Akvaristika, Biológia, Organizmy, Príroda, Ryby, Živočíchy

Evolúcia rodu Tropheus v jazere Tanganika

Hits: 7354

Autor prís­pev­ku: Róbert Toman


The aut­hor of the post: Róbert Toman


Autor des Beit­rags: Róbert Toman


Mwan­dis­hi wa maka­la: Róbert Toman


Afric­ké jaze­rá vypro­du­ko­va­li ohro­mu­jú­co roz­lič­nú fau­nu cich­li­do­vi­tých rýb. Jaze­ro Tan­ga­ni­ka, kto­ré­ho vek sa odha­du­je na 912 mili­ó­nov rokov, je naj­star­šie výcho­do­af­ric­ké jaze­ro a skrý­va mor­fo­lo­gic­ky, gene­tic­ky a beha­vi­orál­ne naj­roz­ma­ni­tej­šiu sku­pi­nu cich­li­do­vi­tých rýb. Mno­ho z vyše 200 popí­sa­ných dru­hov sa delí do geo­gra­fic­ky a gene­tic­ky odliš­ných popu­lá­cií, kto­ré sa líšia hlav­ne v ich sfar­be­ní. Naj­lep­ším prí­kla­dom toh­to javu je ende­mic­ký rod Trop­he­us, v rám­ci kto­ré­ho sa popí­sa­lo 6 dru­hov a viac ako 70 odliš­ne sfar­be­ných miest­nych varian­tov. Okrem Trop­he­us dubo­isi, je cel­ko­vá mor­fo­ló­gia v tom­to rode veľ­mi podob­ná. Trop­he­usy sa hoj­ne vysky­tu­jú v hor­nej pobrež­nej zóne vo všet­kých typoch skal­na­tých bio­to­pov, kde sa kŕmia ria­sa­mi a skrý­va­jú sa pred pre­dá­tor­mi. Pie­soč­na­tým a bah­ni­tým pobre­žiam, ako aj ústiam riek sa strikt­ne vyhý­ba­jú. Je doká­za­né, že Trop­he­usy sa nedo­ká­žu pohy­bo­vať na väč­šie vzdia­le­nos­ti, naj­mä cez voľ­nú vodu, ako dôsle­dok ich vyhra­ne­nej špe­ci­fic­kos­ti život­né­ho pro­stre­dia a ver­nos­ti k urči­té­mu mies­tu a teri­to­ria­li­ty.

Trop­he­us je jeden z naj­štu­do­va­nej­ších rodov jaze­ra. Eto­lo­gic­ké štú­die Trop­he­us moori uká­za­li kom­plex­né vzo­ry sprá­va­nia sa a vyso­ko vyvi­nu­tú sociál­nu orga­ni­zá­ciu. Neexis­tu­je u nich vyhra­ne­ný pohlav­ný dimor­fiz­mus. Obe pohla­via si chrá­nia teri­tó­rium a na roz­diel od mno­hých ďal­ších papu­ľov­cov, Trop­he­usy tvo­ria dočas­né páry počas roz­mno­žo­va­nia. Vývoj ikier a plô­di­ka pre­bie­ha výluč­ne v ústach samíc. Pred­chá­dza­jú­ce fylo­ge­o­gra­fic­ké štú­die Trop­he­usov demon­štro­va­li prek­va­pu­jú­co veľ­ké gene­tic­ké roz­die­ly medzi popu­lá­cia­mi. Trop­he­us dubo­isi bol opí­sa­ný ako naj­pô­vod­nej­šia vet­va a sedem odliš­ných sku­pín vznik­lo väč­ši­nou súčas­ne. Šesť z nich sa vysky­tu­je v indi­vi­du­ál­nych pobrež­ných oblas­tiach a jed­na sku­pi­na sa sekun­dár­ne roz­ší­ri­la a kolo­ni­zo­va­la skal­na­té mies­ta v pod­sta­te po celom jaze­re. Úda­je zís­ka­né ana­lý­zou mito­chon­driál­nej DNA (mtD­NA) uká­za­li, že napriek vše­obec­ne podob­nej mor­fo­ló­gii sa môže sfar­be­nie rýb ohrom­ne líšiť medzi gene­tic­ky blíz­ko prí­buz­ný­mi popu­lá­cia­mi a naopak, môže byť veľ­mi podob­né medzi gene­tic­ky veľ­mi vzdia­le­ný­mi popu­lá­cia­mi ses­ter­ských dru­hov. Tie­to pozo­ro­va­nia sa čias­toč­ne vysvet­ľu­jú ako dôsle­dok para­lel­nej evo­lú­cie podob­ných fareb­ných vzo­rov v rám­ci pri­ro­dze­né­ho výbe­ru ale­bo ako dôsle­dok pries­to­ro­vé­ho kon­tak­tu medzi dvo­ma gene­tic­ky odliš­ný­mi popu­lá­cia­mi po dru­hot­nom kon­tak­te a násled­nom trie­de­ní rodu, kedy sa krí­žen­ci tých­to popu­lá­cií a ich potom­ko­via spät­ne krí­ži­li pred­nost­ne len s člen­mi jed­nej pôvod­nej popu­lá­cie.


