihren Zus­tand, ihre phy­si­olo­gis­chen Bedürf­nis­se usw. zu vers­te­hen. Daher wer­de ich ver­su­chen, Ihnen eini­ge mei­ner Beobach­tun­gen mit­zu­te­i­len. Das Gesamt­ver­hal­ten von Fis­chen ist artens­pe­zi­fisch. Zum Beis­piel sind Laby­rinth­fis­che unter nor­ma­len Bedin­gun­gen nor­ma­ler­we­i­se fried­lich, Tetras sind oft Sch­warm­fis­che, sozia­le Typen. Eini­ge Fis­char­ten fin­den ihren Lebens­raum in vers­chie­de­nen Tei­len der Was­ser­sä­u­le. Wel­se bewoh­nen haupt­säch­lich den Boden, Tetras sch­wim­men in der Mit­te des Aqu­ariums, Dani­os im obe­ren Teil und Elrit­zen prak­tisch durch den gesam­ten Was­ser­sä­u­len­be­re­ich. Fis­che rei­ben sich gele­gen­tlich an einem fes­ten Unter­grund. Wenn die­se Akti­vi­tät zunimmt, han­delt es sich wahrs­che­in­lich nicht um sozia­les Ver­hal­ten, son­dern um das Auft­re­ten oder das bere­its vor­han­de­ne Vor­han­den­se­in einer Pilz- oder einer ande­ren Infek­ti­on, die die Kör­pe­ro­berf­lä­che angreift.

Wenn das Aqu­arium zu weni­ge Fis­che hat, kön­nen sie sich äng­st­lich und scheu ver­hal­ten. Die Situ­ati­on hängt von der Aqu­arium­s­truk­tur ab – Deko­ra­ti­onen, Ver­te­i­lung von Pflan­zen, deren Größe, Morp­ho­lo­gie, Aqu­ariumg­röße, aber natür­lich auch von den umge­ben­den Fis­chen. In einem sol­chen Fall ist es wahrs­che­in­lich angeb­racht, ein­zug­re­i­fen, die Anzahl der Vers­tec­ke zu erhöhen (manch­mal sogar zu ver­rin­gern oder zu ändern), das Aqu­arium mehr über­wach­sen zu las­sen oder das Licht, den Fil­terf­luss, die Belüf­tung sanft aus­zus­chal­ten oder ein­fach die Anzahl der Fis­che im Aqu­arium zu erhöhen. Eini­ge Fis­char­ten sind jedoch ausd­rück­lich schüch­tern oder zei­gen mehr oder weni­ger nächt­li­ches Ver­hal­ten – zum Beis­piel meh­re­re Arten von Welsen.

Fis­che und Pflan­zen rea­gie­ren mehr oder weni­ger posi­tiv auf Licht. Pflan­zen foto­synt­he­ti­sie­ren und atmen, dre­hen sich zum Licht, usw. Fis­che sch­wim­men inten­siv wäh­rend aus­re­i­chen­der Licht­ver­hält­nis­se und füh­ren die meis­ten Akti­vi­tä­ten aus. Sie ver­tra­gen kei­ne plötz­li­chen Lichts­chocks, daher ver­wen­den eini­ge Aqu­aria­ner Dim­mer – auf die­se Wei­se mil­dern sie jeden plötz­li­chen Licht­zuf­luss. Dies imi­tiert den Son­ne­nauf­gang und ‑unter­gang. Auf jeden Fall hilft es, wenn wir künst­li­che Bele­uch­tung noch vor Einb­ruch der Dun­kel­he­it ein­schal­ten. Der sch­limm­ste Fall ist näm­lich ein plötz­li­cher Licht­zuf­luss ans­tel­le eines plötz­li­chen Man­gels. Es hilft auch, wenn wir zuerst eine Tisch­lam­pe außer­halb des Aqu­ariums ein­schal­ten (eine sch­wä­che­re Lich­tqu­el­le), oder einen Kron­le­uch­ter und sch­lie­ßlich das Licht über dem Aqu­arium. Bei plötz­li­chem Ans­tieg des Lichts rea­gie­ren Fis­che gere­izt – sie begin­nen schnell zu sch­wim­men, eini­ge Arten ver­su­chen zu sprin­gen, was zu Ver­let­zun­gen durch Deko­ra­ti­onen füh­ren kann. Obwohl Fis­che ihre Augen nicht sch­lie­ßen kön­nen, sch­la­fen sie nachts. Offen­sicht­lich hängt dies von der Licht­men­ge ab – viel mehr als von der Auf­rech­ter­hal­tung eines natür­li­chen Zyk­lus, zum Beis­piel eines 12-​Stunden-​Zyklus. Daher ermüden wir die Fis­che, wenn wir mehr Licht als natür­lich ein­fan­gen oder es unre­gel­mä­ßig machen, indem wir sie dazu zwin­gen, nicht zu sch­la­fen. Die über­wäl­ti­gen­de Mehr­he­it der Arten ändert auch nachts ihre Fär­bung – der Kon­trast, die Far­big­ke­it und ins­ge­samt dun­kelt der Fisch in der Regel ab.

Es ist inte­res­sant, wie sich Fis­che wec­ken. Es ist bekannt, dass vie­le Arten früh am Mor­gen lai­chen. Eini­ge Arten wachen sehr schnell auf, ande­re hin­ge­gen nur lang­sam. Dies kann leicht nachts beobach­tet wer­den, wenn wir plötz­lich Licht ein­schal­ten. Lebend­ge­bä­ren­de Fis­che, Tetras und Elrit­zen wer­den kurz danach leben­dig, wäh­rend Ska­la­re und ande­re Bunt­bars­che viel län­ger brau­chen, um auf­zu­wa­chen – als ob sie wider­wil­lig wären. Das Ver­hal­ten der Fis­che wird auch durch die Jah­res­ze­i­ten bee­in­flusst. Wir fin­den es sehr sch­wer zu imi­tie­ren. In der Natur kommt die Fortpf­lan­zung oft am Ende der Troc­ken­ze­it vor, und die Fis­che ent­wic­keln sich oft in den ers­ten Tagen der Regen­ze­it. Für die meis­ten Arten ist die natür­li­che Lai­ch­ze­it in Gefan­gen­schaft der Früh­ling. Zu die­ser Zeit ist auch ihre hor­mo­nel­le Akti­vi­tät der Fortpf­lan­zungs­funk­ti­onen auf dem höchs­ten Nive­au. Es ist wich­tig zu erken­nen, dass die Arten, die wir hal­ten, aus tro­pis­chen und subt­ro­pis­chen Regi­onen stam­men, in denen es kei­ne Jah­res­ze­i­ten wie bei uns gibt. Daher soll­ten wir darauf ach­ten, wenn wir kon­se­qu­ent sein wollen.

In der Natur kommt Pro­mis­ku­ität häu­fig vor, aber eini­ge Arten sind treu und bil­den lebens­lan­ge Paa­re. Die­ses Phä­no­men ist bei ame­ri­ka­nis­chen Bunt­bars­chen häu­fig. Wäh­rend der Paa­rungs­ze­it, die zeit­lich beg­renzt sein kann, müs­sen aber nicht, ver­hal­ten sich die Fis­che natür­lich anders. Oft ändern sie auch ihre Fär­bung. In die­ser Zeit sind sie hel­ler und schöner, beson­ders das Männ­chen ver­sucht, sich vor dem Weib­chen in vol­ler Pracht zu zei­gen. Zum Beis­piel jagen die Männ­chen von Gup­pys (Poeci­lia reti­cu­la­ta) die Weib­chen oft stun­den­lang. Wie auch immer das Paa­rungs­ver­hal­ten und das Bemühen um Gunst beg­le­i­tet wird, es geht mit ver­rin­ger­ter Wach­sam­ke­it gege­nüber Gefah­ren ein­her. Die Männ­chen sind oft wie in Tran­ce, schüt­teln ihren gan­zen Kör­per, beson­ders die Flos­sen, stän­dig auf der Suche nach einer gee­ig­ne­te­ren Posi­ti­on für das Auge des bege­hr­ten Weib­chens oder für meh­re­re Weib­chen. Sie über­bie­ten sich regel­recht in ihrer Prä­sen­ta­ti­on, zei­gen alles, was sie haben. Der eigen­tli­che Paa­rung­sakt ver­lä­uft eben­falls unters­chied­lich. Zum Beis­piel gibt das Weib­chen nach stän­di­ger Ver­fol­gung Eier in das fre­ie Was­ser ab, und das Männ­chen rea­giert mit der Fre­i­set­zung von Sper­mien eben­falls in den fre­ien Raum. Die Fis­che kön­nen ihre Eier an Blät­ter, Ste­i­ne, die Ober­se­i­te eines Blu­men­top­fes von unten kle­ben, der Fan­ta­sie sind kei­ne Gren­zen gesetzt. Aber zurück zum Ver­hal­ten – eini­ge Arten nähern sich vor der Fre­i­set­zung ihrer Gesch­lechts­zel­len einan­der, berüh­ren sich mit ihren Bäu­chen, und dann kommt es zu einem kräf­ti­gen Zuc­ken, wäh­rend dem die Bef­ruch­tung statt­fin­det. Oder das Männ­chen legt einen Teil sei­nes Kör­pers über das Weib­chen, es kommt zu einem kräf­ti­gen Zuc­ken, und die Situ­ati­on ist ähnlich.

Bei der Fortpf­lan­zung von Laby­rinth­fis­chen beobach­ten wir aus unse­rer Sicht Oral­sex. Das Weib­chen gibt dabei Eier ab, das Männ­chen gibt Sper­mien ab, bei­de neh­men die­se Pro­duk­te in den Mund, und das Männ­chen über­lässt sie sch­lie­ßlich dem Weib­chen. Mit dem Beg­riff Laby­rinth­fisch” wer­den Arten bez­e­ich­net, die ihren Nach­wuchs in der Mund­höh­le behal­ten – im soge­nann­ten Laby­rinth. Hier­zu gehören nicht nur Bunt­bars­che, son­dern auch eini­ge Kampf­fis­che. Ein inte­res­san­tes Ver­hal­ten – eine Form des Gentleman-​Verhaltens – wird bei Kampf­fis­chen beobach­tet, von denen bekannt ist, dass die Männ­chen erbit­ter­te Kämp­fe füh­ren. Der Kampf­fisch atmet jedoch mit sei­nem Laby­rinth atmo­sp­hä­ris­chen Sau­ers­toff, und wenn wäh­rend eines sol­chen Kamp­fes das Bedürf­nis nach bio­lo­gis­cher Luft ein­tritt, wird der Kampf für einen Moment unterb­ro­chen, und der Riva­le akzep­tiert volls­tän­dig sei­nen Geg­ner, wenn er an die Was­se­ro­berf­lä­che geht, um Luft zu holen. Dann setzt der Kampf fort.

Die über­wäl­ti­gen­de Mehr­he­it der Fis­char­ten küm­mert sich nach der Bef­ruch­tung nicht um ihren Nach­wuchs. Von den Arten, die dies tun, küm­mert sich in der Regel zuerst das Weib­chen in der ers­ten Pha­se um den Nach­wuchs, spä­ter über­nimmt oft das Männ­chen die Verant­wor­tung. Es kommt jedoch häu­fig vor, dass der elter­li­che Ins­tinkt bei afri­ka­nis­chen Bunt­bars­chen nur wäh­rend der Zeit erhal­ten ble­ibt, in der das Weib­chen die Jun­gen im Maul hat, ins­be­son­de­re bei Malawi-​Arten. Tanganjika-​Buntbarsche und vor allem ame­ri­ka­nis­che Bunt­bars­che haben einen höhe­ren Bedarf an der Auf­zucht ihrer Nach­kom­men. Oft behal­ten sie ihre Jun­gen im Maul, set­zen sie manch­mal aus und neh­men sie erne­ut auf, um sie zu leh­ren, zu über­le­ben, und tun dies, solan­ge sie sie über­haupt hal­ten kön­nen. Ein anschau­li­ches Beis­piel ist die Gat­tung Neolam­pro­lo­gus, die ihre Nach­kom­men beharr­lich gegen Ein­drin­glin­ge ver­te­i­digt. Sie kön­nen sich ers­taun­lich agg­res­siv gege­nüber harm­lo­sen Sau­gwel­sen ver­hal­ten. Ein inte­res­san­tes Ver­hal­ten beim Schutz des eige­nen Nach­wuch­ses fin­det sich bei den Prin­zes­sin­nen (Neolam­pro­lo­gus bri­char­di). Bei ihnen ist bekannt, dass sie nicht nur erfolg­re­ich ihre Nach­kom­men ver­te­i­di­gen kön­nen, son­dern dass älte­re Gesch­wis­ter manch­mal auch bei der Ver­te­i­di­gung der jün­ge­ren Nach­kom­men hel­fen. Ich selbst habe oft einen ziem­lich komis­chen Vor­fall erlebt, bei dem 0,5 cm gro­ße Indi­vi­du­en von Neolam­pro­lo­gus bri­char­di 10 – 20 cm gro­ße Exem­pla­re ande­rer Arten ein­schüch­ter­ten und damit vor allem den Eltern hal­fen, die noch kle­i­ne­ren Arten zu schüt­zen. Die­ses Phä­no­men beobach­te ich nicht, wenn ich die Prin­zes­sin­nen in einem sepa­ra­ten Tank hal­te. Aber auch dort beobach­te ich ein Ver­hal­ten, das ich an ande­rer Stel­le besch­re­i­be. Wenn die Prin­zes­sin­nen heran­wach­sen, kön­nen sie sehr erfolg­re­ich phy­sisch ande­re Arten eliminieren.

Wenn Sie sich die logis­che Fra­ge stel­len, warum Sch­wertt­rä­ger, Pla­tys, Tetras und auch Bunt­bars­che ihren Nach­wuchs oft fres­sen und sich dann erne­ut in die Fortpf­lan­zung stür­zen, dann wis­sen Sie, dass dies daran liegt, dass das Aqu­arium nur beg­renz­ten Lebens­raum bie­tet. Wenn ein Lebend­ge­bä­ren­der in der Natur gebiert oder wenn Eier oder Lar­ven in einem Was­ser­strom oder einem See aus­ge­setzt wer­den, gibt es genügend Platz, damit die Eier oder Fis­che in die­sem Volu­men ver­lo­ren gehen und geret­tet wer­den kön­nen. In einem Aqu­arium sind ihre Mög­lich­ke­i­ten jedoch begrenzt.

Riva­li­tät zwis­chen Fis­chen bes­teht. Meist han­delt es sich um intras­pe­zi­fis­che Riva­li­tät, aber auch inter­spe­zi­fis­che ist nicht unbe­kannt. Es gibt Fis­char­ten, die unver­träg­li­che Arten sind und kei­ne ande­ren in ihrem Aqu­arium tole­rie­ren. Im All­ge­me­i­nen gel­ten fle­ischf­res­sen­de Piran­has als sol­che Arten. Selbst Piran­has unter­lie­gen in ihrer Hei­mat einem Raubd­ruck. Haus­ge­mach­te Exem­pla­re haben mehr Res­pekt vor ande­ren Arten als Piran­has. In Aqu­arien gibt es jedoch auch Arten, mit denen Piran­has unter bes­timm­ten Bedin­gun­gen exis­tie­ren kön­nen. Vor allem dür­fen sie nicht hun­grig sein, woraus sich ergibt, dass sie je nach Ver­füg­bar­ke­it von Nahrung ents­che­i­den und mit gewöhn­li­chen Fis­char­ten über­le­ben kön­nen, wenn Nahrung vor­han­den ist. Gee­ig­net sind zum Beis­piel Astro­no­tus­se, Hemic­hro­mis. Anze­i­chen von Riva­li­tät und Kon­kur­renz sind auch bei fried­li­che­ren Arten zu sehen. Eini­ge Arten wer­den aus kom­mer­ziel­len Grün­den als soge­nann­te sozia­le Arten bez­e­ich­net – was bede­utet, dass ihre Kampf­be­re­its­chaft unte­re­i­nan­der mini­mal ist. Hier­zu wür­de ich zum Beis­piel Dani­os, Kar­di­nal­fis­che, Neons, Gup­pys, Sch­wertt­rä­ger, Black Mol­lys, Gura­mis zäh­len. Ande­re Arten sind mehr oder weni­ger unver­träg­lich. Wie ich an ande­rer Stel­le erwähnt habe – zum Beis­piel sind eini­ge ame­ri­ka­nis­che Bunt­bars­che gege­nüber allem, auch gege­nüber ihresg­le­i­chen und ande­ren Arten, unver­träg­lich. Im Gegen­satz dazu zeigt sich bei vie­len afri­ka­nis­chen Bunt­bars­chen die Riva­li­tät haupt­säch­lich inner­halb einer Art. Ein typis­ches Beis­piel sind die Trop­he­us. Manch­mal kommt es jedoch vor, dass sich meh­re­re Indi­vi­du­en einen bes­timm­ten Mann einer Art vor­neh­men und die­ser Mann hat, wenn wir es nicht bemer­ken, wahrs­che­in­lich Sch­wie­rig­ke­i­ten. Sch­lie­ßlich, wenn ein Fisch auf die­se Wei­se angeg­rif­fen wird, kann es sein, dass er apat­hisch wird – bis zu dem Punkt, dass er wei­te­re Angrif­fe resig­niert erträgt – er war­tet eigen­tlich auf den Tod durch Sch­lä­ge und kann sich nicht ver­te­i­di­gen. Die Kämp­fe zwis­chen Fis­chen dre­hen sich um Nach­wuchs, Nahrung, Raum usw. Die Mani­fe­sta­ti­onen sind viel­fäl­tig, von mil­den bis zu rohen, kom­pro­miss­lo­sen. Ein sol­ches Ver­hal­ten hängt auch vom Alter ab; je älter die Fis­che sind, des­to weni­ger tole­rie­ren sie. Zum Beis­piel ist Neolam­pro­lo­gus bri­char­di eine Art, die im jun­gen Alter regel­recht ein Fami­lien­mus­ter ist, aber wenn jun­ge Prin­zes­sin­nen heran­wach­sen, beginnt bei ihnen Feind­se­lig­ke­it sicht­bar zu wer­den. Wort­wört­lich aus­lös­chen­des Verhalten.

Um die Agg­res­si­vi­tät zwis­chen Indi­vi­du­en zu ver­rin­gern, ist es rat­sam, die Anzahl der Vers­tec­ke zu erhöhen. Für afri­ka­nis­che Bunt­bars­che gilt, dass eine größe­re Anzahl von Indi­vi­du­en der­sel­ben Art die Agg­res­si­vi­tät beis­piel­swe­i­se der Gat­tun­gen Trop­he­us, Pse­udot­rop­he­us ver­rin­gert. Die­se Anzahl muss jedoch aus­re­i­chend sein, da wir sonst das Gegen­te­il erre­i­chen kön­nen. Für Trop­he­us wird eine Min­des­tan­zahl von zehn gehal­ten, die in einem Aqu­arium gehal­ten wer­den soll. Auch das Gesch­lech­ter­ver­hält­nis ist wich­tig; in die­sem Fall wer­den drei Männ­chen für sie­ben Weib­chen emp­foh­len. Für Mbuna-​Buntbarsche emp­feh­le ich die Kom­bi­na­ti­on eines Männ­chens für zwei bis drei Weib­chen. Bei Platz­man­gel bes­teht ins­be­son­de­re bei eini­gen größe­ren Arten die Gefahr über­mä­ßi­ger Agg­res­si­vi­tät – die Kom­bi­na­ti­on von zwei Männ­chen Blue Aca­ra mit einem Weib­chen ist in einem kle­i­nen Raum uner­wün­scht, eben­so wie die Kom­bi­na­ti­on von zwei Weib­chen Blue Aca­ra und einem Männ­chen. Zum Beis­piel kön­nen selbst auf den ers­ten Blick fried­li­che Männ­chen des mexi­ka­nis­chen Sch­wertt­rä­gers unte­re­i­nan­der eine stren­ge Hie­rar­chie bil­den, in der even­tu­ell sch­wä­che­re Indi­vi­du­en unterd­rüc­kt wer­den. Bei eini­gen Arten gibt es eine sozia­le Hie­rar­chie, bei der ein domi­nan­tes Männ­chen oder Weib­chen die Herrs­cher­po­si­ti­on ein­nimmt. Bei Arten, bei denen ein star­ker äuße­rer Sexu­al­di­morp­his­mus bes­teht, kann trotz­dem der Fakt aus­ge­löst wer­den, dass Männ­chen oft wie Weib­chen gefärbt sind. Wenn jedoch das domi­nan­te Männ­chen in Gegen­wart zuvor rezes­si­ver Männ­chen auf­hört zu exis­tie­ren, kann es dazu füh­ren, dass plötz­lich meh­re­re ande­re Männ­chen gefärbt wer­den. Die Situ­ati­on kann sich spä­ter wie­der­ho­len, wenn ein Männ­chen erne­ut eine heraus­ra­gen­de Domi­nanz erkämpft und ande­ren Männ­chen nicht erlaubt”, gefärbt wie Männ­chen zu sein. Wäh­rend der Fortpf­lan­zung kommt es vor, dass das domi­nan­te Männ­chen mit meh­re­ren Weib­chen laicht, aber ande­re Männ­chen ble­i­ben zurück.

Ter­ri­to­ria­li­tät zeigt sich auch bei Fis­chen. Ter­ri­to­ria­li­tät ist ein Ver­hal­ten, bei dem ein Orga­nis­mus mehr Inte­res­se an einem bes­timm­ten Lebens­raum zeigt, den er oft ver­te­i­digt. Ter­ri­to­ria­li­tät kann sich in Aqu­arien, in denen oft wenig Platz ist, sehr nega­tiv auswir­ken. Arten von gro­ßen Seen und mäch­ti­gen Strömen, oft Zik­li­den, zei­gen erheb­li­che Ter­ri­to­ria­li­tät. Sie kön­nen ihr aus­ge­wä­hl­tes Ter­ri­to­rium sehr vehe­ment ver­te­i­di­gen. Die Größe des Ter­ri­to­riums hängt auch vom Wett­be­werb mit ande­ren Indi­vi­du­en ab, es kann einen Ste­in, eine Schnec­ke oder sogar das gan­ze Aqu­arium ein­neh­men. Wenn es einem Indi­vi­du­um gelingt, ein Ter­ri­to­rium zu beset­zen, ist es deut­lich im Vor­te­il. Im All­ge­me­i­nen kann gesagt wer­den, dass Indi­vi­du­en, die in die Geme­in­schaft des Aqu­ariums ein­ge­fü­hrt wer­den, spä­ter sch­we­rer ihren Platz fin­den, auch wenn sie stark sind. Wenn wir ein Ter­ri­to­rium stören wol­len, reicht es oft aus, die Bau­e­le­men­te im Aqu­arium zu ändern – Deko­ra­ti­onen zu ändern, Pflan­zen umzupf­lan­zen, Tech­nik zu vers­chie­ben. Oft reicht es aus, einen Ste­in zu bewe­gen oder einen neuen Ste­in hin­zu­zu­fügen, je nach kon­kre­tem Fall. Selbst kle­i­ne Verän­de­run­gen kön­nen oft das Ver­hal­ten volls­tän­dig ändern, was die star­ke Ter­ri­to­ria­li­tät der Fis­che zeigt. Natür­lich zei­gen eini­ge Arten die­ses Ver­hal­ten weni­ger oder gar nicht, ande­re mehr. Kampf­fis­che oder Bet­ta splendens-​Männchen ver­te­i­di­gen ihre Ans­prüche sehr vehe­ment. In einem Tank, in dem es nicht genügend Lebens­raum für meh­re­re Männ­chen gibt, gibt es kei­nen Platz für meh­re­re Männ­chen. Um den Zus­tand unse­rer Kampf­fis­che zu ver­bes­sern, damit die Flos­sen schön herauss­te­chen oder um das Ver­hal­ten der Kampf­fis­che beobach­ten zu kön­nen, neh­men wir einen Spie­gel und set­zen ihn dem männ­li­chen Kampf­fisch aus. Die­ser wird sei­nem ver­me­in­tli­chen Riva­len dro­hen und ihn wahrs­che­in­lich sogar angreifen.

Das Lern­ver­hal­ten ist bei Fis­chen nicht so aus­gep­rägt wie bei Säu­ge­tie­ren oder Vögeln, exis­tiert jedoch. Fis­che imi­tie­ren älte­re Indi­vi­du­en. Wäh­rend des Lebens­zyk­lus der Fis­che zei­gen sie auch das Einüben vers­chie­de­ner Situ­ati­onen – Kämp­fe, Fortpf­lan­zungs­ver­hal­ten. Ihre Rol­le spielt sicher­lich auch der Ins­tinkt. Fis­che kön­nen uns auch gene­tisch gep­räg­te Ritu­ale vor­füh­ren, mit denen sie ihren Par­tner bee­in­druc­ken oder ihre Stär­ke gege­nüber einem Riva­len zei­gen wol­len. Die­se Ausd­rucks­for­men sind bei Arten am stärks­ten aus­gep­rägt, bei denen das sozia­le Ver­hal­ten aus­gep­räg­ter ist. Bis heute ist nicht aus­re­i­chend erk­lärt, wie zum Beis­piel Rote Neons sich in einem ein­zi­gen Moment vers­tän­di­gen” kön­nen und die Sch­wimm­rich­tung ändern. Sch­lie­ßlich leben vie­le mari­ne Arten, die in Grup­pen leben.

Die über­wäl­ti­gen­de Mehr­he­it der Arten rea­giert natür­lich sehr nega­tiv auf den Trans­fer im Netz. Das ist aus ihrer Sicht vers­tänd­lich, es geht um ihr Leben. Wenn wir den Fis­chen jedoch eine Stüt­ze in Form unse­rer Hand bie­ten, kön­nen sie sich eher beru­hi­gen. Viel­le­icht haben Sie schon ein­mal beobach­tet, wie ein Züch­ter Fis­che mit einem Löf­fel oder einer Hand fängt. Für den Fisch ist das auf jeden Fall tole­ran­ter. Offen­bar rea­gie­ren sie nicht nur auf die mecha­nis­che Unters­tüt­zung, son­dern viel­le­icht auch auf die Wär­me der men­sch­li­chen Hand, mög­li­cher­we­i­se auch auf ande­re phy­si­ka­lis­che oder sogar che­mis­che Eigen­schaf­ten die­ses Trans­fers. Vie­le Male habe ich auf die­se Wei­se beson­ders die Weib­chen afri­ka­nis­cher Zik­li­den übertragen.

Eini­ge Verhaltensweisen

Sch­warm­ver­hal­ten – vie­le Fis­char­ten zeich­nen sich durch ein sol­ches sozia­les Ver­hal­ten aus. Sicher­lich haben Sie im Fern­se­hen gese­hen, wie rie­si­ge Men­gen von Fis­chen zusam­men­kom­men und sich inner­halb eines Moments verän­dern – die Rich­tung ändern. In kle­i­nem Maßs­tab kön­nen wir dies auch in unse­rem Aqu­arium beobach­ten. Ins­be­son­de­re wenn Sie Tetra-​Fische hal­ten, zum Beis­piel ech­te Neons, sind auch Neon-​Tetras typis­che Sch­war­mar­ten. Die­ses Phä­no­men vers­tär­kt sich mit der Anzahl der Geme­in­schaft – 5 Neons wer­den sich anders ver­hal­ten als 200 Individuen.

Ein­zel­gän­ger­tum – Arten von Fis­chen, die mehr oder weni­ger unab­hän­gig leben oder in Paa­ren leben. Davon gibt es die meis­ten. Es hängt eng mit der Ter­ri­to­ria­li­tät zusammen.

Vers­tec­ken – Wäh­rend mei­ner nor­ma­len Zuch­tak­ti­vi­tä­ten hat­te ich die Gele­gen­he­it, vers­chie­de­ne Ver­hal­ten­swe­i­sen von Fis­chen beim all­täg­li­chen Vor­gang des Fisch­fangs mit einem Netz zu verg­le­i­chen. Die Mehr­he­it der Fis­char­ten zeigt ein ziem­lich äng­st­li­ches und has­ti­ges Ver­hal­ten, wenn wir ein Netz ins Was­ser legen. Nur weni­ge Arten füh­ren ihre Flucht geziel­ter durch. In sol­chen Situ­ati­onen kann es vor­kom­men, dass die Fis­che aus dem Aqu­arium sprin­gen. Ein ande­res Ver­hal­ten zei­gen Mbuna-​Zikliden. Dies sind Arten, die in den Fel­sen des afri­ka­nis­chen Mala­wi­se­es leben. Sie ver­su­chen, sich in ihrer natür­li­chen Umge­bung zu vers­tec­ken – in den Fel­sen. Ande­re Fis­che neigen dazu, sich maxi­mal hin­ter dem Fil­ter zu vers­tec­ken, aber Mbuna-​Zikliden vers­tec­ken sich ges­chic­kter. Sie kön­nen sich unter einen ziem­lich kle­i­nen Ste­in vers­tec­ken. Sie gehen knapp an Ihnen vor­bei und war­ten ruhig darauf, dass die Angst nach­lässt – um das Netz heraus­zu­zie­hen. Die­ses Ver­hal­ten ist oft auch im Laden deut­lich sicht­bar. Ich hal­te dies für eine Mani­fe­sta­ti­on von Intel­li­genz. Es ist Ihnen viel­le­icht schon pas­siert, dass Sie ver­sucht haben, einen ähn­li­chen Fisch in einem Tank vol­ler Vers­tec­ke zu fan­gen und nach einer Stun­de auf­ge­ge­ben haben. Fis­che rea­gie­ren auch auf die Far­be des Netzes. Grüne, wei­ße und sch­war­ze Netze wer­den nor­ma­ler­we­i­se ver­wen­det. Ich hal­te grüne Netze für am bes­ten gee­ig­net. Wei­ße und sch­war­ze sind zu kon­tras­tre­ich. Aber auch auf sol­che gefärb­ten Netze kön­nen sich die Fis­che gewöh­nen. Wenn sie jedoch nicht an ein Netz mit einer auf­fäl­li­ge­ren Far­be gewöhnt sind, ist es wahrs­che­in­lich, dass sie vor die­sem auf­fäl­li­ge­ren Netz mehr Angst haben.


Use Facebook to Comment on this Post

Literatúra, Rešerše, Veda

GIS

Hits: 5037

Rapant Petr Pra­cov­ní návrh prv­ní čás­ti výkla­do­vé­ho slov­ní­ku pro oblast geoin­for­ma­ti­ky 2001 GeoIn­fo, Vol. 8, No. 2, Supp­le­ment, p. 116 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES člá­nok 1211 – 1082

Fan­ta Miro­slav Zahra­nič­ní digi­tál­ní topo­gra­fic­ká a envi­ron­men­tál­ní data střed­ních měří­tek a mož­nos­ti jejich pro­po­je­ní s tuzem­ský­mi daty 2001 GeoIn­fo, Vol. 8, No. 1, Supp­le­ment, p. 120 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES medzi­ná­rod­ná spo­lu­prá­ca, CERCO, MEGRIN, prob­le­ma­ti­ka pro­jek­cie súrad­ných sys­té­mov, Nemec­ko, Sas­ko, Bavor­sko, Rakús­ko, vek­to­ro­vé dáta, ras­tro­vé dáta, envi­ron­men­tál­ne dáta, Poľ­sko, topo­gra­fic­ké dáta člá­nok 1211 – 1082

Peňáz Tomáš Elek­tro­nic­ké mapy a atla­sy v pro­stre­dí WWW z pohľa­du kar­to­gra­fie. 1. Mapy v pavu­či­ne; 2. Zavá­dí­me GIS pro oblast život­ní­ho pros­tře­dí 2001 GeoIn­fo, Vol. 8, No. 1, Supp­le­ment, p. 112 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES moder­né for­my pub­li­ko­va­nia máp a atla­sov, navrho­va­nia GIS pre oblasť život­né­ho pro­stre­dia člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 4, p. 723 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES DMK – integ­ro­va­ný data­bá­zo­vý nástroj, Ďiaľ­ko­vý prí­stup k infor­mač­né­mu sys­té­mu kata­stru nemo­vi­tos­tí, Pre­zen­tá­cia geoin­for­ma­tic­ké­ho die­la, Archív dát DPZ na AOPK ČR, Uplat­ne­nie GIS pri ria­de­ná les­né­ho pod­ni­ku, Plá­ny roz­vo­ja lesa digi­tál­ne člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 4, p. 2444 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Ana­lý­za povod­ní v GIS, GIS na Mest­skom úra­de v Pře­ro­vě, Pohan­sko a GIS, Pro­jekt imple­men­tá­cie nástro­jov pries­to­ro­vej ana­lý­zy trhu prá­ce v čin­nos­ti úra­dov prá­ce, Mapa Demá­van­du, Využi­tie DPZ v Plzen­skom kra­ji člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 4, p. 4455 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Detail­né posú­de­nie zne­čis­ťo­va­nia ovzdu­šia v roz­siah­lom úze­mí pomo­cou GIS – mode­ly pre kra­je, Geodá­ta nad zla­to, Orbis Pic­tus digi­tál­ne, Let­ný kurz BEST – Mana­ging Earth Infor­ma­ti­on člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 4, p. 5662 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Ako budú­ci uči­te­lia využí­va­jú GIS – geoin­for­mač­né tech­no­ló­gie v regi­onál­nej geo­gra­fii, GIS a dotaz­ní­ko­vé šet­re­nie – Ana­lý­za návrat­nos­ti dotaz­ní­ko­vej štú­die uži­tím GIS a štan­dard­ných šta­tis­tic­kých metód, Vege­tač­ná mapa Pra­hy člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 4, p. 6370 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES GIS pri hod­no­te­ní hor­ských oblas­tí pre lyžo­va­nie člá­nok 1211 – 1082

1998 Geoin­fo, No. 4, p. 114 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES Mapy na Webe, mapy na sie­ti, Auto­Desk, Auto­Desk Map­Gu­ide, ESRI, Arc­View Inter­net Map Ser­ver, MapOb­jects Inter­ner Map Ser­ver, Inter­graph, GoeMe­dia Web Map, MapIn­fo, MapX­tre­me, Map­Xsi­te, Kine­tix, AUGI Wish List, Arc­View 3.1, voleb­ný ser­ver, CAD Rea­der člá­nok 1211 – 1082

1998 Geoin­fo, No. 4, p. 1422 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES Auto­CAD R14, MGE Rea­der, MGE Inter­graph, Mic­ro­Sta­ti­ons GeoG­rap­hics (MSG), *.DGN, AVRe­ports, Crys­tal Reports. GIS na okres­nom úra­de Příb­ram, Dečín, geo­gra­fic­ké dáta na www, pre­po­je­nie data­báz, tvor­ba GIS na www, Mac­ro­TEL 3.5, zber polo­ho­pis­ných dát člá­nok 1211 – 1082

1998 Geoin­fo, No. 4, p. 2242 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES kon­tro­la polo­ho­pis­ných dát, sie­te SPT Tele­com, geo­gra­fic­ká data­bá­za ArcČR 500, GIS fir­my, GIS v štát­nej sprá­ve, foto­gra­met­ria, IGUG, GPS pri­jí­ma­če, Gar­min GPS III, Magel­lan 2000XL, Eag­le Explo­rer, Magel­lan Pione­er, lase­ro­vé mera­cie prí­stro­je, Arc­CAD v14 člá­nok 1211 – 1082

1998 Geoin­fo, No. 4, p. 4244 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES gra­fic­ké akce­le­rá­to­ry Inten­se 3D Wild­cat, zosú­la­de­nie súrad­níc, trans­for­má­cia súrad­ni­co­vé­ho sys­té­mu, geocen­tric­ký sys­tém WGS-​84, S‑JTSK, S‑42/​83, line­ár­na trans­for­má­cia, neli­ne­ár­na trans­for­má­cia, ťažis­ko iden­tic­kých bodov, GPS, trans­for­mač­né para­met­re člá­nok 1211 – 1082

1998 Geoin­fo, No. 4, p. 4446 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES zbyt­ko­vé rezi­dúa, iden­tic­ké body, CS-​NULRAD-​92, EUREF-​89, stred­né chy­by, zvý­še­nie pres­nos­ti, DatT­ra – Datum Trans­for­ma­ti­on, Tra­Par – Com­pu­ta­ti­on of Trans­for­ma­ti­on Para­me­ters, atmo­sfé­ric­ké korek­cie ACTORem2, ERDAS Ima­gi­ne, dru­ži­co­vý sní­mok, GEOSYSTEMS člá­nok 1211 – 1082

1998 Geoin­fo, No. 4, p. 4649 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES kova­rianč­né mati­ce iden­tic­kých bodov, nive­lá­cia, neho­mo­ge­ni­ta S‑JTSK, nepres­nosť S‑JTSK, foto­gra­met­ria, tvor­ba digi­tál­ne­ho mode­lu teré­nu úze­mia zasia­hnu­té­ho povod­ňa­mi z júla 1997 pre potre­by GIS ana­lýz, ČR, zápla­vo­vá čia­ra, orto­fo­to­ma­pa člá­nok 1211 – 1082