Afri­can lakes have pro­du­ced an asto­nis­hin­gly diver­se fau­na of cich­lids. Lake Tan­ga­ny­i­ka, esti­ma­ted to be 9 – 12 mil­li­on years old, is the oldest East Afri­can lake and har­bors the morp­ho­lo­gi­cal­ly, gene­ti­cal­ly, and beha­vi­oral­ly most diver­se group of cich­lids. Many of the over 200 desc­ri­bed spe­cies divi­de into geog­rap­hi­cal­ly and gene­ti­cal­ly dis­tinct popu­la­ti­ons that dif­fer main­ly in the­ir colo­ra­ti­on. The ende­mic genus Trop­he­us is a pri­me exam­ple of this phe­no­me­non, with six spe­cies and over 70 dif­fe­ren­tly colo­red local variants desc­ri­bed wit­hin the genus. Apart from Trop­he­us dubo­isi, the ove­rall morp­ho­lo­gy wit­hin this genus is very simi­lar. Trop­he­us are abun­dant in the upper lit­to­ral zone in all types of roc­ky bio­to­pes, whe­re they feed on algae and seek shel­ter from pre­da­tors. They strict­ly avo­id san­dy and mud­dy sho­res, as well as river mouths. It has been pro­ven that Trop­he­us can­not move over long dis­tan­ces, espe­cial­ly through open water, due to the­ir high­ly spe­ci­fic envi­ron­men­tal requ­ire­ments, site fide­li­ty, and territoriality.

Trop­he­us is one of the most stu­died gene­ra in the lake. Etho­lo­gi­cal stu­dies of Trop­he­us moori reve­a­led com­plex beha­vi­or pat­terns and high­ly deve­lo­ped social orga­ni­za­ti­on. The­re is no dis­tinct sexu­al dimorp­hism. Both sexes defend ter­ri­to­ries, and unli­ke many other mouthb­ro­oders, Trop­he­us form tem­po­ra­ry pairs during bre­e­ding. The deve­lop­ment of eggs and fry occurs exc­lu­si­ve­ly in the mouths of fema­les. Pre­vi­ous phy­lo­ge­og­rap­hic stu­dies on Trop­he­us demon­stra­ted sur­pri­sin­gly lar­ge gene­tic dif­fe­ren­ces bet­we­en popu­la­ti­ons. Trop­he­us dubo­isi was desc­ri­bed as the most ances­tral line­a­ge, and seven dis­tinct groups aro­se most­ly simul­ta­ne­ous­ly. Six of them occur in indi­vi­du­al lit­to­ral are­as, and one group secon­da­ri­ly colo­ni­zed roc­ky sites throug­hout the lake. Data obtai­ned from mito­chon­drial DNA (mtD­NA) ana­ly­sis sho­wed that, des­pi­te a gene­ral­ly simi­lar morp­ho­lo­gy, fish colo­ra­ti­on can vary gre­at­ly among gene­ti­cal­ly clo­se­ly rela­ted popu­la­ti­ons. Con­ver­se­ly, it can be very simi­lar among gene­ti­cal­ly dis­tant popu­la­ti­ons of sis­ter spe­cies. The­se obser­va­ti­ons are par­tial­ly explai­ned as a result of paral­lel evo­lu­ti­on of simi­lar color pat­terns through natu­ral selec­ti­on or as a con­se­qu­en­ce of spa­tial con­tact bet­we­en two gene­ti­cal­ly dis­tinct popu­la­ti­ons fol­lo­wing secon­da­ry con­tact and sub­se­qu­ent sor­ting of the genus when hyb­rids of the­se popu­la­ti­ons and the­ir des­cen­dants selec­ti­ve­ly backc­ros­sed with mem­bers of one ori­gi­nal population.


Afri­ka­nis­che Seen haben eine ers­taun­lich viel­fäl­ti­ge Fau­na von Bunt­bars­chen her­vor­geb­racht. Der Tan­gan­ji­ka­see, des­sen Alter auf 9 bis 12 Mil­li­onen Jah­re ges­chätzt wird, ist der ältes­te ostaf­ri­ka­nis­che See und beher­bergt die morp­ho­lo­gisch, gene­tisch und ver­hal­tens­mä­ßig viel­fäl­tigs­te Grup­pe von Bunt­bars­chen. Vie­le der über 200 besch­rie­be­nen Arten tei­len sich in geo­gra­fisch und gene­tisch unters­chied­li­che Popu­la­ti­onen auf, die sich haupt­säch­lich in ihrer Fär­bung unters­che­i­den. Das ende­mis­che Genus Trop­he­us ist ein her­vor­ra­gen­des Beis­piel für die­ses Phä­no­men, mit sechs Arten und über 70 unters­chied­lich gefärb­ten loka­len Varian­ten, die inner­halb des Genus besch­rie­ben wur­den. Abge­se­hen von Trop­he­us dubo­isi ist die Gesamt­morp­ho­lo­gie inner­halb die­ses Genus sehr ähn­lich. Trop­he­us sind reich­lich in der obe­ren Ufer­zo­ne in allen Arten von fel­si­gen Bio­to­pen zu fin­den, wo sie Algen fres­sen und sich vor Raub­tie­ren vers­tec­ken. Sie mei­den strikt san­di­ge und sch­lam­mi­ge Ufer sowie Fluss­mün­dun­gen. Es wur­de nach­ge­wie­sen, dass Trop­he­us sich nicht über wei­te Strec­ken bewe­gen kön­nen, ins­be­son­de­re nicht über fre­ies Was­ser, aufg­rund ihrer hochs­pe­zi­fis­chen Umwel­tan­for­de­run­gen, der Tre­ue zum Lebens­raum und der Territorialität.