1998 Geoin­fo, No. 4, p. 5063 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES pre­ven­cia s GIS, cie­le­né hos­po­dá­re­nie, Arc­View Busi­ness Ana­lyst, roz­ho­do­va­nie v obcho­de, Rou­te­Xpert, záchran­ný sys­tém, GIS – nástroj dis­pe­če­rov, Mic­ro­soft SQL Ser­ver, Aria­ne, SPOT 4 člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 18 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES infor­mač­ný sys­tém ochra­ny prí­ro­dy ISOP, Hima­lá­je ras­tú, Arc­View, Trac­king Ana­lyst, spo­lu­prá­ca s GPS, modul geolo­gia, modul fyto­ce­no­ló­gia, modul bota­ni­ka, modul loka­li­ty, modul zooló­gia, modul MCHÚ, modul pamät­né stro­my, panc­hro­ma­tic­ké zobra­ze­nie člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 812 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES inven­ta­ri­zá­cia poras­tov, cha­rak­ter dát DPZ, loka­li­zá­cia kôrov­ca, spek­tro­zo­nál­ne sním­ko­va­nie, diag­nó­za ras­tri­tí­da, ima­ge pro­ces­sing, JPEG kom­pre­sia, Ima­ge Vie­wer 7.0, I/​RAS C 6.0, spek­tro­zo­nál­na kla­si­fi­ká­cia, fil­trá­cie, spra­co­va­nie obra­zu, trans­for­má­cie člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 1220 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES auto­ma­tic­ká vek­to­ri­zá­cia, Ima­ge Ana­lyst 7.0.1, ana­lý­za ras­tra, archiv letec­kých sním­kov armá­dy ČR, his­tó­ria letec­ké­ho sním­ko­va­nia ČR, uta­jo­va­nie letec­kých sním­kov, využi­tie letec­kých sním­kov, GIS na CHKO, ČÚOP, kon­cep­cia GIS, Vtá­čí ostrov v Chru­di­me člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 2024 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS, DPZ CES Vel­ké Dářko, lokál­ny infor­mač­ný sys­tém, HELP Ser­vi­ce – Map­ping, výskum tech­no­ló­gií DPZ, aktu­ali­zá­cia dát CORINE, tech­no­ló­gia auto­ma­ti­zo­va­né inter­pre­tá­cie dát DPZ, mul­ti­tem­po­rál­ne ana­lý­zy, neria­de­ná kla­si­fi­ká­cia, auto­ma­ti­zo­va­ná vek­to­ri­zá­cia člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 2428 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES prin­cíp detek­cie homo­gén­nych fareb­ných plôch v kla­si­fi­ko­va­ných dátach, eli­mi­ná­cia mixe­lov, fil­trá­cia mixe­lov, GIS na Webe, Arc/​INFO 8.0, dis­ti­bu­ova­ná soft­wa­ro­vá archi­tek­tú­ra, objek­to­vý dáto­vý model, pod­po­ra UNIX, pod­po­ra Win­do­ws NT, Arc­Ca­ta­log, Arc­Map člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 2829 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES Arc­To­ol­box, SDE 4.0, Arc­Lo­gis­tics, ArcFM, ArcS­DE, ArcE­x­plo­rer, MapOb­jects, Inter­net Map Ser­ver 3.0, Arc­View GIS, Arc­Vo­y­ager, MicroStation/​J, jad­ro Para­so­lid, HSI, ESRI kon­fe­ren­cia, HSI, Ben­tley, Mac­ro­Tel, Mac­ro­Geo, Power­Geo člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 3033 Com­pu­ter Pre­ss Brno medi­cí­na, výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES tvor­ba vege­tač­ných máp pou­ži­tím spek­tro­zo­nál­nych sním­kov a GIS, geoin­ži­nier­stvo, Mic­ro­Sta­ti­on GeoWa­ter, Mic­ro­Sta­ti­on GeoWaste-​Water, digi­ta­li­zá­cia, tvor­ba gra­fic­ké­ho výstu­pu, inter­pre­tá­cia sním­kov, inter­pre­tá­cia terén­ne­ho pries­ku­mu, Tetín­ske ská­ly člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 3440 Com­pu­ter Pre­ss Brno les­níc­tvo, výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES hyd­ro­lo­gic­ké mode­lo­va­nie malých povo­dí, GIS, využi­tie GIS, Fores­ta SG, Bas­MapX, GIS v zdra­vot­níc­tve, GIS v les­níc­tve, infor­mač­nén tech­no­ló­gie varu­jú, infor­mač­né tech­no­ló­gie neza­chrá­nia, Európ­ska hos­po­dár­ska komi­sia pri OSN, ICP Forest člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 4044 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES moni­to­ring sta­vu lesov, defo­liá­cia, GÚSES Stra­ko­ni­ce, bio­cen­trum, bio­ko­ri­dor, mapa aktu­ál­ne­ho sta­vu kra­ji­ny, vrstva sku­pín typov geobi­océ­nov, Topol, ato­ma­tic­ká vek­to­ri­zá­cia AUTOGEN, MVview, SView, Baset 4, WeBa­set člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 4450 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES GIS v pod­ni­ku Brněn­ské vele­tr­hy a výsta­vy, a.s., ESRI pre R/​3, line­ár­ne sie­te, Geopak, GeoDyn­Seg, inži­nier­ske sie­te, vzde­lá­va­nie v GIS‑e, štú­dium prog­ra­mu Uni­GIS, dyna­mic­ká ana­lý­za line­ár­nych prv­kov, Océ, Mic­ro­Sta­ti­on, for­mát RTL, stra­ti­fi­ká­cia kra­ji­ny člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 5052 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES AVHRR, GeoMe­dia pre TopoL, optic­ký sys­tém vyso­ké­ho roz­lí­še­nia, mul­tis­pek­trál­ny ske­ner, hyper­spek­trál­ne mera­nie, mera­nie odra­zo­vých vlast­nos­tí vege­tá­cie, mera­nie odra­zo­vých vlast­nos­tí pôdy, pasív­ne mik­ro­vln­né rádi­omet­re, výber sate­li­tu člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 5258 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES aktív­ne mik­ro­vln­né mera­nie, Hewlett-​Packard Design­Jet 2500CP, MapIn­for Pro­fes­si­onal 5.0, HP-​GL/​2, HP-​RTL, Ado­be PostSc­ript Level 3, har­dwa­ro­vý RIP, auto­ma­tic­ká far­be­ná kalib­rá­cia, far­by PANTONE, MUTOH Fal­con RJ-​800, MUTOH Fal­con RJ-​4000, PCMIA kar­ta člá­nok 1211 – 1082

1998 Geoin­fo, No. 5, p. 5864 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES GIS pre tvor­bu kra­ji­ny, MŽP ČR člá­nok 1211 – 1082

1998 Geoin­fo, No. 6, p. 112 Com­pu­ter Pre­ss Brno kar­to­gra­fia, digi­tál­na foto­gram­met­ria, výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES správ­na tvor­ba mapy, kar­to­gra­fia a GIS, kar­to­gra­fic­ké chy­by, GIS nie je mapa, pse­udo­ma­py, digi­tál­na foto­gram­met­ria, spra­co­va­nie obra­zu, počí­ta­čo­vé vide­nie, fil­tro­va­nie, ostre­nie, zme­na kon­tras­tu, auto­ma­tic­ké roz­poz­ná­va­nie objek­tov člá­nok 1211 – 1082

1998 Geoin­fo, No. 6, p. 1214 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES auto­ma­tic­ké gene­ro­va­nie digi­tál­ne­ho mode­lu teré­nu, neope­ra­tív­nosť auto­ma­tic­ké­ho pro­ce­su, manu­ál­ne opra­vy, trian­gu­lá­cia, digi­tál­ny foto­gram­met­ric­ký sys­tém, zís­ka­nie digi­tál­nych sním­kov, rádi­omet­ric­ké korek­cie, anag­ly­fy, pola­ri­zo­va­ná obra­zov­ka člá­nok 1211 – 1082

1998 Geoin­fo, No. 6, p. 1415 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES pola­ri­zo­va­né oku­lia­re, ima­ge shut­te­ring, korek­cia vyro­va­ním his­to­gra­mu, korek­cia úbyt­ku svet­la, fil­trá­cia obra­zu, odstrá­ne­nie šumu, ostre­nie obra­zu, ste­reo vyhod­no­co­va­nie, gene­ro­va­nie DMT, hľa­da­nie maxím kore­lač­ných fun­kcií, tvor­ba orto­fo­tos­ním­ku člá­nok 1211 – 1082

1998 Geoin­fo, No. 6, p. 1517 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES letec­ká foto­gra­fia, cen­trál­na pro­jek­cia, rôz­na výš­ka, radiál­ne posu­ny, dife­ren­ciál­ne pre­kres­le­nie sním­ku, pre­kres­le­nie mos­tu, narov­na­nie skrá­te­ných budov, foto­gram­met­ric­ký soft­wa­re, Open­GIS, OGC – Open­GIS Con­sor­tium, otvo­re­ný sys­té­mo­vý základ, TOPOBASE člá­nok 1211 – 1082

1998 Geoin­fo, No. 6, p. 1719 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES Orac­le Spa­tial Data Car­trid­ge, relač­ná data­bá­za, refe­renč­ná integ­ri­ta, C‑Plan AG, jed­no­duch­ší import, jed­no­duch­ší export, pre­vod­ní­ky, SPOT 4, ERS1, por­trét z obež­nej drá­hy, ske­ner VEGETATION, HRVIR, spek­trál­ne pás­ma, glo­bál­na oce­áno­gra­fia, AÉROSPATIAL člá­nok 1211 – 1082

1998 Geoin­fo, No. 6, p. 1936 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES Mete­os­tat – MSG, SEXTANT AVIONIQUE, GLONASS, GPSGIS, cie­le­né hos­po­dá­re­nie, off-​line, on-​line, pria­me pre­po­je­nie, nepria­me pre­po­je­nie, GeoBá­za, Ozi Explo­rer, geofan­tá­zia, 3D atri­bu­tál­ne geodá­ta, 3D ana­lý­za, GIS kon­fe­ren­cia, POZEM 5.20, LIDS IT, Review+ člá­nok 1211 – 1082

1998 Geoin­fo, No. 6, p. 3654 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES Vie­wer+, Web­Vie­wer+, LKW Liech­tens­te­in, digi­tál­ne spra­co­va­nie geolo­gic­kých a úče­lo­vých máp 1:50 000, digi­ta­li­zá­cia, vek­to­ri­zá­cia, refe­renč­ná mapa Plz­ne, MIS, mapo­vé lis­ty na fóliach PET, les­níc­ke digi­tál­ne mapy, TopoL, digi­ta­li­zá­cia vrs­tiev, ORBIS MAPPER člá­nok 1211 – 1082

1998 Geoin­fo, No. 6, p. 5466 Com­pu­ter Pre­ss Brno výpoč­to­vá tech­ni­ka, geo­gra­fia, GIS CES tlač máp, POHAN, GIS v arche­oló­gií, Pohan­sko, pre­zen­tá­cia arche­olo­gic­kých dát, ana­lý­za arche­olo­gic­kých dát, Ter­ra­Ser­ver, data­bá­za dru­ži­co­vých sním­kov, geokó­do­va­nie člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 1. časť 1999 Geoin­fo, No. 1, Supp­le­ment, p. 120 Com­pu­ter Pre­ss Brno GIS, geo­gra­fia CES Úvod do GIS, využi­tie GIS, difi­ní­cia GIS, GISCAD, his­tó­ria GIS, dáta, pries­to­ro­vé dáta, geodá­ta člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 2. časť 1999 Geoin­fo, No. 2, Supp­le­ment, p. 18 Com­pu­ter Pre­ss Brno GIS, geo­gra­fia CES GIS, reál­ny objekt, geopr­vok, vlast­nos­ti geoprv­ku, pries­tor, sta­no­va­nie polo­hy, geore­fe­ren­cia, geokó­do­va­nie, glo­bál­ne súrad­ni­co­vé sys­té­my, lokál­ne súrad­ni­co­vé sys­té­my, geo­gra­fic­ký súrad­ni­co­vý sys­tém, kar­téz­sky súrad­ni­co­vý sys­tém, pria­me sta­no­ve­nie polo­hy člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 2. časť 1999 Geoin­fo, No. 2, Supp­le­ment, p. 915 Com­pu­ter Pre­ss Brno GIS, geo­gra­fia CES nepria­me sta­no­ve­nie polo­hy, mera­nie vzdia­le­nos­ti, met­ri­ka, euk­li­dov­ská met­ri­ka, man­hat­ta­nov­ská met­ri­ka, topo­ló­gia, graf inci­den­cie, graf pri­ľah­los­ti, pries­to­ro­vé vlast­nos­ti geoprv­ku, tema­tic­ká zlož­ka geoprv­ku, iden­ti­fi­kač­ná vlast­nosť, domé­na člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 2. časť 1999 Geoin­fo, No. 2, Supp­le­ment, p. 1520 Com­pu­ter Pre­ss Brno GIS, geo­gra­fia CES nede­fi­no­va­ná hod­no­ta, nezná­ma hod­no­ta, časo­vé vlast­nos­ti geoprv­ku, neak­tu­ál­ne dáta, zachy­te­nie času, funkč­né vlast­nos­ti geoprv­ku, akost­né vlast­nos­ti geoprv­ku člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 3. časť 1999 Geoin­fo, No. 3, Supp­le­ment, p. 13 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES dáto­vé mode­ly, život­nosť dát, dáto­vé mode­lo­va­nie, dáto­vé štruk­tú­ry, trans­for­má­cia reál­ne­ho sve­ta do pro­stre­dia GIS, GIS ako obraz reál­ne­ho sve­ta, men­tál­ny model, rea­li­ta, stra­ta infor­má­cií, prí­stu­py k zosta­vo­va­niu dáto­vých mode­lov člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 3. časť 1999 Geoin­fo, No. 3, Supp­le­ment, p. 34 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES javo­vo orien­to­va­ný prí­stup k zosta­vo­va­niu dáto­vých mode­lov, apli­kač­ne orien­to­va­ný prí­stup k zosta­vo­va­niu dáto­vých mode­lov, dáto­vý model v GIS, kla­sic­ké dáto­vé mode­ly, objek­to­vo orien­to­va­né dáto­vé mode­ly, ras­tro­vý dáto­vý model, vek­to­ro­vý dáto­vý model člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 3. časť 1999 Geoin­fo, No. 3, Supp­le­ment, p. 46 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES hyb­rid­ný dáto­vý model, ras­tor­vý dáto­vý model, bun­ka ras­tru, neexis­ten­cia expli­cit­ne vyjad­re­nej topo­ló­gie, fak­tor ovplyv­ňu­jú­ci repre­zen­tá­ciu, kon­ti­nu­ál­ny ras­ter, ukla­da­nie dát, tex­to­vý súbor, mati­ca, run-​lenght-​encoding, quadt­ree, leaf node, lis­to­vý uzol člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 3. časť 1999 Geoin­fo, No. 3, Supp­le­ment, p. 68 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES inter­nal node, medzi­ľah­lý uhol, root node, kore­ňo­vý uzol, line­ár­na quadt­ree, Mor­to­nov kľúč, pyra­mí­da, rea­li­zá­cia jed­not­li­vých zlo­žiek popi­su geoprv­kov, vek­to­ro­vý dáto­vý model, sche­ma­tic­ké čle­ne­nie pod­ľa geoprv­kov, jedi­nečc­ný iden­ti­fi­ká­tor, vek­tor, bod člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 3. časť 1999 Geoin­fo, No. 3, Supp­le­ment, p. 89 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES línia, arc, oblúk, uzol, node, vrchol, ver­tex, plo­cha, nespo­je­né dáto­vé mode­ly, topo­lo­gic­ké dáto­vé mode­ly, topo­lo­gic­ký model, MGE, pria­me zazna­me­ná­va­nie geomet­ric­kej zlož­ky geoprv­ku v gra­fic­kej podo­be, ukla­da­nie tema­tic­kej zlož­ky člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 3. časť 1999 Geoin­fo, No. 3, Supp­le­ment, p. 910 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES jed­no­du­ché súbo­ro­vo orien­to­va­né dáto­vé štruk­tú­ry, hie­rar­chic­ké dáto­vé štruk­tú­ry, stro­mo­vé štruk­tú­ry, koreň, rodi­čov­ský prvok, sie­ťo­vé dáto­vé štruk­tú­ry, relač­né dáto­vé štruk­tú­ry, sys­tém ria­de­nia bázy dát – SRBD – Data Base Mana­ge­ment Sys­tem – DBMS člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 3. časť 1999 Geoin­fo, No. 3, Supp­le­ment, p. 1112 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES vek­to­ro­vý dáto­vý model a časo­vá zlož­ka, ArcS­torm, zhod­no­te­nie vek­to­ro­vé­ho dáto­vé­ho mode­lu, pries­to­ro­vá data­bá­za, geomet­ric­ká zlož­ka, tema­tic­ká zlož­ka, časo­vá zlož­ka, zlož­ka popi­su vzťa­hov, zlož­ka popi­su ope­rá­cií, hyb­rid­ný dáto­vý model člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 3. časť 1999 Geoin­fo, No. 3, Supp­le­ment, p. 12 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES jed­not­né spra­co­va­nie vek­to­ro­vých a ras­tro­vých dát, line­ár­ne quadt­ree, edge node, hra­no­vá bun­ka, objek­to­vo orien­to­va­né dáto­vé mode­ly, kri­ti­ka dáto­vých štruk­túr, ukla­da­nie a rých­losť mani­pu­lá­cie s dáta­mi, pres­nosť repre­zen­tá­cia reál­ne­ho sve­ta člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 3. časť 1999 Geoin­fo, No. 3, Supp­le­ment, p. 1213 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES reduk­cia geoprv­kov, loka­li­zá­cia geoprv­kov, odde­le­nosť tema­tic­kých úda­jov, sťa­že­nie tvor­by pries­to­ro­vých ana­lýz, objek­to­vo orien­to­va­ný GISOOGIS, OODBMS – objek­to­vo orien­to­va­ný data­bá­zo­vý sys­tém, relač­né data­bá­zy, objek­to­vo orien­to­va­né data­bá­zy člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 3. časť 1999 Geoin­fo, No. 3, Supp­le­ment, p. 1315 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES popis geoprv­ku, zhod­no­te­nie dáto­vých mode­lov, ras­tro­vý dáto­vý model, vek­to­ro­vý dáto­vý model, objek­to­vo orien­to­va­ný dáto­vý model, štruk­tú­ra apli­ká­cie GIS, plá­no­va­nie GIS, zavá­dza­nie GIS, doba návrat­nos­ti, inves­tí­cie, nákla­dy a prí­no­sy člá­nok 1211 – 1082

Rapant Petr Úvod do GIS, 3. časť 1999 Geoin­fo, No. 3, Supp­le­ment, p. 1518 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES agre­sív­ne inves­to­va­nie, pra­vid­lo 8020, plá­no­va­nie vs. pro­jek­to­va­nie GIS, návrh data­bá­zy, kon­ver­zia dát, inter­pre­tá­cia zdro­ja, údrž­ba dát člá­nok 1211 – 1082

Huxhold W.E., Levin­sohn A.G. Mana­ging Geog­rap­hic Infor­ma­ti­on Sys­tem pro­jects 1995 Oxford Uni­ver­si­ty Pre­ss Oxford GIS ENG GIS, manaž­ment neznámy

Kolář J. Geo­gra­fic­ké infor­mač­né sys­té­my 10. 1997 ČVUT Pra­ha GIS, geo­gra­fia CES GIS skriptá

2000 Geoin­fo, No. 3, p. 118 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Mož­nos­ti digi­tál­ne­ho spra­co­va­nia uzem­no­plá­no­va­cej doku­men­tá­cie, GIS okre­su Tábor, Kra­jin­né plá­no­va­nie a GIS, príp­ra­va pod­kla­dov pre územ­ný plán obce, GIMIS, MGE PC, MDL apli­ká­cie, MAG, dáta sú načí­ta­né z relač­nej data­bá­zy, trans­for­má­cia ASP do HTML (XML) člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 1820 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES GIS – kli­ent Inter­net Explo­re­ru, Využi­tie DPZ na moni­to­ring malop­loš­ných chrá­ne­ných úze­mí, vzá­jom­né vzťa­hy a súvis­los­ti, inter­pre­tač­ný kľúč, mul­tis­pek­trál­na kla­si­fi­ká­cia, ruč­ná inter­pre­tá­cia, vizu­ál­na inter­pre­tá­cia, MCHÚ, rekti­fi­ká­cia člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 2022 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES zame­ra­nie vlí­co­va­cích bodov, metó­da trans­for­má­cie, orto­rek­ti­fi­ká­cia, kva­li­ta sním­kov, ana­ló­go­vé letec­ké sním­ky, stmav­nu­tie okra­jov letec­kých sním­kov, ana­ló­go­va ver­sus digi­tál­ne vyhod­no­te­nie sním­kov, vyhod­no­te­nie tema­tic­kých vrs­tiev člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 22 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES auto­ma­tic­ký ver­sus vizu­ál­ny spô­sob vyhod­no­te­nia, dru­ži­co­vé dáta, stred­né infra­čer­ve­né spek­trum, zdra­vot­ný stav vege­tá­cie, vlh­kosť pôdy, fareb­né sním­ky, panc­hro­ma­tic­ké sním­ky, vhod­nosť typu sním­kov, spek­tro­zo­nál­ne sním­ky, mul­tis­pek­trál­ne sním­ky člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 2224 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES letec­ké sním­ky, Zís­ka­nie dát – tech­no­ló­gie, digi­ta­li­zá­cia máp, porov­na­nie technicko-​ekonomických para­met­rov jed­not­li­vých metód, pries­to­ro­vá pres­nosť dát, nákla­dy na zís­ka­nie dát, veľ­mi pres­né dáta, dru­ži­co­vá geodé­zia, GPS metó­dy, orto­fo­to­gram­met­ria člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 2425 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES fuz­zy logi­ka, pro­ces­ná ana­lý­za GIS, sys­té­mo­vá ana­lý­za GIS, efek­tív­na aktu­ali­zá­cia, koz­mic­ký diaľ­ko­vý pries­kum, sig­nál­ne infor­má­cie, aktu­ali­zá­cia geoda­ta­bá­zy, moni­to­ring úze­mia, iden­ti­fi­ká­cia zmien, loka­li­zá­cia zmien, pod­rob­né zma­po­va­nie zmien člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 2425 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES fuz­zy logi­ka, pro­ces­ná ana­lý­za GIS, sys­té­mo­vá ana­lý­za GIS, efek­tív­na aktu­ali­zá­cia, koz­mic­ký diaľ­ko­vý pries­kum, sig­nál­ne infor­má­cie, aktu­ali­zá­cia geoda­ta­bá­zy, moni­to­ring úze­mia, iden­ti­fi­ká­cia zmien, loka­li­zá­cia zmien, pod­rob­né zma­po­va­nie zmien člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 2425 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES fuz­zy logi­ka, pro­ces­ná ana­lý­za GIS, sys­té­mo­vá ana­lý­za GIS, efek­tív­na aktu­ali­zá­cia, koz­mic­ký diaľ­ko­vý pries­kum, sig­nál­ne infor­má­cie, aktu­ali­zá­cia geoda­ta­bá­zy, moni­to­ring úze­mia, iden­ti­fi­ká­cia zmien, loka­li­zá­cia zmien, pod­rob­né zma­po­va­nie zmien člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 2425 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES fuz­zy logi­ka, pro­ces­ná ana­lý­za GIS, sys­té­mo­vá ana­lý­za GIS, efek­tív­na aktu­ali­zá­cia, koz­mic­ký diaľ­ko­vý pries­kum, sig­nál­ne infor­má­cie, aktu­ali­zá­cia geoda­ta­bá­zy, moni­to­ring úze­mia, iden­ti­fi­ká­cia zmien, loka­li­zá­cia zmien, pod­rob­né zma­po­va­nie zmien člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 2425 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES fuz­zy logi­ka, pro­ces­ná ana­lý­za GIS, sys­té­mo­vá ana­lý­za GIS, efek­tív­na aktu­ali­zá­cia, koz­mic­ký diaľ­ko­vý pries­kum, sig­nál­ne infor­má­cie, aktu­ali­zá­cia geoda­ta­bá­zy, moni­to­ring úze­mia, iden­ti­fi­ká­cia zmien, loka­li­zá­cia zmien, pod­rob­né zma­po­va­nie zmien člá­nok 1211 – 1082

1999 Geoin­fo, No. 4, p. 16 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES vek­to­ro­vá gra­fi­ka, Auto­desk SDF, ESRI Sha­pe­fi­le, WebCGM, W3C, SVG – Sca­lab­le Vec­tor Grap­hics, Inter­net Map­per, WWW GIS, PGS LAVA/​MAGMA, Integ­rá­cia GIS a infor­mač­ných sys­té­mov, digi­tál­ny pries­to­ro­vý model sve­ta, colo­or­ga­ni­zač­né infor­mač­né pro­ce­sy člá­nok 1211 – 1082

1999 Geoin­fo, No. 4, p. 68 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES pod­po­ra ria­de­nia, SRP – Spa­tial Resour­ce Plan­ning, ERP – Enter­pri­se Resour­ce Plan­ning, atri­bú­to­vé dáta, sprá­va ter­ma­tic­kých dát, využi­tie WWW pro­stre­dia, budúc­nosť GIS, objek­to­vo kom­po­nent­né GIS, dáto­vý model GIS, skrip­ty AML, DBMS, geomet­ric­ký model člá­nok 1211 – 1082

1999 Geoin­fo, No. 4, p. 913 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES run-​time, edi­tá­cia mno­ži­ny hete­ro­gén­nych prv­kov, mode­lo­va­nie zlo­ži­tých prv­kov v sie­ťach, geomet­ria para­met­ri­zo­va­ných kri­viek, ver­zo­va­né sprá­vy sys­té­mu, opti­mis­tic­ké zám­ky, rôz­na repre­zen­tá­cia jed­né­ho prv­ku, vir­tu­ál­ny rea­li­ta a GIS, 3D model, VRML člá­nok 1211 – 1082

1999 Geoin­fo, No. 4, p. 1318 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES Ako sa začí­na­lo s DPZ, Stře­dis­ko dál­ko­vé­ho průz­ku­mu Země – SDPZ, mul­tis­pek­trál­ny pro­jek­tor, ana­ly­tic­ký pre­kre­slo­vač RECTIMAT, Kar­tof­lex, Topo­cart, His­tó­ria, súčas­nosť a budúc­nosť koz­mic­ké­ho DPZ, ame­ric­ké foto­p­ries­kum­né sate­li­ty, CORONA, ARGON, LANYARD člá­nok 1211 – 1082

1999 Geoin­fo, No. 4, p. 1819 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES špi­onáž­ne lety CIA, U‑2, Power­so­va afé­ra, Nati­onal Pho­to Inter­pre­ta­ti­on Cen­tre, pilo­to­va­né lety GEMINI, Synop­tic Ter­rain Pho­tog­rap­hy – S‑005, Synop­tic Weat­her Pho­tog­rap­hy – S‑006, prog­ram Apol­lo, orbi­tál­na sta­ni­ca SKYLAB, Land­sat člá­nok 1211 – 1082

1999 Geoin­fo, No. 4, p. 2024 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES SPOT – Sys­te­me Pour l‘observation de la Ter­re, IRS, WiFS, radar, ERS1, ERS2, JERS, Fuyo, RADARSAT1, Jet Pro­pul­si­on Labo­ra­to­ry – JPL, SEASAT, Shutt­le Ima­ging Radar‑A – SIR‑A, SIR‑B, STS-​59, STS-​68, Ter­ra, Earth Orbi­ter, Earth Obser­ving, SPOT 5 člá­nok 1211 – 1082

1999 Geoin­fo, No. 4, p. 2430 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES LIGHTSAR, Quick­Bird, Infor­mač­ný sys­tém diaľ­nič­nej a cest­nej sie­te ČR, Výcho­do­čes­ký cen­trál­ny dáto­vý sklad správ­cov sie­te, regi­onál­ne zdru­že­nie správ­cov sie­tí, tech­no­ló­gia relač­ných data­báz, aktu­ali­zá­cia dáto­vé­ho skla­du, nevý­ho­dy DGN výkre­sov, GeoAr­chiv člá­nok 1211 – 1082

1999 Geoin­fo, No. 4, p. 3036 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES ER Map­per 6.0, letec­ká meračs­ká foto­gra­fia, geomet­ric­ká trans­for­má­cia, vytvá­ra­nie mozai­ky letec­kých sním­kov, rádi­omet­ric­ké vyrov­na­nie, kla­si­fi­ká­cia mul­tis­pek­trál­ne­ho obra­zu, IDRISI, Car­ta­Linx, mul­tik­ri­te­riál­ne roz­ho­do­va­nie, mul­ti­des­ti­nát­ne roz­ho­do­va­nie člá­nok 1211 – 1082

1999 Geoin­fo, No. 4, p. 3662 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES manaž­ment v pod­mien­kách neis­to­ty – uncer­tai­ni­ty mana­ge­ment, Arc­View GIS 3.2, Data­ba­se Access 2.0, Cad­Re­a­der načí­ta DGN, DXF, DWG, Ame­ba – IS, Mest­ské kata­stry v Nica­ra­gue, Digi­tal Print Room – sys­tém pre ukla­da­nie digi­tál­nych výkre­sov člá­nok 1211 – 1082

1999 Geoin­fo, No. 5, p. 414 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES GIS vp vod­nom hos­po­dár­stve, HEIS ČR, GS Web, GISy­Po – GIS povo­dí, Hod­nos­te­nie zne­čis­te­nia ovzdu­šia v ČR, imis­né moni­to­ro­va­cie sie­te, sle­do­va­nie atmo­sfé­ric­kej depo­zí­cie, ISKO – Infor­mač­ný sys­tém kva­li­ty ovzdu­šia, národ­ná emis­ná bilan­cia člá­nok 1211 – 1082

1999 Geoin­fo, No. 5, p. 1425 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES REZZO – Regis­ter emi­sií a zdro­jov zne­čis­ťo­va­nia ovzdu­šia, mapo­va­nie imi­sií a ich depo­zí­cie, kon­cen­trá­cie ŤK kle­sa­jú, Neza­mest­na­nosť v ČR, 3D GIS, GRASS, GRASS 3D exten­si­on, Metain­for­mač­né sys­té­my a geoin­for­má­cie, CAGI – Čes­ká aso­ciá­cia pre geoin­for­má­cie člá­nok 1211 – 1082

1999 Geoin­fo, No. 5, p. 26 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES GDDD – Geog­rap­hi­cal Data Desc­rip­ti­on Direc­to­ry, GEIXS – Geolo­gi­cal Elect­ro­nic Infor­ma­ti­on Exchan­ge, ILS – Infor­ma­ti­on Loca­tor Ser­vi­ce, NCGI – Nati­onal Cle­a­rin­ghou­se for Geoin­for­ma­ti­on, SNIG – Nati­onal Sys­tem for Geog­rap­hic Infor­ma­ti­on člá­nok 1211 – 1082

1999 Geoin­fo, No. 5, p. 2650 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES ESMI – Euro­pe­an Spa­tial Meta­da­ta Infras­truct­ru­re, Eko­no­mi­ka koz­mic­ké­ho DPZ, Ukla­da­nie pries­to­ro­vých dát v relač­ných data­bá­zach, popis geomet­rie, pries­to­ro­vé data­bá­zy, Baset 4.0, T‑mapViewer, ESRI, JRC Ispra, CGMS – Crop Gro­wth Moni­to­ring Sys­tem člá­nok 1211 – 1082

1999 Geoin­fo, No. 5, p. 5060 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES sle­do­va­nie para­met­rov ovply­ňu­jú­cich výno­sy poľ­no­hos­po­dár­skych plo­dín a pred­po­ve­de ich výno­sov člá­nok 1211 – 1082

Vože­ní­lek Vít, Kaňok Jaro­mír Tvor­ba tema­tic­kých máp v GIS, 1. časť 1999 Geoin­fo, No. 4, Supp­le­ment, p. 36 Com­pu­ter Pre­ss Brno tema­tic­ká kar­to­gra­fia, GIS CES tema­tic­ká mapa, dru­hy tema­tic­kých máp, teme­tic­ká kar­to­gra­fia, tema­tic­ká mapa, geo­gra­fic­ká mapa, ana­ly­tic­ké mapy, kom­plax­né mapy, syn­te­tic­ké mapy, kon­štrukč­né zákla­dy tema­tic­kých máp, refe­renč­né plo­chy, geoid, rotač­ný refe­renč­ný elip­so­id člá­nok 1211 – 1082

Vože­ní­lek Vít, Kaňok Jaro­mír Tvor­ba tema­tic­kých máp v GIS, 1. časť 1999 Geoin­fo, No. 4, Supp­le­ment, p. 68 Com­pu­ter Pre­ss Brno tema­tic­ká kar­to­gra­fia, GIS CES Bes­se­lov elip­so­id, Kra­sov­ské­ho elip­so­id, Hay­for­dov elip­so­id, elip­so­id IAG 1967, refe­renč­ný elis­po­id WGS 1980, refe­renč­ný elis­po­id WGS 1984, refe­renč­ná guľa, refe­renč­ná rovi­na, kar­to­gra­fic­ké zobra­ze­nia, plo­chy zobra­zo­va­cích plôch, kar­to­gra­fic­ké skres­le­nie člá­nok 1211 – 1082

Vože­ní­lek Vít, Kaňok Jaro­mír Tvor­ba tema­tic­kých máp v GIS, 1. časť 1999 Geoin­fo, No. 4, Supp­le­ment, p. 811 Com­pu­ter Pre­ss Brno tema­tic­ká kar­to­gra­fia, GIS CES plo­chy, uhly, dĺž­ky, dĺž­ko­vé skres­le­nie, ploš­né skres­le­nie, uhlo­vé skres­le­nie, vyrov­ná­va­cie zobra­ze­nie, kom­pen­zač­né zobra­ze­nie, ekvi­de­for­má­ty, izo­ko­ly, výber kar­to­gra­fic­ké­ho zobra­ze­nia, súrad­ni­co­vé sys­té­my, jed­no­znač­né urče­nie plo­chy, zeme­pis­né súrad­ni­ce člá­nok 1211 – 1082

Vože­ní­lek Vít, Kaňok Jaro­mír Tvor­ba tema­tic­kých máp v GIS, 1. časť 1999 Geoin­fo, No. 4, Supp­le­ment, p. 1113 Com­pu­ter Pre­ss Brno tema­tic­ká kar­to­gra­fia, GIS CES pries­to­ro­vé pra­vo­úh­le súrad­ni­ce, kar­to­gra­fic­ké súrad­ni­ce, pra­vo­úh­le rovin­né súrad­ni­ce, polár­ne rovin­né súrad­ni­ce, obsah tema­tic­kých máp, topo­gra­fic­ký pod­klad, tema­tic­ký obsah, zosta­ve­nie obsa­hu tema­tic­kej mapy, kar­to­gra­fic­ké pro­ce­dú­ry člá­nok 1211 – 1082

Vože­ní­lek Vít, Kaňok Jaro­mír Tvor­ba tema­tic­kých máp v GIS, 1. časť 1999 Geoin­fo, No. 4, Supp­le­ment, p. 1319 Com­pu­ter Pre­ss Brno tema­tic­ká kar­to­gra­fia, GIS CES metó­dy kar­to­gra­fic­ké­ho zná­zor­ňo­va­nia, kom­po­zí­cia tema­tic­kých máp, základ­né kom­po­zič­né prv­ky, mapo­vé pole, názov mapy, mier­ka, legen­da, tvor­ba legen­dy, štruk­tu­ra­li­zá­cia tema­tic­ké­ho obsa­hu, nad­stav­bo­vé kom­po­zič­né prv­ky, tiráž, sme­rov­ka, logo, tabuľ­ky člá­nok 1211 – 1082

Vože­ní­lek Vít, Kaňok Jaro­mír Tvor­ba tema­tic­kých máp v GIS, 1. časť 1999 Geoin­fo, No. 4, Supp­le­ment, p. 1920 Com­pu­ter Pre­ss Brno tema­tic­ká kar­to­gra­fia, GIS CES gra­fy, dia­gra­my, sché­my, ved­ľaj­šie mapy, obráz­ky, tex­to­vé polia, blok­dia­gra­my, citá­cie, regis­tre, zozna­my, rekla­my člá­nok 1211 – 1082

Vože­ní­lek Vít, Kaňok Jaro­mír Tvor­ba tema­tic­kých máp v GIS, 2. časť 1999 Geoin­fo, No. 5, Supp­le­ment, p. 120 Com­pu­ter Pre­ss Brno tema­tic­ká kar­to­gra­fia, GIS CES zná­zor­ne­nie kva­li­ta­tív­nych zna­kov, figu­rál­ne zna­ky, bodo­vé zna­ky, čia­ro­vé zna­ky, líni­ové zna­ky, are­álo­vé zna­ky, ploš­né zna­ky, sché­my, tabuľ­ky, gra­fy, dia­gra­my člá­nok 1211 – 1082

1999 Geoin­fo, No. 6, p. 415 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES gene­rá­cia Land­sa­tov, Land­sat 7, Land­sat 1, Land­sat 2, Land­sat 3, Land­sat 4, Land­sat 5, Land­sat 6, Land­sat 7, Buza­na – men­tál­ne mapy – Mind maps, GITA – Geos­pa­tial Infor­ma­ti­on & Tech­no­lo­gy Asso­cia­ti­on, AM/​FM sys­tém, auto­ma­tic­ké mapo­va­nie a spá­va vyba­ve­nia člá­nok 1211 – 1082

1999 Geoin­fo, No. 6, p. 1629 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES letec­ká foto­gram­met­ria, štart dru­ži­ce IKONOS, Spa­ce­I­ma­ging, roz­lí­še­nie 1m, GIS a dyna­mic­ký model rozp­ty­lu zne­čis­ťu­jú­cich látok v ovzdu­ší, foro­gram­met­ria v Pho­To­poL Ste­reo v. 5.5, vizu­ali­zá­cia zmien kra­jin­nej pokrýv­ky, zosuv pôdy, pred­po­klad zosu­vov člá­nok 1211 – 1082

1999 Geoin­fo, No. 6, p. 3037 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES územ­ný roz­voj Bra­ti­sla­vy v rokoch 19491997, his­to­ric­ký vývoj mes­ta, kli­ma­tic­ké mode­ly, GCM, AGCM – model atmo­sfé­ry, OGCM – model oce­ánu, pred­po­veď kli­ma­tic­ké­ho sys­té­mu, gene­ra­li­zá­cia digi­tál­nych geomor­fo­lo­gic­kých máp člá­nok 1211 – 1082

1999 Geoin­fo, No. 6, p. 3854 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES zovše­obec­ne­nie mapo­vých prv­kov, výber vyjad­ro­va­ných sku­toč­nos­tí, kar­to­gra­fic­ká har­mo­ni­zá­cia, digi­tál­na kar­to­gra­fia, kom­pre­sia digi­tál­nych obráz­kov, ECW – Enhan­ced com­pres­sed wave­let, Ima­ge Web Ser­ver, tele­fón s GPS, MapIn­foP­rof­fe­si­onal 5.5, ArcIn­fo 8 člá­nok 1211 – 1082

1999 Geoin­fo, No. 6, p. 5560 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS CES ArcS­DE 8 člá­nok 1211 – 1082

Vože­ní­lek Vít, Kaňok Jaro­mír Tvor­ba tema­tic­kých máp v GIS, 3. časť 1999 Geoin­fo, No. 6, Supp­le­ment, p. 121 Com­pu­ter Pre­ss Brno tema­tic­ká kar­to­gra­fia, GIS CES Pre­zen­tá­cia kva­li­ta­tív­nych a kvan­ti­ta­tív­nych infor­má­cií, kvan­ti­ta­tív­ne úda­je, kar­to­dia­gra­my, kar­to­gra­my, ana­lý­za teč­ko­vé mapy, dasy­met­ric­ká ana­lý­za, dasy­met­ric­ké metó­dy, ana­lý­za kar­to­gra­mic­ká, metó­dy izo­li­nií, dele­nie stup­níc, stup­ni­ce člá­nok 1211 – 1082

Mapa obje­mo­vej akti­vi­ty radó­nu v pôdach a kon­cen­trá­cie radó­nu v pod­zem­ných vodách, SR 2000 Geoin­fo, No. 1 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES člá­nok 1211 – 1082

2000 Geoin­fo, No. 1, p. 613 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Vod­né nádr­že v ohro­ze­ní, využi­tie DPZGIS pri hod­no­te­ní tran­s­port­ných pro­ce­sov v povo­dí, hroz­ba pôd­nej eró­zie, iden­ti­fi­ká­cia a kvan­ti­fi­ká­cia ško­dy pomo­cou DPZGIS, degra­dá­cia pôdy, výpo­čet eróz­ne­ho odno­su, vizu­ál­ny pre­jav eró­zie člá­nok 1211 – 1082

2000 Geoin­fo, No. 1, p. 1316 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES mor­fo­lo­gic­ké zme­ny povr­chu, NDVI – nor­ma­li­zo­va­ný dife­ren­co­va­ný vege­tač­ný index, eróz­ny pro­ces, are­ál aku­mu­lá­cie, tran­s­port uvoľ­ne­né­ho pôd­ne­ho mate­riá­lu, expo­zí­cia, sklo­ni­tosť nad 15°, Integ­ro­va­né hod­no­te­nie eróz­ných rizík, pôd­na eró­zia člá­nok 1211 – 1082

2000 Geoin­fo, No. 1, p. 16 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES hod­no­te­nie kra­ji­ny z hľa­dis­ka náchyl­nos­ti k vod­nej eró­zii, ero­zi­vi­ta, ero­di­bi­li­ta – náchyl­nosť k eró­zii, USLE – Wisch­me­ie­ro­va – Smit­ho­va uni­ver­zál­na rov­ni­ca sta­ty pôdy – Uni­ver­sal Soil Loss Equ­ati­on, kra­ji­na a eróz­ny pro­ces, rule-​based mode­lo­va­nie člá­nok 1211 – 1082

2000 Geoin­fo, No. 1, p. 1622 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Mode­lo­va­nie eróz­nych pro­ce­sov, sklo­na tvar povr­chu, geolo­gic­ké pome­ry, pôd­ne pome­ry, land use, simu­lo­va­né eróz­ne pro­ce­sy, Byt IN pri povod­niach, mode­lo­va­nie roz­sa­hu zapla­vo­va­ných úze­mí v oko­lí hor­nej čas­ti toku rie­ky Mora­vy na Slo­ven­sku člá­nok 1211 – 1082

2000 Geoin­fo, No. 1, p. 2225 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES sof­vér Delft FLS – dvoj­roz­mer­né mode­lo­va­nie povo­dňo­vých javov, mode­lo­va­nie povod­ne, simu­lá­cia povod­ne, Pro­jekt JEN – Jed­not­né evi­den­ce nemo­vi­tos­tí v Praž­skej ener­ge­ti­ke, majet­ko­práv­ne vzťa­hy, evi­den­cia sta­vieb, sta­veb­ná doku­men­tá­cia, evi­den­cia pozem­kov člá­nok 1211 – 1082