Trop­he­us ist eines der am bes­ten erforsch­ten Gat­tun­gen des Sees. Etho­lo­gis­che Stu­dien an Trop­he­us moori zeig­ten kom­ple­xe Ver­hal­tens­mus­ter und eine hoch ent­wic­kel­te sozia­le Orga­ni­sa­ti­on. Es gibt kei­nen aus­gep­räg­ten Gesch­lechts­di­morp­his­mus. Bei­de Gesch­lech­ter ver­te­i­di­gen Ter­ri­to­rien, und im Gegen­satz zu vie­len ande­ren Maulb­rütern bil­den Trop­he­us wäh­rend der Brut­ze­it vorüber­ge­hen­de Paa­re. Die Ent­wick­lung von Eiern und Jung­fis­chen erfolgt aussch­lie­ßlich im Maul der Weib­chen. Frühe­re phy­lo­ge­o­gra­fis­che Stu­dien zu Trop­he­us zeig­ten über­ras­chend gro­ße gene­tis­che Unters­chie­de zwis­chen Popu­la­ti­onen. Trop­he­us dubo­isi wur­de als der urs­prün­glichs­te Stamm besch­rie­ben, und sie­ben vers­chie­de­ne Grup­pen ents­tan­den größten­te­ils gle­i­ch­ze­i­tig. Sechs davon kom­men in ein­zel­nen Ufer­ge­bie­ten vor, und eine Grup­pe besie­del­te sekun­där fel­si­ge Stel­len im gesam­ten See. Die aus der Ana­ly­se der mito­chon­dria­len DNA (mtD­NA) gewon­ne­nen Daten zeig­ten, dass die Fisch­fär­bung trotz einer im All­ge­me­i­nen ähn­li­chen Morp­ho­lo­gie zwis­chen gene­tisch eng ver­wand­ten Popu­la­ti­onen stark vari­ie­ren kann. Umge­ke­hrt kann sie zwis­chen gene­tisch ent­fern­ten Popu­la­ti­onen von Sch­wes­te­rar­ten sehr ähn­lich sein. Die­se Beobach­tun­gen wer­den tei­lwe­i­se als Ergeb­nis paral­le­ler Evo­lu­ti­on ähn­li­cher Farb­mus­ter durch natür­li­che Selek­ti­on oder als Fol­ge des räum­li­chen Kon­takts zwis­chen zwei gene­tisch unters­chied­li­chen Popu­la­ti­onen nach dem sekun­dä­ren Kon­takt und ansch­lie­ßen­der Sor­tie­rung der Gat­tung erk­lärt, wenn Hyb­ri­den die­ser Popu­la­ti­onen und ihre Nach­kom­men selek­tiv mit Mitg­lie­dern einer urs­prün­gli­chen Popu­la­ti­on zurück­gek­re­uzt wurden.


Mazi­wa ya Kiaf­ri­ka yame­ten­ge­ne­za aina tofau­ti sana ya sama­ki wa cich­lid. Ziwa Tan­ga­ny­i­ka, amba­lo umri wake una­ka­di­ri­wa kuwa kati ya mia­ka 9 hadi 12 mili­oni, ni ziwa la Kiaf­ri­ka la Mas­ha­ri­ki lenye kun­di la sama­ki wa cich­lid lenye tofau­ti kub­wa kwa upan­de wa umbo, jene­ti­ki, na tabia. Wen­gi wa spis­hi zai­di ya 200 zili­zo­ele­ze­wa zime­ga­wa­ny­i­ka kati­ka ida­di tofau­ti za kiji­o­gra­fia na kije­ne­ti­ki, zina­zo­to­fau­tia­na hasa kati­ka ran­gi zao. Mfa­no mzu­ri wa hii ni jena­si ya Trop­he­us, amba­yo ina spis­hi 6 na zai­di ya tofau­ti 70 za mitaa zenye ran­gi tofau­ti. Isi­po­ku­wa Trop­he­us dubo­isi, mor­fo­lo­jia ya jum­la kati­ka jena­si hii ni sawa sana. Trop­he­us wana­pa­ti­ka­na sana kati­ka eneo la pwa­ni la juu kati­ka aina zote za maka­zi ya miam­ba, wana­ku­la mwa­ni, na kuji­fi­cha kuto­ka kwa wawin­da­ji. Wanak­we­pa pwa­ni zenye mchan­ga na mato­pe, pamo­ja na viji­to. Imet­hi­bi­tis­hwa kuwa Trop­he­us hawa­we­zi kusa­fi­ri umba­li mre­fu, haswa kupi­tia maji wazi, kama mato­keo ya mazin­gi­ra yao maa­lum na uami­ni­fu kwa eneo fula­ni na utaifa.