2000 Geoin­fo, No. 1, p. 2528 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES evi­den­cia sta­vieb, tvor­ba digi­tál­ne­ho mode­lu teré­nu pomo­cou dru­ži­co­vých dát, spra­co­va­nie dru­ži­co­vých ste­re­o­dvo­jíc, kore­lá­cia, výber vlí­co­va­cích bodov, pre­vod do epi­po­lár­nej geomet­rie, radar­gra­met­ria, spra­co­va­nie rada­ro­vých inter­fe­ro­met­ric­kých dvo­jíc člá­nok 1211 – 1082

2000 Geoin­fo, No. 1, p. 28 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES inter­fe­ro­met­ria, odra­zi­vosť povr­chu, fázo­vá zlož­ka, troj­roz­mer­ný model zem­ské­ho povr­chu, gene­rá­cia výš­ko­vé­ho mode­lu, dru­ži­co­vý digi­tál­ny model teré­nu, šumo­vé hod­no­ty, vyhla­de­nie, výš­ko­vá pres­nosť, inte­rak­cia slneč­né­ho žia­re­nia a zem­ské­ho povr­chu člá­nok 1211 – 1082

2000 Geoin­fo, No. 1, p. 2836 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES inte­rak­cia rada­ro­vé­ho žia­re­nia a zem­ské­ho povr­chu, výš­ka vege­tá­cie, výš­ka zástav­by, prie­beh teré­nu, odmas­ko­va­nie rôz­nych typov zem­ské­ho kry­tu apli­ká­ci­ou poly­no­mic­kej trans­for­má­cie, zeme­me­rač­stvo, per­spek­tí­vy vo vzde­lá­va­ní v GIS-​och člá­nok 1211 – 1082

2000 Geoin­fo, No. 1, p. 3661 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES GIS na základ­nej ško­le, tab­let Wacom Intu­os A3, MIS SPIN, fy Ste­re­op­ho­to, Sym­pó­zium Digi­tál­na pla­né­ta Zem, Peking 29.11. – 2.12.1999, dekla­rá­cia o Digi­tál­nej pla­né­te Zem, obsah roč­ní­ku 1999 člá­nok 1211 – 1082

Vože­ní­lek Vít, Kaňok Jaro­mír Tvor­ba tema­tic­kých máp v GIS, 4. časť 2000 Geoin­fo, No. 1, Supp­le­ment Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES hod­no­te­nie tema­tic­kých máp, pro­duk­cia tema­tic­kých máp a atla­sov, tema­tic­ké mapy Čes­ké­ho zeme­me­račs­ké­ho a kata­strál­ne­ho úra­du – ČÚZK, tema­tic­ké mapy Geo­gra­fic­ké­ho ústa­vu ČSAV člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 110 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Kanad­ské vlád­ne ini­cia­tí­vy v oblas­ti GIS, Kanad­ská infra­štruk­tú­ra geop­ries­to­ro­vých úda­jov – KIGÚ, CEONET – Cana­dian Earth Obser­va­ti­on Network – Kanad­ská sieť pre sle­do­va­nie Zeme, mapy, sate­lit­né sním­ky, Národ­ný atlas Kana­dy, TWIST na webe člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 1014 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Využi­tie tech­no­ló­gie webo­vé­ho apli­kač­né­ho ser­ve­ru, IMS – Inter­net Map­Ser­ver, tech­no­ló­gia apli­kač­né­ho ser­ve­ru, Team Web Infor­ma­tio Sys­tem, Nové ces­ty k uží­va­te­ľom v Trans­ga­se, XML, WAPGIS – využi­tie inter­ne­to­vých a mobil­ných tech­no­ló­gií, pro­to­kol WAP člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 1416 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES jad­ro XML, XSL – Exten­sib­le Sty­les­he­et Lan­gu­age, vytvo­re­nie dyna­mic­kých strá­nok PHP, Data­Squ­all, WASP – Magic Ser­ver Page, jazyk Magic, Kodak má na IKONOS 2 kame­ru, IKONOS, Modul opti­cal Teles­co­pe Assem­bly, vybrú­se­né zrkad­lo, modul Focal Pla­ne Unit člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 1620 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES modul Digi­tal Pro­ces­sing Unit, GIS mes­ta Ostra­va na Inter­ne­tu a intra­ne­tu, sprí­stup­ne­nie dát, MapOb­jects 1.2, MapOb­jects IMS 2.0, mapo­vý ser­ver, ODBC­Di­rect, GIS na želez­ni­ci – Pasport odvet­via elek­tro­tech­ni­ky a ener­ge­ti­ky Čes­kých dráh, Čes­ké drá­hy člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 2227 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Sku­toč­né sny o pro­jek­te GAIA, Ráz kra­ji­ny ČR, GISDPZ pomá­ha­jú k iden­ti­fi­ká­cii a hod­no­te­niu rázu kra­ji­ny, kra­jin­ný ráz, zis­ťo­va­nie kra­jin­né­ho rázu, bio­ta, súčas­ná kra­ji­na, typi­zá­cia kra­ji­ny člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 2835 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Pre­ci­si­on far­ming – nový prí­stup k pes­to­va­niu poľ­no­hos­po­dár­ských plo­dín, letec­ké mul­tis­pek­trál­ne sním­ko­va­nie, odraz žia­re­nia, NDVI, mapo­va­nie výno­sov, GIS na okres­nom úra­de – využi­tie GIS pozem­ko­vý­mi úrad­mi člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 3641 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Geo­gra­fic­ké infor­má­cie pre poľ­no­hos­po­dár­stvo, pre­ci­si­on far­ming – PF, živi­ny v pôde, pH pôdy, zhut­ne­nie pôdy – pene­to­gram, mapa úro­dy, výnos, stav zabu­ri­ne­nia, štruk­tú­ra zabu­ri­ne­nia člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 4243 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Infor­má­cie o život­nom pro­stre­dí z ves­mí­ru – Prog­ram pozo­ro­va­nia Zeme EOS – Earth Obser­ving Sys­tem, sate­li­ty, ves­mír­ne labo­ra­tó­ria ISS, bio­ló­gia eko­sy­té­mov, bio­ché­mia eko­sys­té­mov, bio­ló­gia cyk­lu uhlí­ky, bio­ché­mia cyk­lu uhlí­ka, obeh vody, obeh ener­gie člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 43 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES varia­bi­li­ta klí­my, pred­po­veď poča­sia, ché­mia atmo­sfé­ry, výskum pev­né­ho zem­ské­ho tele­sa, prie­beh hyd­ro­lo­gic­kých pro­ce­sov, prie­beh bio­che­mic­kých pro­ce­sov, prie­beh atmo­sfé­ric­kých pro­ce­sov, prie­beh eko­lo­gic­kých pro­ce­sov, prie­beh geofy­zi­kál­nych pro­ce­sov člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 4344 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES sate­li­ty, ERBS, UARS, TOPEX, NSCAT/​ADEOS, TOMS/​Earth Pro­be 96, TRMM, SeaWiFS/​OrbView2, POES, LANDSAT 5, DMPS, ERS1, ERS2, JERS1, ADEOS, Ter­ra AM, QuickS­cat, Lan­sat 7, ACRIMSAT, NMP/​EO‑1, METEOR 3M1, Jason‑1, ENVISAT Series, ADEOS II, ESSP/​VCL, EOS PM člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 4445 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES ESSP/​GRACE, ICE­Sat, ALOS, SORCE, EOS CHEM, ISS SAGE III, ESSP/​PICASSO-​CENA, ESSP/​CloudSat, METOP Series, ATMOS Series, pred­met moni­to­rin­gu a pou­ži­té prí­stro­je, slneč­né žia­re­nie, cel­ko­vá slneč­ná radiá­cia, ultra­fia­lo­vé spek­trum žia­re­nia, atmo­sfé­ra člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 45 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES oblač­nosť, tok žia­re­nia na hor­nú hra­ni­cu atmo­sfé­ry a zem­ský povrch, zráž­ky, tep­lo­ta atmo­sfé­ry, che­miz­mus tro­po­sfé­ry a ozó­nu, che­miz­mus stra­to­sfé­ry, stra­to­sfé­ric­ké a tro­po­sfé­ric­ké aero­só­ly, atmo­sfé­ric­ká vlh­kosť, pev­ni­na, pokry­tiem plôch, využi­tie plôch člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 45 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES dyna­mi­ka vege­tá­cia, dyna­mi­ka zmien vege­tá­cie, povr­cho­vá tep­lo­ta, výskyt požia­rov, roz­ší­re­nie požia­rov, tep­lot­né ano­má­lie, vplyv vul­ka­nic­kej čin­nos­ti, frek­ven­cia výsky­tu erup­cií a súvi­sia­ce tep­lot­né ano­má­lie a dopa­dy, vlh­kosť na pev­ni­ne, oce­án člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 45 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES povr­cho­vá tep­lo­ta vody, fytop­lank­tón, rozp­tý­le­ná orga­nic­ká hmo­ta, polia vet­rov, kry­o­sfé­ra, ľad na pev­ni­ne, top­gra­fia pev­nin­ské­ho ľadov­co­vé­ho ští­tu, kolí­sa­nie obje­mu ľadov­co­vé­ho ští­tu, zme­na ľadov­cov, moni­to­ring mor­ské­ho ľadu, roz­ší­re­nie mor­ské­ho ľadu člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 4549 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES kon­cen­trá­cia mor­ské­ho ľadu, pohyb mor­ské­ho ľadu, tep­lo­ta mor­ské­ho ľadu, sne­ho­vá pokrýv­ka, roz­ší­re­nie sne­ho­vej pokrýv­ky, vod­ný objem sne­hovj pokrýv­ky, GIS a budú­ci uči­te­lia zeme­pi­su – príp­ra­va štu­den­tov Peda­go­gic­kej fakul­te MU v Brne, GIS v škol­skej pra­xi člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 5055 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Výu­ka GIS v sme­re geodé­zie na Sta­veb­nej fakul­te ČVUT v Pra­he, recen­zia GS Web, GEOVAP, dáto­vý sklad, relač­ná data­bá­za, pod­po­ra red­li­nin­gu, ArcIn­fo a Arc­View na čes­kej scé­ne, ARCDATA Pra­ha s.r.o., kon­fe­ren­cia GIS Ostra­ba 2000 člá­nok 1211 – 1082

2000 Geoin­fo, No. 2, p. 5659 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Infor­mač­né sys­té­my v les­níc­tve a poľ­no­hos­po­dár­stve, Casino-​21, SETI@home, zachy­te­nie sig­ná­lu mimo­zem­skej civi­li­zá­cie, kli­ma­tic­ké mode­lo­va­nie člá­nok 1211 – 1082

Pokor­ný Jaro­slav SQL v troch lek­ciách, lek­cia I 2000 Geoin­fo, No. 2, Supp­le­ment, p. 18 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES relá­cie, tabuľ­ky, relač­ný model dát, tabuľ­ka ako repre­zen­tá­cia relá­cie, integ­rit­né obme­dze­nie, sché­ma relač­nej data­bá­zy, ope­rá­cie s relá­cia­mi, selek­cia a pro­jek­cia, spo­je­nie, kar­téz­sky súčin, zjed­no­te­nie, prie­nik, roz­diel, ope­rá­cie za relač­nou algeb­rou člá­nok 1211 – 1082

Pokor­ný Jaro­slav SQL v troch lek­ciách, lek­cia I 2000 Geoin­fo, No. 2, Supp­le­ment, p. 820 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES jazyk SQL, defi­ní­cia dát v SQL, typy dát v SQL, CREATE TABLE, ALTER TABLE, DROP TABLE, CREATE SCHEMA, inde­xy v SQL, mani­pu­lá­cia dát v SQL, SELECT, jed­no­du­ché prí­ky­zy v SQL, tri logic­ké hod­no­ty, arit­me­ti­ka, agre­gač­né fun­kcie, KONSTRUKT GROUP BY, člá­nok 1211 – 1082

Pokor­ný Jaro­slav SQL v troch lek­ciách, lek­cia I 2000 Geoin­fo, No. 2, Supp­le­ment, p. 2024 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Séman­ti­ka agre­gač­ných fun­kcií, hod­no­to­vé výra­zy člá­nok 1211 – 1082

2000 Geoin­fo, No. Špe­ciál, p. 118 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Kata­ster nehnu­teľ­nos­tí v ČR, Kokeš, MISYS, Využi­tie nových tech­no­ló­gií v Kata­stri nehnu­teľ­nos­tí SR, Acti­veX, apli­ká­cia Kata­ster, Berit a kata­ster, nové ISKN, Inter­ne­ti­za­ce ČR, Inter­net v štát­nej sprá­ve a smasprá­ve, Sieť refe­renč­ných sta­níc DGPSČRSR člá­nok 1211 – 1082

2000 Geoin­fo, No. Špe­ciál, p. 1820 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES napo­je­nie na sieť, zame­ra­nie polo­ho­vých súrad­níc, Auto­CAD Map 2000, prá­ca s gra­fic­ký­mi dáta­mi, prá­ca s negra­fic­ký­mi infor­má­cia­mi, glo­bál­ny súrad­ni­co­vý sys­tém, pre­zen­tá­cia a vykres­ľo­va­nie, plá­vu­ce výre­zy, roz­vr­hnu­tie, Arc­Pad 5, mobil­né mapo­va­nie člá­nok 1211 – 1082

2000 Geoin­fo, No. Špe­ciál, p. 2025 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES spo­lu­prá­ca Inter­graph a Ben­tley, ATLAS DMT 3.8, MapIn­fo Pro­fes­si­onal 6.0, Topol Digit – prá­ca s vek­to­ro­vý­mi dáta­mi, HP Design­Jet 1055CM, PUK­Ni – pre­hlia­dač­ka, tec­no­ló­gia GeoMe­dia člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 2526 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES panc­hro­ma­tic­ké sním­ky SPOT, letec­ká foto­gram­met­ria, zem­ra­nie pomo­cou GPS, geode­tic­ké zame­ra­nie, ArcIn­fo, CLAPAS a les­níc­ke mapy, hete­ro­ge­ni­ta, auto­ma­tic­ké spra­co­va­nie sate­lit­ných dát, auto­ma­tic­ká kla­si­fi­ká­cia člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 2627 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES fil­trač­ná metó­da CLAPAS – Clas­se­ment de Pay­sa­ges et Seg­men­ta­ti­on, frek­venč­né his­to­gra­my, kla­si­fi­ko­va­né kete­gó­rie, gene­ra­li­zá­cia obra­zu, refe­renč­né kra­jin­né motí­vy, mini­mál­na veľ­kosť, maxi­mál­na veľ­kosť, spra­co­va­nie štvor­co­vé­ho okna člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 2731 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES hod­no­ty pries­to­ro­vých vzdia­le­nost­ných vek­to­rov, algo­rit­mus Man­hat­tan, algo­rit­mus Kol­mo­go­rov, Digi­tál­na foto­gram­met­ria ATLAS + TopoL = 3D GIS, digi­tál­ny model teré­nu, tvor­ba orto­fo­to­máp, auto­ma­tic­ká kore­lá­cia ste­re­opá­rov, ste­reo vyhod­no­co­va­nie člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 31 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES tech­no­ló­gia auto­ma­ti­zo­va­nej tvor­by vrs­tev­níc, výpo­čet orien­tá­cií sním­kov aero­trian­gu­lač­ným mode­lom Aero­Sys, auto­ma­tic­ká kore­lá­cia ste­re­opá­rov, odstrá­ne­nie chýb kore­lá­cie v ste­ro móde, hob­lo­va­nie, eli­mi­ná­cia chýb, vyhla­de­nie mode­lu, kon­tro­la mode­lu člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 2425 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES fuz­zy logi­ka, pro­ces­ná ana­lý­za GIS, sys­té­mo­vá ana­lý­za GIS, efek­tív­na aktu­ali­zá­cia, koz­mic­ký diaľ­ko­vý pries­kum, sig­nál­ne infor­má­cie, aktu­ali­zá­cia geoda­ta­bá­zy, moni­to­ring úze­mia, iden­ti­fi­ká­cia zmien, loka­li­zá­cia zmien, pod­rob­né zma­po­va­nie zmien člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 3139 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES edi­tá­cia mode­lu, pre­po­čí­ta­ve­nie vrs­tev­níc, SPOT Ima­ge, Moni­to­ro­va­nie úze­mia ovplyv­ne­né­ho ťaž­bou úra­no­vej rudy, urán, metó­da hlav­ných kom­po­nen­tov, gama spek­tro­met­ria, mode­lo­va­nie radó­no­vé­ho rizi­ka, zakys­ľo­va­nie les­ných pôd, oxid siri­či­tý člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 3943 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Význam GIS pri roz­ho­do­va­ní o využi­teľ­nos­ti pozem­ných pros­tried­kov pre váp­ne­nie les­ných pôd, sva­ho­vá dostup­nosť, zapra­vo­va­nie do pôdy, pre­jazd apli­kač­né­ho pros­tried­ku po poras­te, Pred­po­ved­ná a varov­ná služ­ba, Čes­ký narod­ní výbor pro sni­žo­va­ní kata­strof člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 43 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Zvý­še­ná pozor­nosť pois­ťov­ní, Mni­chov­ská pois­ťo­va­cia spo­loč­nosť, eko­no­mic­ké stra­ty, prí­rod­né kata­stro­fy, zvý­še­nie počtu prí­rod­ných kata­strof, mete­oro­lo­gic­ké javy, hyd­ro­lo­gic­ké javy, povod­ne, zákon o krí­zo­vom ria­de­ní a integ­ro­va­nom zachran­nom sys­té­me člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 4348 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES varov­ná služ­ba, pred­po­ved­ná služ­ba, zní­že­nie dopa­dov povod­ní o 30%, prí­va­lo­vé povod­ne, extrém­ne búr­ko­vé zráž­ky, zráž­ko­mer­né sys­té­my, vodo­mer­né čid­lá, ALERT, orga­ni­zá­cia varov­nej a pred­po­ved­nej služ­by ČHMÚ, Men­tál­ne mapo­va­nie MMOST člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 4851 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES MMOST – Mond Map Orga­nic Stu­dy Tech­ni­que, foto­gra­fic­ké číta­nie, uvoľ­ne­ná bde­losť – rela­xed aler­tness, zoznam kľú­čo­vých slov, spúš­ta­cie slo­vá – trig­ger words, reví­zia zís­ka­ných infor­má­cií, upres­ne­nie cie­ľa číta­nia, rých­le číta­nie, Geoap­li­ká­cia roku člá­nok 1211 – 1082