Trop­he­us ni moja wapo ya maje­na­si yana­y­o­so­me­wa zai­di kati­ka ziwa. Maso­mo ya tabia ya Trop­he­us moori yame­ony­es­ha mifu­mo min­gi ya tabia na shi­ri­ka kub­wa la kija­mii. Haku­na tofau­ti za kuji­to­ke­za kwa jin­sia. Jin­sia zote mbi­li zina­lin­da eneo lao na, tofau­ti na wen­gi wa papi­lo­ta wen­gi­ne, Trop­he­us hufa­nya jozi za muda waka­ti wa uza­zi. Maen­de­leo ya may­ai na vifa­ran­ga hufa­ny­i­ka kika­mi­li­fu kiny­wa­ni mwa wana­wa­ke. Uta­fi­ti wa zama­ni wa phy­lo­ge­og­rap­hic wa Trop­he­us uli­ony­es­ha tofau­ti za kus­han­ga­za za kije­ne­ti­ki kati ya ida­di ya watu. Trop­he­us dubo­isi ilie­le­zwa kama tawi la awa­li, na vikun­di saba tofau­ti vili­ji­to­ke­za kwa kia­si kikub­wa waka­ti huo huo. Sita kati yao zina­pa­ti­ka­na kati­ka mae­neo ya pwa­ni ya kibi­naf­si, na kikun­di kimo­ja kili­ta­wa­ny­i­ka sekon­da­ri na kuva­mia mae­neo ya miam­ba kari­bu kote ziwa. Tak­wi­mu zili­zo­pa­ti­ka­na kuto­ka kwa ucham­bu­zi wa DNA ya mito­kon­dria (mtD­NA) zili­ony­es­ha kuwa, licha ya mor­fo­lo­jia kwa ujum­la kufa­na­na, ran­gi ya sama­ki ina­we­za kuto­fau­tia­na sana kati ya ida­di za watu zina­zo­hu­sia­na kije­ne­ti­ki na, kiny­ume cha­ke, ina­we­za kuwa sawa sana kati ya ida­di za watu sio kari­bu kije­ne­ti­ki za spis­hi ndu­gu. Maba­di­li­ko haya yana­we­za kue­le­we­ka kwa sehe­mu kama mato­keo ya mage­uzi sawa ya mifa­no ya ran­gi nda­ni ya ute­uzi wa asi­lia au kama mato­keo ya mawa­si­lia­no ya nafa­si kati ya ida­di mbi­li tofau­ti kije­ne­ti­ki baa­da ya mawa­si­lia­no ya sekon­da­ri na usam­ba­za­ji wa tena wa jena­si, amba­po mse­to wa ida­di hizi na wato­to wao uli­fa­ny­i­ka kwa kia­si kikub­wa na wana­cha­ma wa ida­di moja ya awali.


His­to­ric­ké zme­ny jazera

Pred­po­kla­dá sa, že rých­le for­mo­va­nie veľ­kých dru­ho­vých sku­pín výcho­do­af­ric­kých cich­líd spô­so­bu­jú abi­otic­ké (fyzi­kál­ne) fak­to­ry, ako geolo­gic­ké pro­ce­sy a kli­ma­tic­ké uda­los­ti, ako aj bio­lo­gic­ké vlast­nos­ti šíria­cich sa orga­niz­mov. Nie­koľ­ko štú­dií uká­za­lo, že veľ­ké kolí­sa­nie hla­di­ny jaze­ra malo váž­ny vplyv na skal­na­té pro­stre­die a dru­ho­vé spo­lo­čen­stvá vo výcho­do­af­ric­kých prie­ko­po­vých jaze­rách. Jaze­ro bolo váž­ne ovplyv­ne­né zme­nou na suché pod­ne­bie asi pred 1,1 mili­ón­mi rokov, čo spô­so­bi­lo pokles hla­di­ny asi o 650700 m pod súčas­nú hla­di­nu. Potom sa jaze­ro zväč­šo­va­lo postup­ne do obdo­bia asi pred 550 000 rok­mi. Ďal­ší pokles hla­di­ny nastal asi pred 390 000360 000 rok­mi o 360 met­rov, medzi 290 000260 000 rok­mi o 350 m a medzi 190 000170 000 rok­mi to bol pokles o 250 m. V najb­liž­šej his­tó­rii pokles­la hla­di­na počas nesko­ré­ho ple­is­to­cé­nu ľado­vej doby, kedy bolo v Afri­ke suché pod­ne­bie. Ide o obdo­bie spred 40 00035 000 rok­mi (pokles o 160 m) a medzi 23 00018 000 rok­mi (prav­de­po­dob­ne o 600 m). Aký­koľ­vek vzrast hla­di­ny posú­va pobrež­nú líniu a tvo­ria sa nové skal­na­té oblas­ti. Len čo vzdia­le­nos­ti medzi novo for­mo­va­ný­mi oblas­ťa­mi pre­kro­čia schop­nosť šíre­nia sa jed­not­li­vých dru­hov, tok génov sa pre­ru­ší a hro­ma­dia sa gene­tic­ké roz­die­ly medzi popu­lá­cia­mi. Násled­ný pokles hla­di­ny môže viesť k sekun­dár­ne­mu mie­ša­niu, čo vedie k buď k zvy­šu­jú­cej sa gene­tic­kej roz­diel­nos­ti ale­bo prí­buz­nos­ti nových druhov.