2000 Geoin­fo, No. 3, p. 5160 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES MISYS fy GEPRO, Modu­lár­ny infor­mač­ný sys­tém pre mes­tá a obce, GIS v armá­de ČR, Digi­tál­ne tech­nic­ké mapy v Par­du­bi­ciach, Inter­graph, GeoMe­dia 4.0 člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 68 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Súčas­nosť a budúc­nosť dife­renč­ných metód určo­va­nia polo­hy pomo­cou navi­gač­ných dru­žíc, dru­ži­co­vá navi­gá­cia, chy­by urče­nia polo­hy, stred­ná chy­ba mera­nia vzdia­le­nos­tí, EGNOS, Gali­leo, situ­ácia po vypnu­tí SA, moder­ni­zá­cia dru­ži­co­vej navi­gá­cie, GPS člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 811 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES zave­de­nie dru­hé­ho civil­né­ho kmi­toč­tu L2 1227.6 MHz, kori­go­va­nie ohy­bu v iono­sfé­re, zni­že­nie chy­by na 5 m, tre­tí civil­ný kmi­to­čet 1176.45 MHz, GPS – kom­plex­né tech­no­ló­gie, Mož­nos­ti využi­tie GPSDGPSČR, C/​A kód, DGPS, ALF – služ­ba Tele­ko­mu, Tri­mus člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 1115 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES import dát z Psi­onu do PC, úče­lo­vé sle­do­va­nie vozi­diel, kni­ha jázd, apli­ká­cie DGPS Tri­mus, špe­ciál­ne mera­nie v zales­ne­nom úze­mí, GPS v rukách geomor­fo­ló­ga, nasta­ve­nie GPS para­met­rov, prí­ji­mač GeoEx­plo­rer, kalib­rá­cia a plá­no­va­nie GPS mera­nia člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 1625 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Budúc­nosť sie­te GPS, Refe­renč­ná sieť sta­níc v ČR, zlo­čin, trest, Využi­tie GPS v poli­caj­nej pra­xi, Potre­ba GPS na okres­nom úra­de, jed­no­frek­venč­ný TRIMBLE Path­fin­der Pro­XR, Letec­ké sním­ky rieč­nej nivy, Využi­tie letec­kých sní­mok na SVP, Povo­die Duna­ja člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 26 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Využi­tie rada­ro­vých dru­ži­co­vých dát pri roz­poz­ná­va­ní poľ­no­hos­po­dár­skych plo­dín, prí­nos dru­ži­co­vých dát pre poľ­no­hos­po­dár­stvo, množ­stvo name­ra­né­ho odra­ze­né­ho žia­re­nia rada­ro­vých sní­ma­čov, tech­nic­ké para­met­re rada­ru, para­met­re zem­ské­ho povrv­hu člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 2627 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES zme­na vlh­kos­ti pôdy, zme­na ref­lex­ných schopnps­tí pôdy, kla­si­fi­ká­cia poľ­no­hos­po­dár­skych plo­dín, odra­zi­vosť pre poľ­no­hos­po­dár­ske plo­di­ny, čso­vá rada scén, koefi­cient odra­zi­vos­ti, vývoj odra­zi­vos­ti plôch poľ­no­hos­po­dár­skych plo­dín v čase, ana­lý­za odra­zi­vos­ti člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 2830 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES neria­de­ná kla­si­fi­kač­ná ana­lý­za, ISODATA clus­te­ring, Synt­he­tic chan­nel com­po­si­tes, Byte sli­ced com­po­si­te, Ort­ho­En­gi­ne Radar Edi­ti­on, EASI/​PACE, PCI Geoma­tics, GISAT, mana­žer­ské nad­stav­by infor­mač­ných sys­té­mov, ana­lý­za dát, GeoMe­dia člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 3034 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Infor­mač­ný sys­tém drob­ných vod­ných tokov ČR, prog­ram Topas, prog­ram Tok­Trans, Infor­mač­ný sys­tém vodo­vo­dov a kan­li­zá­cií, Mana­žér SMS­Man, Kam s odpa­dom – úlo­ha pre GIS, Vyhľa­dá­va­nie sklád­ko­vých loka­lít pomo­cou geoin­for­mač­ných tech­no­ló­gií, SRP vi WEB člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 3538 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Spa­tial Resour­ce Plan­ning – pries­to­ro­vé plá­no­va­nie zdro­jov, Smal­lword WEB, Smal­lword Scout, gra­fic­ký výrez, tabuľ­ky, mera­nie vzdia­len­so­tí, mera­nie plôch gra­fic­kých objek­tov, inte­rak­tív­ne požia­dav­ky, lok­li­zá­cia výsled­kov, Pra­ha na dla­ni člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 3844 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES wapo­vá apli­ká­cia Mapa Pra­hy 1, for­mát WBMP, Ako nájsť dáta – Metain­for­mač­ný sys­tém CAGI, CAGI – Čes­ká aso­ciá­cia pre geoin­for­má­cie, Všet­ko na Intra­net, Integ­ro­va­ný tech­nic­ký infor­mač­ný sys­tém 2000SPP, Slov­trans­gaz, ITIS, Poly-​Shape člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 4451 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Trans­for­má­cia línií na poly­gó­ny v Arc­View, vyhľa­da­nie prie­ni­ku línií, GIS pre mes­tá a obce, Siri­on, TopoL Inter­net ser­ver, Nati­onal Geog­rap­hic Maps, Fores­ta SG člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 5258 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES GLOBE – Glo­bal Lear­ning And Obser­va­ti­ons to Bene­fits the Envi­ron­ment – Celo­sve­to­vé pozo­ro­va­nie život­né­ho pro­stre­dia, GIS Seč 2000, Archi­tek­ti a GIS, Glo­bál­ne pries­to­ro­vé infra­štruk­tú­ry v Juž­nej Afri­ke člá­nok 1211 – 1082

2000 Geoin­fo, No. 4, p. 5962 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Ďiaľ­ko­vý pries­kum život­né­ho pro­stre­dia (kon­fe­ren­cia) člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 23 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Rakús­ky zeme­me­račs­ká úrad, Plán roz­vo­ja lesa, Mapo­va­nie bio­to­pov, Plá­ny uspo­ria­da­nia kra­ji­ny – eko­lo­gic­ké plá­no­va­nie kra­ji­ny, tvor­ba bio­ko­ri­do­rov, bio­cen­tier, uspo­ria­da­nie eko­lo­gic­kej sie­te kra­ji­ny, Geolo­gic­ký infor­mač­ný sys­tém GEOLOGIS člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 23 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Úrad hor­no­ra­kús­kej zem­skej vlá­dy, Poľ­sko, Gló­wny Urzad Geodez­ji i Kar­to­gra­fii, bez GIS data­báz, HYDRO – mana­ge­ment spod­ných vôd, IWIEP – chrá­ne­né oblas­ti, JAWO – moni­to­ring povr­cho­vých tečú­cich vôd, MONBADA – moni­to­ring spod­ných vôd člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 23 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES ML – les­níc­ky moni­to­ring, SAYPW, SAZPK – ana­ly­tic­ký sys­tém zne­čis­te­nia ovzdu­šia, SIGOP – nebez­peč­né odpa­dy, pre­po­je­nie čes­kých a zahra­nič­ných dát, pre­vod na S‑JTSK, správ­ne urče­nie geo­gra­fic­ké­ho dátu­mu člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 2428 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Poznám­ky k čes­kým pred­bež­ným nor­mám pre geo­gra­fic­kú infor­má­ciu, Pro­ti­po­vo­dňo­vá ochra­na – Mora­va a Beč­va, prin­cí­py pro­ti­po­vo­dňo­vej ochra­ny, Flo­od Mana­ge­ment in the Czech Repub­lic, DHI Water and Envi­ron­ment (Dán­sko), DHI Hyd­ro­in­form člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 28 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Danish Envi­ron­men­tal Pro­tec­ti­on Agen­cy, Danish Coope­ra­ti­on for Envi­ron­ment in Eas­tern Euro­pe – DANCEE, zráž­ko – odto­ko­vý model a hyd­ro­dy­na­mic­ký model rie­ky Mora­va, SW Mike 11, sme­ry pro­ti­po­vo­dňo­vej ochra­ny člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 28 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES zme­na využi­ta pôdy v povo­dí, obno­va retenč­nej fun­kcie údol­nej nivy, schop­nosť vege­tač­né­ho kry­tu spo­ma­liť povr­cho­vý odtok člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 28 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES zme­ny osev­ných postupv, sme­ru orby, roz­čle­ne­nie veľ­kých plôch bio­ko­ri­dor­mi, zme­na využi­tia ornej pôdy, na lúky a lesy, veľ­ká sklo­ni­tosť teré­nu – nut­ná zme­na, tes­ne pri vod­nom toku – nut­ná zme­na na lúky, obno­va retenč­nej fun­kcie údol­nej nivy člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 811 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES GIS v boji s neza­mest­na­nos­ťou, Digi­tál­ny model kra­ji­ny a jeho využi­tie k iden­ti­fi­ká­cii eróz­nych rizík v povo­dí, odto­ko­vý model, požiar­ny model, rozp­ty­lo­vý model, CORMIX, WASP5, MIKE11, ZNEC, STREAM, STROM, QUAL2E, ITACA, ANSWERS, CREAMS, AGNPS, SMODERP člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 1122 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES WEPP, SWRB, EUROSEM, SPUR, PEG, dPEG, Ero­si­on 3D, model Ero­si­on 3D, vstup­né dáta prog­ra­mu Ero­si­on 3D, Mode­lo­va­nie hyd­ro­lo­gic­kých feno­mé­nov, prog­ra­mo­va­cie jazy­ky AML, Ave­nue, MINDER, GIS na Šuma­ve, GIS a spo­lu­prá­ca v ochra­ne prí­ro­dy nepoz­ná hra­ni­ce člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 2229 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Skal­né útva­ry reli­é­fu, Zis­ťo­va­nie záko­ni­tos­tí výsky­tu skal­ných tva­rov nástroj­mi GIS, GPS Trim­ble, VRS – Vir­tu­ál­na refe­renč­ná sta­ni­ca, cen­ti­met­ro­vá pres­nosť, KRASGIS‑e, využi­tie GIS v ochra­ne prí­ro­dy, využi­tie GIS vo výsku­me, bio­lo­gic­ké hod­no­te­nie člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 2930 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES kli­ma­tic­ké hod­no­te­nie, geomor­fo­lo­gic­ké hod­no­te­nie, kon­štruk­cia rezov reli­é­fu, štú­die osl­ne­nia, štú­dium pocho­va­ných fosíl­nych kra­so­vých javov, spra­co­va­nie sta­rých ban­ských máp, spra­co­va­nie geofy­zi­kál­nych dát, Zber polo­ho­vých dát s met­ro­vou pres­nos­ťou člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 30 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES sig­nál GPS, fázo­vá zlož­ka, geodé­zia, budo­va­nie geode­tic­kých zákla­dov, inži­nier­ska geodé­zia, sta­veb­ná geodé­zia, auto­ri­zo­va­ný uží­va­teľ, služ­ba PPS, GPS pri­jí­mač, kryp­to­gra­fic­ký kľúč, šif­ro­va­ný P‑kód, Y‑kód, neau­to­ri­zo­va­ný uží­va­teľ, služ­ba SPS, C/​A kód člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 3036 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ, letec­ká arche­oló­gia CES kmi­to­čet L1, SA, fázo­vé mera­nie, dife­renč­né mera­nie – DGPS, zruš­nie chy­by SA, ostat­né chy­by, rozp­tyl mera­nie GPS s a bez SA, Encyk­lo­pé­dia Chrá­ne­né úze­mia ČR, Pohľad do minu­los­ti – letec­ká arche­oló­gia, tie­ňo­vé efek­ty, šik­mé ran­né sln­ko člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 36 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ, letec­ká arche­oló­gia CES šik­mé večer­né sln­ko, rozo­ra­né mohy­ly, valy, prie­ko­py, medze sta­rých polí, plu­ži­ny, čerstvý sne­ho­vý pokryv, pôd­ne prí­zna­ky, výplň jám, výplň chát, výplň prie­kop, pôda, rozo­ra­né valy, vege­tač­né prí­znakx, iná štruk­tú­ra zahĺbe­ní do pod­lo­žia – podor­ni­čie člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 36 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ, letec­ká arche­oló­gia CES far­ba pôdy, zapl­ne­nie zahĺbe­nia, obo­ha­te­nie živi­na­mi, obo­ha­te­nie fos­fát­mi, splác­hnu­tá orni­ca, obo­ha­te­ni odpad­ka­mi, moc­nej­šia vrstva pôdy, vlh­šia pôda, dlh­šie kore­ne rast­lín, hus­tej­šie ras­te­né obi­lie, rých­lej­šie dozrie­va­jú­ce obi­lie, prie­pust­né pod­lo­žie člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 3640 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ, letec­ká arche­oló­gia CES vysý­cha­jú­ce pod­lo­žie, pies­ky, štr­ko­pies­ky, spra­še, suché leto, obil­ni­ny, šik­mé svet­lo, výš­ka 200500 met­rov, veľ­ká hus­to­ta nále­získ, prie­me­ro­va­nie geofy­zi­kou – cézi­ovým mag­ne­to­met­rom, Netra­dič­né využi­tie šik­mých letec­kých sním­kov, výho­dy, bez nák­lo­nu člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 4043 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Nák­lon vrtuľ­ní­ku do 10°, sko­ré dopo­lud­nie, plas­tic­kosť úze­mia, kon­trast medzi osl­ne­ný­mi a zatie­ne­ný­mi plo­cha­mi, slab­ľia dyna­mi­ka ovzdu­šia, spra­co­va­teľ­ský postup šik­mých letec­kých sním­kov člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 4449 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Mapy pre Čer­no­byl – tes­to­va­nie vhod­nos­ti dru­ži­co­vých sním­kov pre tvor­bu topo­gra­fic­kej a tema­tic­kej mapy na Ukra­ji­ne, T‑WIST, Test GPS pri­jí­ma­čov, 12 kaná­lo­vé para­lel­né pri­jí­ma­če, hus­to zasta­va­né oblas­ti, les­na­té oblas­ti, GARMIN, eTrex Sum­mit, GPS 12XL člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 4954 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES GPS III Plus, Stre­et­Pi­lot, navi­gá­cia pre jaz­du auto­mo­bi­lom, Met­ro­Gu­ide, Info­Ma­pa 7.0, mož­nosť uby­to­va­nia, mož­nosť čer­pa­nia ben­zí­nu, svo­je vlast­né ras­tro­vé dáta, šta­tis­ti­ka, Inter­graph v roku 2000, Jozef Havaš, Ivan Kříž, GPS a čes­ká kar­to­gra­fia člá­nok 1211 – 1082

2000 GeoIn­fo, No. 5, p. 5460 Com­pu­ter Pre­ss Brno geo­gra­fia, GIS, DPZ CES Geodé­zie ČS, XIX. kon­gres ISPRS, GIS v Olo­mou­ci, GDTA – digi­tál­na kar­to­gra­fia vo Fran­cúz­sku člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 815 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Integ­rá­cia dát v prí­ro­de, rene­san­cia geo­gra­fic­kých vedo­mos­tí, Dáta sys­té­me PREFARM – moder­né poľ­no­hos­po­dár­stvo v infor­mač­nej spo­loč­nos­ti, úspo­ra prie­mys­lo­vých hno­jív, úspo­ra vápe­na­tých hno­jív, účel­nej­šie využí­va­nie plo­dín, efek­tív­nej­šie hos­po­dá­re­nie člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 15 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES pre­ci­si­on making, pre­cíz­ne poľ­no­hos­po­dár­stvo, zís­ka­nie výno­so­vej úrov­ne, výno­so­vý moni­tor LH 565, roz­me­tač hno­jív, vyhod­no­co­va­nie obra­zov polí dozrie­va­jú­cich plo­dín , výno­so­vý pred­po­klad, roz­diel­ny výno­so­vý poten­ciál člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 1516 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES roz­diel­ny vstup inten­zi­fi­kač­ných fak­to­rov, zóny pôd­ne­ho poten­ciá­lu, zee­fek­tív­ne­nie, mana­ge­ment zón, varia­bil­né dáv­ko­va­nie dusí­ka, mera­nie aktu­ál­nej potre­by dohno­je­nia na zákla­de obsa­hu chlo­ro­fy­lu v lis­toch, závis­losť chlo­ro­fyl – hno­je­nie, N‑tester člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 1617 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES hno­je­nie on-​line, pri­po­je­nie k ser­ve­ru s dáta­mi polí, infor­má­cie o svo­jich poliach na počí­ta­či, znač­ná pries­to­ro­vá varia­bi­li­ta, efek­tív­nej­šie využi­tie pôd­ne­ho poten­ciá­lu, uspeš­nej­šie hos­po­dá­re­nie, Kar­to­gra­fic­ké die­lo a autor­ský zákon, pou­ži­tie, využi­tie člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 1720 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES zne­uži­tie, autor­ský zákon, Luž­né lesy, kom­plex luž­ných lesov na súto­ku Dyje a Mora­vy, bio­sfé­ric­ká rezer­vá­cia, BR Pála­va, Digi­tál­ne dáta stred­ných merí­tok u našich suse­dov, Nemec­ko – ATKIS – Úrad­ný topograficko-​kartografický infor­mač­ný sys­tém člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 2021 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES ATKIS-​DLM 25 – Digi­ta­les Lands­chafts­mo­del, Digi­ta­les Gelän­de­mo­dell, for­mát SICAD-​SQD, EDBS – Ein­he­it­li­chen DatenBank-​Schnittstelle, SIEMENS, kon­verz­né prog­ra­my, GISCON, SASKO, Säch­sis­chen Lan­de­samt für Umwelt und Geolo­gie, Bavor­sko člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 22 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Mapo­va­nie bio­to­pov – Bio­top­kar­tie­rung – BIO, Mapo­va­nie dru­ho­vej ochra­ny – Arten­schutz­kar­tie­rung ‑ASK, Chrá­ne­né úze­mia – Schutz­ge­biet­ska­tas­ter, Schutz­ge­bietr­gren­zen, Pries­to­ro­vé čle­ne­nie kra­ji­ny – Rau­mord­nungs­ka­tas­ter – ROK člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 22 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES GIS vod­né­ho hos­po­dár­stva – Geog­rap­his­ches Infor­ma­ti­ons­sys­tem Was­ser­wirts­chaft, GIS-​Was, Bay­eris­ches Lan­de­samt für Was­ser­wirts­chaft, Digi­tál­na geolo­gic­ká mapa Bavor­ska – Digi­ta­le Geolo­gis­che Kar­te von Bay­ern člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 22 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Ochra­na pod­zem­ných vôd – Kar­ten der Schutz­funk­ti­on der Grun­dwas­ser­rüber­dec­kung, Bay­eris­ches Geolo­gis­ches Lan­de­samt, Poľ­no­hos­po­dár­ska sta­no­višt­ná mapa, Les­nic­ký rám­co­vý plán, fun­kcie lesa, Les­ná hos­po­dár­ska mapa, Les­nic­ká sta­no­visšt­ná mapa člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 22 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Les­ná hos­po­dár­ska mapa pre štát­ne lesy, Rakús­ko, Bun­de­samt für Eich und Ver­mes­sung­swe­sen – BEV, DGM – digi­tál­ny model teré­nu, Digi­tál­ny model kra­ji­ny, topo­gra­fic­ký model člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 22 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES objek­to­vý dáto­vý model s dopra­vou, síd­la­mi, pries­to­ro­vým čle­ne­ním, využi­tím kra­ji­ny­sú­bor hra­níc les­ných plôch, terén, mená topo­gra­fic­kých objek­tov, Digi­ta­le Ortop­ho­tos Öster­re­i­chis­che Luft­bild­kar­te – orto­fo­to­ma­py, tema­tic­ké envi­ron­men­tál­ne dáta člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 2223 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Spol­ko­vý úrad pre život­né pro­stre­die, kata­lóg dát o život­nom pro­stre­dí, Spol­ko­vé minis­tres­tvo pre poľ­no­hos­po­dár­stvo a les­níc­tvo, digi­tál­na les­nic­ká data­bá­za GIS dát GIS-​Forst, data­bá­za život­né­ho pro­stre­dia NÖGIS člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 23 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Infor­mač­ný sys­tém o spod­ných a povr­cho­vých vodách, Pás­ma zdro­jov spod­ných vôd – pred­po­kla­da­né zdro­je pit­nej vody, Ochran­né pás­ma vôd a mies­ta odbe­ru pit­nej vody, Prí­rod­né par­ky, chrá­ne­né kra­jin­né oblas­ti, prí­rod­né rezer­vá­cie, Hra­ni­ce lesa člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 28 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES zapo­je­nie údol­nej nivy na pre potre­by povo­dňo­ve­ho prie­to­ku, umož­ne­nie maxi­mál­ne­ho roz­lie­va­nia, využi­tie pri­ro­dze­nej trans­for­má­cie povo­dňo­vej vlny, zní­že­nie kul­mi­nač­ných prie­to­kov, úpl­ne odstrá­ne­nie pozdĺž­nych hrá­dzí, obno­va lesov a lúk člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 28 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES zavod­ne­nie odsta­ve­ných ramien rieč­ne­ho kory­ta, zvý­še­nie retenč­nej schop­nos­ti údol­nej nivy zvý­še­ním nive­le­ty nie­kto­rých prieč­nych komu­ni­ká­cií, výstav­ba odsa­de­ných hrá­dzí pozdĺž obcí v údol­nej nive, lokál­na ochra­na, ochran­né hrá­dze pozdĺž zástav­by člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 28 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES nádr­že, pol­de­ry, vod­né nádr­že, nové vod­né­ná­dr­že, nad­lep­šo­va­nie prie­to­kov v obdo­bí sucha, záso­bo­va­nie vodou, výro­ba elek­tric­kej ener­gie, pre­ru­še­nie mig­rá­cie rýb, trva­lé zapla­ve­nie údo­lia, suché nádr­že – pol­de­ry, využi­tie pol­de­rov ako lúky, obto­ko­vé kaná­ly člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 2830 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES ume­lé kory­tá, prob­le­ma­tic­ká rea­li­zá­cia obto­ko­vý kaná­lov, urých­le­nie postu­pov povo­dňo­vej vlny, záto­po­vé mapy, navr­hnu­té sce­ná­re pro­ti­po­vo­dňo­vej ochra­ny, zme­na využi­tia pôdy v povo­dí a obno­ve­nie retenč­nej a eko­lo­gic­kej fun­kcie údol­nej nivy člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 3032 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES lokál­ne ochra­na sídel­ných útva­rov, pre­ve­de­nie 45% ornej pôdy na povo­die – 25% lesy, 75% lúky, ohrá­dzo­va­nie, nádrž Tep­li­ce – 165 mili­ó­nov m3, pol­der­Tep­li­ce, pol­der Mohel­ni­ce, nádrž Hanu­šo­vi­ce, prie­plav Dunaj – Odra – Labe, lokál­na ochra­na miest člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 32 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES 10 sce­ná­rov pro­ti­po­vo­dňo­vej ochra­ny, eko­no­mic­ké zhod­no­te­nie pro­ti­po­vo­dňo­vých opat­re­ní, Tho­mas Ihly, Gran­tley Smith, výpo­čet povodň­no­vých škôd – flo­od dama­ge ana­ly­sis tool, ana­lý­za eko­no­mic­ké výhod­nos­ti navrho­va­ných opat­re­ní – bene­fit cost ana­ly­sis člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 3334 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES SIAS – agent – zabez­pe­če­ný prí­stup k geoin­for­má­ciam na Inter­ne­te, Smal­lworld Inter­net App­li­ca­ti­on, Ser­ver fir­my GE Smal­lworld, štan­dar­dy XML, WMS – Web Map­ping Stan­dard kon­zor­cia Open GIS, GML (Geog­rap­hic Mar­kup Lan­gu­age), PNG, JPEG, GML, HTML, TXT, SQL člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 3435 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES pod­po­ra Orac­le Spa­tial, DXF/​DWG, SHP, eCog­ni­ti­on – objek­to­vo orien­to­va­ná obra­zo­vá ana­lý­za pre kla­si­fi­ká­ciu dát DPZ, kla­si­fi­kač­né postu­py vyhod­no­co­va­nia dát, algo­rit­my a tech­no­ló­gie inte­li­gent­né­ho roz­poz­ná­va­nia obra­zov člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 35 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES seg­men­tá­cia obra­zo­vých dát na zákla­de spek­trál­nych a tex­tu­rál­nych para­met­rov, vlast­ná kla­si­fi­ká­cia, seg­men­tá­cia pod­ľa veľ­kos­ti objek­tov, Defi­niens, PCI Geoma­tics, geo­gra­fic­ký for­mát GeoGa­te­way, prav­de­po­dob­nost­ná kla­si­fi­ká­cia Maxi­mum Like­li­ho­od a Iso­da­ta člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 3537 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Land­sat The­ma­tic Map­per, SPOT XS, Moni­to­ro­va­nie zmien využi­tia kra­ji­ny pros­tried­ka­mi DPZ, ana­lý­za v časo­vom hori­zon­te, digi­tál­ne spra­co­va­nie obra­zu a kla­si­fi­ká­cia, digi­tál­ne spra­co­va­nie obra­zu, pred­spra­co­va­nie obra­zu, zvý­raz­ne­nie obra­zu člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 3738 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES kla­si­fi­ká­cia obra­zu, neria­de­ná kla­si­fi­ká­cia, vytvá­ra­nie zhlu­kov pixe­lov zo sním­ku v n‑rozmernom pries­to­re, kla­si­fi­ká­cia algo­rit­mom ISOCLUSS, zhlu­ko­va­nie tried modu­lom AGGREG, zis­ťo­va­nie a ana­lý­za zmien, vyhod­no­te­nie dát člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 3842 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES inter­pre­tá­cia výsled­kov porov­ná­va­nia, metó­dy iden­ti­fi­ká­cie zmien v kra­ji­ne pros­tried­ky­mi GIS, dife­ren­cie, obra­zo­vé podie­ly, porov­na­nie výsled­kov kla­si­fi­ká­cie, ana­lý­za vek­to­ru spek­trál­nej zme­ny, GLOBE5 rokov prog­ra­mu, DPZ na stred­nej ško­le, Mul­tiS­pec člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 4244 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES vege­tač­né inde­xy, index NDVI – nor­ma­li­zo­va­ný dife­ren­co­va­ný vege­tač­ný index, Zabez­pe­čo­va­cie sys­té­my áut, vyhľa­dá­va­nie odcu­dze­ných áut, LO-​JACK, rádi­ona­vi­gá­cia, Sher­log, Test GPS pri­jí­ma­čov, Magel­lan GPS Bla­zer 12, magel­lan GPS 315, Magel­lan GPS Color TRAK člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 4455 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Magel­lan GPS MAP 410, Veľ­trh GIS v Seči, prof. Ing. Bohu­slav Vever­ka DrSc., Gei­in­for­ma­ti­ka na doprav­nej kon­fe­ren­cii, Dru­ži­co­vá navi­gá­cia v letec­tve, Pre­cíz­ne poľ­no­hos­po­dár­stvo Olo­mouc, Tech­no­lo­gic­ké nor­my geo­gra­fic­kých infor­má­cií, Forum Geoma­ti­cum v Brne člá­nok 1211 – 1082

2000 GeoIn­fo, Vol. 7, No. 6, p. 5562 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Uží­va­te­lia T‑Mapy v Hrad­ci Krá­lo­vé, GeoFo­rum cs 2000, Uží­va­te­lia Hyd­ro­soft a Siri­on, Arc­GIS – uží­va­te­lia ESRIERDASČR, Využi­tie DPZ, súčas­ný stav a per­spek­tí­vy, Tat­ry – kon­fe­ren­cia GIS 2000 člá­nok 1211 – 1082

Pokor­ný Jaro­slav SQL v troch lek­ciach 2000 GeoIn­fo, Vol. 7, No. 4, Supp­le­ment, p. 113 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES pohľa­dy, CREATE VIEW, aktu­ali­zá­cia pohľa­dov, sys­té­mo­vý kata­lóg, ochra­na dát voči neo­práv­ne­né­mu prí­stu­pu, prog­ra­mo­va­nie s SQL, hos­ti­teľ­ská ver­zia SQL, jazyk modu­lov, dyna­mic­ké SQL, trans­kak­cie, štruk­tú­ra SQL92, štan­dar­dy, objek­to­ve relač­né data­bá­zy člá­nok 1211 – 1082

Pokor­ný Jaro­slav SQL v troch lek­ciach 2000 GeoIn­fo, Vol. 7, No. 4, Supp­le­ment, p. 1321 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES objek­to­vé data­bá­zy, ODMG, roz­ší­ri­teľ­nosť, uží­va­teľ­sky defi­no­va­né typy a fun­kcie, ODBC, objek­to­vý relač­ný model, dáto­vé typy SQL 1999, abs­trakt­né dáto­vé typy, fun­kcie ver­sus metó­dy, typ riad­ku, typ odka­zu, typ kolek­cie, SQL v komerč­ných sys­té­moch člá­nok 1211 – 1082

Pokor­ný Jaro­slav SQL v troch lek­ciach 2000 GeoIn­fo, Vol. 7, No. 4, Supp­le­ment, p. 2128 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES štan­dar­di­zá­cia OOOR tech­no­ló­gií člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 1, p. 1016 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Geo­gra­fic­ké dáta v ČR, meta­dá­ta, veľ­mi níz­ke poplat­ky v štát­nych orga­niá­ciach, verej­ne dostup­né digi­tál­na dáta, ZABAGED, vek­to­ro­vá topo­gra­fic­ká data­bá­za z atri­bút­mi, Dáta o kra­ji­ne vče­ra a dnes, 160 rokov tvá­re čes­kej kul­tur­nej kra­ji­ny člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 1, p. 1617 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES 162 rokov čes­kej kul­túr­nej kra­ji­ny, koefi­cient mie­ry antro­po­gén­ne­ho ovplyv­ne­nia kra­ji­ny člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 1, p. 1730 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES GIS v medi­cí­ne – hod­no­te­nie vply­vu von­kaj­šie­ho zne­čis­te­nia ovzdu­šia na výsky­te aler­gií, regres­ná ana­lý­za, Kli­ma­tic­ké zme­ny a ochra­na prí­ro­dy, zvý­še­nie kon­cen­trá­cie CO2, sce­ná­re, Dáta o kra­ji­ne člá­nok 1211 – 1082

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 36 Com­pu­ter Pre­ss Pra­ha 1 GIS CES infor­má­cie, pries­tor, pries­to­ro­vý infor­mač­ný sys­tém, infor­mač­ný sys­tém, infor­ma­ti­ka, infor­má­cia, sprá­va, spra­co­va­nie, sig­nál, alfa infor­má­cia, beta infor­má­cia, kód, slo­vo, údaj, dáta, syn­tax, inter­pre­tá­cia, hod­no­ta dát, sys­te­ma­tic­ké spra­co­va­nie kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 68 Com­pu­ter Pre­ss Pra­ha 1 GIS CES algo­rit­mus, auto­ma­tic­ké spra­co­va­nie, teore­tic­ká infor­ma­ti­ka, prak­tic­ká infor­ma­ti­ka, tech­nic­ká infor­ma­ti­ka, apli­ko­va­ná infor­ma­ti­ka, geoin­for­ma­ti­ka, geoma­ti­ka, geoob­jekt, pred­met geoin­for­ma­ti­ky, pred­met geoma­ti­ky, pries­to­ro­vé poj­my, pries­tor kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 811 Com­pu­ter Pre­ss Pra­ha 1 GIS CES geo­gra­fic­ký pries­tor, geomet­ria, topo­ló­gia, súrad­ni­co­vý sys­tém, polo­ho­va­teľ­nosť, jed­no­znač­nosť polo­hy, kvan­ti­fi­ká­cia polo­hy, met­ri­ka, mera­nie vzdia­le­nos­tí, kar­te­zián­sky súrad­ni­co­vý sys­tém, Euk­li­dov­ská met­ri­ka, mno­ži­no­vý model reli­é­fu kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 1113 Com­pu­ter Pre­ss Pra­ha 1 GIS CES Boole­ov­ská teória mno­žín, pre­chod­né vyjad­re­nie, model neos­trých mno­žín, fuz­zy sets, geoob­jekt, pries­to­ro­vý objekt, geo­gra­fic­ká infor­má­cia, digi­tál­na infor­má­cia, geodá­ta, pries­to­ro­vé úda­je, geo­gra­fic­ké úda­je, geo­gra­fic­ký infor­mač­ný sys­tém, GIS kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 1428 Com­pu­ter Pre­ss Pra­ha 1 GIS CES hie­rar­chia GIS, vedec­ký odbor GIS, tech­no­ló­gia, apli­ká­cie, infor­mač­ný sys­tém, aspek­ty GIS, kar­to­gra­fic­ký pros­trie­dok, data­bá­zo­vý pros­trie­dok, ana­ly­tic­ký pros­trie­dok, defi­ní­cia, his­tó­ria GIS, MIADS, SYMAP, SAGE, ODYSSEY, Arc/​INFO, CAD, CAM, AM/​FM sys­tém kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 2854 Com­pu­ter Pre­ss Pra­ha 1 GIS CES DBMS, DPZ, šta­tis­tic­ké prog­ra­my, štruk­tú­ra GIS, fun­kcia GIS, har­dwa­re GIS, soft­wa­re GIS, sociál­ne záze­mie, lite­ra­tú­ra, Auto-​Carto, zákla­dy geoin­for­ma­ti­ky, mode­lo­va­nie geo­gra­fic­kých objek­tov, model rea­li­ty, pries­to­ro­vá dimen­zia, dyna­mi­ka geoob­jek­tov kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 5457 Com­pu­ter Pre­ss Pra­ha 1 GIS CES topo­lo­gic­ká dyna­mi­ka geoob­jek­tov, tema­tic­ká dimen­zia, štvr­tá dimen­zia, pries­to­ro­vá roz­ší­ri­teľ­nosť, atri­bú­ty objek­tu, pries­to­ro­vá varia­bi­li­ta, pries­to­ro­vý pro­ces, popis pries­to­ro­vých zmien, geo­gra­fic­ká polo­ha, nulo­vá hla­di­no­vá plo­cha, geoid kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 5771 Com­pu­ter Pre­ss Pra­ha 1 GIS CES refe­renč­ný elip­so­id, datum, zem – guľa, Ferr­ský polud­ník, WGS – World Geode­tic Sys­tem, refe­renč­ná plo­cha, kar­to­gra­fic­ké zobra­ze­nie, S‑JTSK, trian­gu­lač­ný list, mapo­vý list, klad mapo­vých lis­tov, pries­to­ro­vé vzťa­hy geo­gra­fic­kých dát, atri­bú­ty, čas kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 7293 Com­pu­ter Pre­ss Pra­ha 1 GIS CES chro­nom, mode­lo­va­nie, abs­trak­cia rea­li­ty, relač­ný vzťah, polia, pole, mode­lo­va­nie pries­to­ru na poliach, pries­to­ro­vá auto­ko­re­lá­cia, objekt, mode­lo­va­nie pries­to­ru na objek­toch, repre­zen­tá­cia pries­to­ro­vých objek­tov, mapa, vek­to­ro­vá pre­zen­tá­cia kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 93108 Com­pu­ter Pre­ss Pra­ha 1 GIS CES veľ­ký objem dát, bod, uzol, línia, hra­na, oblúk, stu­peň, reťaz, poly­gón, plo­cha, vrstvo­vi­tosť, objek­to­vý prí­stup, vek­to­ro­vé dáto­vé mode­ly, vek­to­ro­vé štruk­tú­ry, špa­ge­to­vý model, topo­lo­gic­ký model, hie­rar­chic­ký model, GBF/​DIME, POLYVERT, ARC/​INFO kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 110113 Com­pu­ter Pre­ss Pra­ha 1 GIS CES ras­tro­vá repre­zen­tá­cia pries­to­ro­vých objek­tov, štvor­co­vá mriež­ka, voxel, lat­ti­ce, hexa­go­nál­na mriež­ka, tro­j­u­hol­ní­ko­vá tes­se­lá­cia, nepra­vi­del­ná tro­j­u­hol­ní­ko­vá sieť – TIN, Delau­nay trian­gu­lá­cia, Voro­noi dia­gram, Thies­se­no­ve poly­gó­ny, Dirich­tet tes­se­lá­cia kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 113114 Com­pu­ter Pre­ss Pra­ha 1 GIS CES kri­té­rium prázd­nej kruž­ni­ce, Delau­nay kri­té­rium, kri­té­rium maxi­mál­ne­ho uhla, štvor­strom, quadt­ree, geomet­ria v ras­tro­vej repre­zen­tá­cii, topo­ló­gia v ras­tro­vej repre­zen­tá­cii, tema­ti­ka v ras­tro­vej repre­zen­tá­cii, ras­ter, defi­ní­cia ras­tra, dis­krét­ny pries­tor kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 114118 Com­pu­ter Pre­ss Pra­ha 1 GIS CES inde­xo­va­nie ras­tra, roz­li­šo­va­cia schop­nosť, met­ri­ka, tema­ti­ka, vrstvy, štruk­tu­ro­va­nie ras­tro­vých dát, pria­me dáto­va­nie bun­ky, pria­me dato­va­nie infor­mač­nej vrstvy, pria­me dato­va­nie objek­tu, kom­pre­sia ras­tro­vých dát kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 119122 Com­pu­ter Pre­ss Pra­ha 1 GIS CES metó­da dĺž­ko­vých kódov – run len­ght enco­ding, Mor­to­no­ve pora­die, binár­ne adre­so­va­nie, Pea­no­va kriv­ka, Pea­no­ve pora­die, reťaz­co­vé kódy, blo­ko­vé kódy, kódo­va­nie úse­kov riad­kov, kódo­va­nie štvor­stro­mu, dáto­va­nie infor­mač­nej vrstvy kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 124129 Com­pu­ter Pre­ss Pra­ha 1 GIS CES digi­tál­ny model reli­é­fu – DTM, DTM, DEM, zdroj vstup­ných úda­jov, radar­gram­met­ria, ras­tro­vý model teré­nu, lat­ti­ces, inter­po­lo­va­nie, IDW – Inver­se Dis­tan­ce Weigh­ting, nepra­vi­del­né roz­miest­ne­nie bodo­vé­ho poľa, zdi­gi­ta­li­zo­va­né vrs­tev­ni­ce kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 129132 Com­pu­ter Pre­ss Pra­ha 1 GIS CES zras­te­ri­zo­va­né vrs­tev­ni­ce, poly­ed­ric­ký model, plá­to­vý model, nepra­vi­del­né tro­j­u­hol­ní­ko­vé sie­te, hra­ni­ce dele­nia, okríd­le­ná hra­na, TIN štruk­tú­ry, body na sin­gu­la­ri­tách, štan­dard­ná trian­gu­lá­cia, neob­me­dze­ná trian­gu­lá­cia, obme­dze­ná trialn­gu­lá­cia, porov­na­nie kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 132138 Com­pu­ter Pre­ss Pra­ha 1 GIS CES výber repre­zen­tá­cií, uni­form­né pries­to­ro­vé čle­ne­nie, vek­to­ro­vá repre­zen­tá­cia, ras­tro­vá repre­zen­tá­cia, data­bá­zo­vé sys­té­my, spra­co­va­nie úda­jov, zdie­ľa­nie, sys­tém ria­de­nia bázy dát DBMS, polož­ka, záznam, súbor, data­bá­za, data­bá­zo­vý sys­tém, enti­ta kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 138142 Com­pu­ter Pre­ss Pra­ha 1 GIS CES objekt, dáto­vé pole, štruk­tú­ra dát, kata­lóg dát, orga­ni­zá­cia dát, sché­ma dát, user view, kon­cep­tu­ál­na orga­ni­zá­cia data­bá­zy, požia­dav­ky na data­bá­zo­vý sys­tém, data­bá­zo­vý prog­ram SQL, objek­to­vá orien­tá­cia, data­bá­zo­vé mode­ly, hie­rar­chic­ký model kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 143150 Com­pu­ter Pre­ss Pra­ha 1 GIS CES sie­ťo­vý model, navi­gač­ná štruk­tú­ra, relač­ný model, relá­cia, tabuľ­ka, kľúč, nor­ma­li­zá­cia, nor­má­lo­vé for­my, objek­to­vý model, objekt, prog­ra­my pre dáto­vé štruk­tú­ry, výber štruk­tú­ry pre GIS, pries­to­ro­vé dáta, nepries­to­ro­vé dáta, alter­na­tív­ne GIS archi­tek­tú­ry kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 151155 Com­pu­ter Pre­ss Pra­ha 1 GIS CES ras­tro­vý prí­stup, sys­té­my MAP, tool­kit prí­stup, flat súbo­ry, tabuľ­ky úda­jov, spo­loč­ný kľúč, relač­ný model, duál­ne sys­té­my, RDBMS, prá­ca s pries­to­ro­vý­mi údaj­mi, integ­rá­cia geo­gra­fic­kých a atri­bú­to­vých úda­jov, frag­men­tá­cia úda­jov, roz­ší­re­né relač­né sys­té­my kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 156169 Com­pu­ter Pre­ss Pra­ha 1 GIS CES objek­to­vý model, sie­te, dis­tri­bu­ova­né data­bá­zy, funkč­nosť GIS, typic­ké čin­nos­ti v rám­ci pro­jek­tov GIS, cie­le GIS, budo­va­nie data­bá­zy, mani­pu­lá­cia s údaj­mi, integ­rá­cia úda­jov, ana­lý­zy úda­jov, syn­té­zy úda­jov, výstu­py GIS, vizu­ali­zá­cia dát, vstup úda­jov kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 169174 Com­pu­ter Pre­ss Pra­ha 1 GIS CES napl­ňo­va­nie data­bá­zy, výber vhod­ných dát, výber vhod­ných pod­kla­dov, meta­dá­ta, pria­me mera­nie, nepria­me mera­nie, zazna­me­ná­va­nie dát, ana­lý­za zázna­mu, digi­tál­ny záznam, digi­ta­li­zá­cia, exis­tu­jú­ce mapy ako pod­klad, geode­tic­ké mera­nia, úda­je GPS kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 175179 Com­pu­ter Pre­ss Pra­ha 1 GIS CES foto­gram­met­ric­ké úda­je, foto­in­ter­pre­tá­cia, digi­tál­ne spra­co­va­nie obra­zu, ste­re­o­sko­pic­ký vnem, ste­re­o­sko­pic­ké vyhod­no­te­nie, kore­lá­cie, rádi­omet­ric­ké úpra­vy, rekti­fi­ká­cia, vstup úda­jov z DPZ, ras­te­ri­zá­cia sním­kov, foto­gram­met­ria, DPZ kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 179188 Com­pu­ter Pre­ss Pra­ha 1 GIS CES mul­tis­pek­trál­nosť sním­kov, atmo­sfé­ric­ké okná, radar, mik­ro­vl­ny, spek­tro­met­ric­ká kriv­ka, roz­de­ľo­vač paprskov, LANDSAT TM, SPOT, L.MSS, porov­na­nie LANDSATSPOT, vstup z dru­hot­ných kar­to­gra­fic­kých zdro­jov, manu­ál­ny vstup úda­jov cez klá­ves­ni­cu kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 188197 Com­pu­ter Pre­ss Pra­ha 1 GIS CES digi­ta­li­zá­cia, digi­ti­zér, tab­let, bodo­vá metó­da, prú­do­vá metó­da, pra­cov­ná oblasť, regis­trá­cia mapy, rie­še­nie chýb digi­ta­li­zá­cie, on scre­en metó­dy, ske­no­va­nie, CCD, vek­to­ri­zá­cia, kon­ver­zia úda­jov, štan­dar­di­zá­cia úda­jo­av, for­mát úda­jov, nor­ma­li­zá­cia kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 198204 Com­pu­ter Pre­ss Pra­ha 1 GIS CES štan­dar­di­zá­cia, CORBA, OMG, 3DOLE, SQL, SQL3/​MM, OPEN GIS, budo­va­nie topo­ló­gie, vstup atri­bú­to­vých úda­jov, iden­ti­fi­ká­to­ry, defi­ní­cia počiat­kov, defi­ní­cia prie­seč­ní­kov, modul CLEAN, modul BUILD, speg­het­ti digi­ti­zing, vyčis­te­nie digi­ta­li­zo­va­né­ho pod­kla­du kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 205210 Com­pu­ter Pre­ss Pra­ha 1 GIS CES vstup atri­bú­to­vých úda­jov, reštruk­tu­ra­li­zá­cia dát, zme­na topo­lo­gic­kých vzťa­hov, orga­ni­zá­cia pries­to­ro­vých úda­jov, pries­to­ro­vé čle­ne­nie vek­to­ro­vej repre­zen­tá­cie, sto­tož­ne­nie okra­jov, zme­na veľ­kos­ti bun­ky ras­tru, zme­na roz­li­šo­va­cej úrov­ne, kla­si­fi­ká­cia kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 210211 Com­pu­ter Pre­ss Pra­ha 1 GIS CES mani­pu­lá­cia atri­bú­to­vých hod­nôt, zlu­čo­va­nie, poly­gon dis­sol­ve, rekla­si­fi­kač­né postu­py, zme­na mapo­vej pro­jek­cie, trans­for­má­cia súrad­ni­co­vé­ho sys­té­mu, pre­vzor­ko­va­nie, ana­ly­tic­ká trans­for­má­cia, pro­jek­cia, kar­to­gra­fic­ké zobra­ze­nia kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 211215 Com­pu­ter Pre­ss Pra­ha 1 GIS CES jed­not­ný súrad­ni­co­vý sys­tém, numa­ric­ké trans­for­má­cie, line­ár­na kon­form­ná trans­for­má­cia, Hel­mer­to­va trans­for­má­cia, refe­renč­né body, poly­no­mic­ká trans­for­má­cia, afin­ná trans­for­má­cia, pre­vzor­ko­va­nie, najb­liž­ší sused, bili­ne­ár­na inter­po­lá­cia kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 215221 Com­pu­ter Pre­ss Pra­ha 1 GIS CES kubic­ká kon­vo­lú­cia, efekt lome­ných čiar, stra­ta extré­mov, vyhla­dzo­va­nie hrán, gene­ra­li­zá­cia v GIS‑e, kva­li­ta úda­jov, pro­ce­dú­ry gene­ra­li­zá­cie, zacho­va­nie štruk­tú­ry infor­má­cie, gene­ra­li­zá­cia línií, Douglas-​Peucknerova metó­da, pre­vzor­ko­va­nie kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 221223 Com­pu­ter Pre­ss Pra­ha 1 GIS CES štruk­tu­rál­na gene­ra­li­zá­cia ras­tra, numericko-​atribútová gene­ra­li­zá­cia, numericko-​kategorizačná gene­ra­li­zá­cia, kate­go­ri­zá­cia, bez­me­rít­ko­vé data­bá­zy, merít­ko­vé data­bá­zy, kola­bo­va­nie, posun, agre­go­va­nie, reduk­cia, kon­ver­zia pre­zen­tá­cií kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 224226 Com­pu­ter Pre­ss Pra­ha 1 GIS CES kon­ver­zia vektor-​raster, ske­le­to­ni­zá­cia, kos­tro­va­nie, metó­da cen­tro­idu, metó­da pre­vlá­da­jú­ce­ho typu, metó­da naj­dô­le­ži­tej­šie­ho typu, metó­da podie­lu obsa­de­né­ho pixe­lu, kon­ver­zia raster-​vektor, gene­ra­li­zo­va­nie prie­be­hu, vyhla­dzo­va­nie prie­be­hu kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 228232 Com­pu­ter Pre­ss Pra­ha 1 GIS CES dol­nop­rie­pust­né fil­tro­va­nie, vyhla­dzo­va­nie, zjed­no­du­še­nie loka­li­zá­cie, mani­pu­lá­cia s digi­tál­nym mode­lom teré­nu, fil­trá­cia, roz­de­ľo­va­nie, spo­jo­va­nie, kon­ver­zia, iden­ti­fi­ká­cia kos­try reli­é­fu, fil­tro­vá metó­da, hie­rar­chic­ká metó­da, heuris­tic­ká metó­da kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 233248 Com­pu­ter Pre­ss Pra­ha 1 GIS CES ana­lý­za a syn­té­za úda­jov GIS, mani­pu­lá­cia s údaj­mi, pries­to­ro­vé ope­rá­cie, otáz­ky na data­bá­zu, pre­hľa­dá­va­nie data­bá­zy, over­lay, iden­ti­fi­ká­cia nových poly­gó­nov – clip­ping, pre­sie­va­cie mapo­va­nie, krí­žo­vá kla­si­fi­ká­cia, mapo­vá algeb­ra kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 248253 Com­pu­ter Pre­ss Pra­ha 1 GIS CES spra­co­va­nie ras­tro­vej repre­zen­tá­cie, ope­rá­to­ry, fun­kcie, objek­ty, čin­nos­ti, para­met­re, mak­rá, lokál­ne fun­kcie, fokál­ne fun­kcie, zonál­ne fun­kcie, glo­bál­ne fun­kcie, vzdia­le­nost­né ana­lý­zy, vzdia­le­nost­ný povrch, nákla­do­vá vzdia­le­nosť kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 253265 Com­pu­ter Pre­ss Pra­ha 1 GIS CES ani­zot­ro­pi­ci­ta pries­to­ru, frikč­ný pries­tor, odpor, fak­tor terén­ne­ho reli­é­fu, ver­ti­kál­ny fak­tor, hori­zon­tál­ny fak­tor, vzdia­le­nost­né zóny = buf­fe­ring, fun­kcia šíre­nia, fun­kcia prú­de­nia, ana­lý­za mode­lu teré­nu, para­met­re reli­é­fu, sklon, odvo­de­nie vrs­tev­níc kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 266273 Com­pu­ter Pre­ss Pra­ha 1 GIS CES ana­lý­za vidi­teľ­nos­ti, ana­lý­za sie­tí, uzol, mode­lo­va­nie zaťa­že­nia sie­te, výber opti­mál­nej tra­sy, Disks­trov algo­rit­mus, opti­mál­na okruž­ná tra­sa, alo­ká­cia zdro­jov, defi­no­va­nie izoch­ron, ana­lý­za sním­kov DPZ, korek­cia sním­kov, peri­odic­ké páso­va­nie kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 273278 Com­pu­ter Pre­ss Pra­ha 1 GIS CES náhod­ný šum, peri­odic­ké výpad­ky riad­kov, polo­ha Zeme voči sln­ku, pre­šká­lo­va­nie, line­ár­na streč, satu­rač­ná streč, his­to­gra­mo­vá ekva­li­zá­cia, Gaus­sov­ský streč, fil­trá­cia, dis­krét­na kon­vo­lú­cia, trans­for­má­cia obra­zov, kom­po­zit­ný obraz kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 279281 Com­pu­ter Pre­ss Pra­ha 1 GIS CES ana­lý­za hlav­ných kom­po­nen­tov, vege­tač­né inde­xy, pomer­né obra­zy, kla­si­fi­ká­cia obra­zov, neria­de­ná kla­si­fi­ká­cia, zhlu­ko­vá ana­lý­za, sig­na­tú­ry, rov­no­bež­ko­vá kla­si­fi­ká­cia, paral­le­lo­pi­ped kla­si­fi­ká­cia, metó­da mini­mál­nej vzdia­le­nos­ti od prie­me­ru kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 281287 Com­pu­ter Pre­ss Pra­ha 1 GIS CES metó­da maxi­mál­nej prav­de­po­dob­nos­ti, ana­ly­tic­ké ope­rá­cie – postu­py, data­bá­zo­vé otáz­ky, odvo­de­né mapo­va­nie, deri­va­te map­ping, mode­lo­va­nie pro­ce­sov, vizu­ali­zá­cia dát, vytvá­ra­nie výstu­pov, obraz, vizu­ál­na repre­zen­tá­cia rea­li­ty kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 288293 Com­pu­ter Pre­ss Pra­ha 1 GIS CES digi­tál­ne spra­co­va­nie obra­zu – DIP – digi­tal ima­ge pro­ces­sing, mate­ma­tic­ký popis optic­ké­ho obra­zu, digi­ta­li­zá­cia obra­zu, ras­tro­va­nie, vizu­ali­zá­cia, gra­fic­ká komu­ni­ká­cia, extrak­cia, ear­ly visi­on, low visi­on, abs­trak­cia obra­zov, ana­lý­za scén kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 294296 Com­pu­ter Pre­ss Pra­ha 1 GIS CES roz­poz­ná­va­nie objek­tov, gra­fic­ká repre­zen­tá­cia, gra­fic­ké spra­co­va­nie úda­jov v počí­ta­čo­vom pro­stre­dí, vizu­ál­na per­cep­cia rele­vant­ných vzťa­hov, veľ­kosť, jas, svet­losť, vzor, far­ba, smer, for­ma, sys­tém sve­to­vých súrad­níc, sys­tém nor­ma­li­zo­va­ných súrad­níc kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 296301 Com­pu­ter Pre­ss Pra­ha 1 GIS CES štvo­r­ec 0.10.1, sys­tém súrad­níc zaria­de­ní, hĺb­ka far­by, RGB model, CMY, CMYK model, subt­rak­tív­ne mie­ša­nie farieb, fareb­né fil­tre, model HSV, IHS model, post script for­mát, page desc­rip­ti­on lan­gu­age – PDL, vše­obec­ný for­mát gra­fic­kej repre­zen­tá­cie kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 302308 Com­pu­ter Pre­ss Pra­ha 1 GIS CES mož­nos­ti soft­vé­ro­vé­ho rie­še­nia prob­le­ma­ti­ky GIS, využi­tie adi­tív­ne­ho soft­vé­ru, kon­zek­vent­né rie­še­nie prob­le­ma­ti­ky GIS, CAD, digi­tál­na kar­to­gra­fia, výstup­ný pro­dukt z GIS, inte­rak­tív­ne zobra­ze­nie, tlač máp, ploš­né jed­not­ky, cho­rop­le­to­vé mapy kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 308314 Com­pu­ter Pre­ss Pra­ha 1 GIS CES kar­to­gra­fic­ké mapy, pro­xi­mál­ne mapy, izog­ra­dač­né mapy, dasy­met­ric­ké mapy, polo­ha, hod­no­ta atri­bú­tu, vrs­tev­ni­co­vé – izo­lí­ni­ové mapy, sym­bo­lic­ké – figu­rál­ne mapy, líni­ové – čia­ro­vé mapy, prie­me­to­vé zobra­ze­nia, rôz­ne dru­hy zobra­ze­nia, ani­má­cia kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 314333 Com­pu­ter Pre­ss Pra­ha 1 GIS CES význam gra­fov, pre­vádz­ko­vé aspek­ty GIS, hod­no­te­nie kva­li­ty geo­gra­fic­kých úda­jov, ver­nosť, pres­nosť, roz­li­šo­va­cia schop­nosť, polo­ho­vá ver­nosť, logic­ká sklad­ba, meta­dá­to­vé infor­má­cie, chy­by úda­jov v GIS, Imple­men­tá­cia a využí­va­nie GIS, ana­lý­za potrieb kni­ha 80 – 7226-​091‑X

Tuček Ján Geo­gra­fic­ké infor­mač­né sys­té­my. Prin­cí­py a prax 1998 p. 336394 Com­pu­ter Pre­ss Pra­ha 1 GIS CES návrh GIS, soft­vér GIS, ArcIn­fo, modu­ly, AML, Arc­To­ols, Arc­View, Ave­nue, MapOb­jects, MGE, relač­ný sys­tém RIS, Geome­dia, Idri­si, TopoL, MapIn­fo, infra­štruk­tú­ra pre geoin­for­má­cie, geoda­ta – cle­a­rin­ghou­se, Apli­ká­cie GIS, Per­spek­tí­vy roz­vo­ja GIS kni­ha 80 – 7226-​091‑X

2001 GeoIn­fo, Vol. 8, No. 1, p. 32 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES GIS a slneč­ná ener­gia, určo­va­nie pries­to­ro­vej varia­bi­li­ty prí­ko­nu slneč­né­ho žia­re­nia v hor­ských oblas­tiach, prob­lém odme­ra­nia množ­stva dopa­da­jú­ce­ho slneč­né­ho žia­re­nia, prog­ram SOLEI-​32 – výpo­čet ploš­nej varia­bi­li­ty dopa­da­jú­cej slneč­nej ener­gie člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 1, p. 3334 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES albe­do – koefi­cient odra­zu dopa­da­jú­ce­ho žia­re­nia, index oblač­nos­ti, prog­ram PESOLEI, Kra­ji­na – obraz sta­vu spo­loč­nos­ti, využi­tie GIS k regis­trá­cii a ana­lý­zam mien v kra­ji­ne, ana­lý­za dri­ving for­ces, eko­no­mi­ka spô­so­bu­je zme­ny v kra­ji­ne člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 1, p. 3440 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES zme­ny vo využi­tí poľ­no­hos­po­dár­skej a les­nej pôdy v ČR20 sto­ro­čí, vplyv miest­ne­ho hos­po­dár­stva, vplyv prí­ro­dy, vplyv polo­hy, posu­dzo­va­nie vply­vu ľud­ských akti­vít na ŽP, Cest­ný obchvat mes­ta Chru­dim, digi­tál­ne dáta, Geo­gra­fic­ké infor­mač­né sys­té­my a SQL člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 1, p. 4049 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES pries­to­ro­vé dáta, relač­né data­bá­zy, geomet­ric­ký model, Medzi­ná­rod­ná spo­lu­prá­ca a GIS, MII­GAiK, del­ta Vol­gy v Kas­pic­kom mori, veľ­ké zme­ny v zato­pe­ných úze­miach – veľ­mi níz­ka sklo­nis­tosť – 0.05 °C na veľ­kej plo­che, GeoMe­dia 4.0 – zme­ny člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 1, p. 5056 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES dyna­mic­ké mapy na Inter­ne­te, TMa­py, Auto­CAD Land Deve­le­op­ment Desk­top 2i – recen­zia, COGO body, tvor­ba DMT člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 2, p. 815 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES GIS v ban­kov­níc­tve, ban­ko­ma­to­vé pre­vádz­ky v cen­tre Bra­ti­sla­vy, Ana­lý­za obsluž­ných zón ban­ko­ma­tov, vyčle­ne­nie jed­no­du­chých obsluž­ných zón vzdia­le­nost­ný­mi ana­lý­za­mi a alo­kač­nou ana­lý­zou v cest­nej sie­ti, Rea­li­zá­cia GIS v Dolech Nástup Tuši­mi­ce – v bani člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 2, p. 1624 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Má zmy­sel budo­vať GIS vo verej­nej sprá­ve ?, Využi­tie les­níc­kych typo­lo­gic­kých máp pre GIS, les­níc­ka typo­ló­gia, Využi­tie GIS v mode­lo­va­ní ploš­né­ho zne­čis­te­nia, model SWAT, Eko­lo­gic­ká sta­bi­li­zá­cia kra­ji­ny v zápla­vo­vom úze­mí pomo­cou GIS, hyd­ro­lo­gic­ké mode­ly člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 2, p. 2439 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES kon­flikt medzi ÚSES a kon­cep­ci­ou pro­ti­po­vo­dňo­vej ochra­ny, pri­ori­ty zara­de­nia bio­cen­tra do ÚSES, Atlas SSR, Atlas ŽP v Pra­he na Inter­ne­te, Objek­to­vá orien­tá­cia v tele­ko­mu­ni­kač­ných a dis­tri­buč­ných spo­loč­nos­tiach člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 2, p. 3952 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES infor­má­cie nesú pre­važ­ne pries­to­ro­vé cha­rak­te­ris­ti­ky, Autor­sko­práv­na ochra­na geo­gra­fic­kej infor­má­cie, Mož­né zdro­je infor­má­cií pre výskum a vývoj GIS a súvi­sia­cich oblas­tí, GIS doku­men­tu­je zme­ny kra­ji­ny na Sibí­ri, antro­po­gén­na tech­no­gén­na púšť člá­nok 1211 – 1082

2001 GeoIn­fo, Vol. 8, No. 2, p. 5380 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES Digi­tál­na foto­gram­met­ria, Zeme­me­rač­stvo a kata­ster II., GPS GARMIN člá­nok 1211 – 1082

Tuček Ján, Sit­ko Roman Sys­té­my pre pod­po­ru roz­ho­do­va­nia 2000 GeoIn­fo, Vol. 7, No. 6, Supp­le­ment, p. 18 Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES DSS, SDSS, apli­ko­va­ná infor­ma­ti­ka, auto­ma­ti­zo­va­ný infor­mač­ný sys­tém, ume­lá inte­li­gen­cia, roz­ho­do­va­nie pries­to­ro­vých prob­lé­mov ako pro­ces, fak­tro­ry, obme­dze­nia, výbe­ro­vá fun­kcia, heuris­ti­ka, cieľ roz­ho­do­va­nia, hod­no­te­nie, tech­ni­ky a soft­vé­ro­vé pro­duk­ty člá­nok 1211 – 1082

Tuček Ján, Sit­ko Roman Sys­té­my pre pod­po­ru roz­ho­do­va­nia 2000 GeoIn­fo, Vol. 7, No. 6, Supp­le­mentm, p. 9 – Com­pu­ter Pre­ss Pra­ha geo­gra­fia, GIS, DPZ CES DSS a ich gene­rá­to­ry, úlo­ha SDSSGIS, pros­tried­ky pre budo­va­nie báz bez zna­los­tí, neos­trá logi­ka, fuz­zy logi­ka, prí­kla­dy apli­ká­cií SDSS člá­nok 1211 – 1082

Use Facebook to Comment on this Post