Šíre­nie rodu Trop­he­us v jaze­re Tanganika

Na zákla­de gene­tic­kej ana­lý­zy sa urči­li 3 obdo­bia šíre­nia sa Trop­he­usov v jaze­re. Prvé obdo­bie pre­bie­ha­lo počas stú­pa­nia hla­di­ny v obdo­bí medzi 1,1 mil. – 550 000 rok­mi, dru­hé šíre­nie pre­bie­ha­lo počas pokle­su hla­di­ny v obdo­bí medzi 390 000360 000 rok­mi a tre­tie šíre­nie nasta­lo počas pokle­su hla­di­ny v obdo­bí medzi 190 000170 000 rok­mi. Kli­ma­tic­ké zme­ny pred 17 000 rok­mi spô­so­bi­li dra­ma­tic­ký pokles hla­di­ny nie­len v Tan­ga­ni­ke, ale aj v Mala­wi a dokon­ca vysc­hnu­tie jaze­ra Vik­tó­ria. Tie­to uda­los­ti synch­ro­ni­zo­va­li pro­ce­sy diver­zi­fi­ká­cie cich­líd vo všet­kých troch jaze­rách. Naj­dô­ve­ry­hod­nej­šie vysvet­le­nie gene­tic­kých vzo­rov Trop­he­usov sú tri obdo­bia níz­kej hla­di­ny jaze­ra, kedy kle­sa­la hla­di­na naj­me­nej o 550 m, tak­že jaze­ro bolo roz­de­le­né na tri jaze­rá. Sku­pi­ny Trop­he­usov boli roz­de­le­né do osem hlav­ných sku­pín pod­ľa mtD­NA a pod­ľa výsky­tu v jed­not­li­vých loka­li­tách jaze­ra, kto­ré dosta­li názov pod­ľa osád na pobreží:

  • Sku­pi­na A1 (Kib­we, Kab­we, Kiti Point)
  • Sku­pi­na A2 (Kabe­zi, Iko­la, Bili­la Island, Kyeso I./Kungwe – T. yel­low”, Kala, Mpulungu)
  • Sku­pi­na A3 (Nyan­za Lac – T. bri­char­di, Ngom­be, Bemba)
  • Sku­pi­na A4 (Nvu­na Island, Kato­to I.)
  • Sku­pi­na B (Rutun­ga, Kiriza)
  • Sku­pi­na C (Kyeso II.)
  • Sku­pi­na D (Zon­gwe, Moba, Kib­we­sa – T. Kib­we­sa”)
  • Sku­pi­na E (Bulu – T. pol­li, Bulu – T. Kirschf­leck”)
  • Sku­pi­na F (Kib­we­sa – T. Kirschf­leck”, Mvua I., Inangu)
  • Sku­pi­na G (Wapem­be juh, Kato­to II., Mvua II.)
  • Sku­pi­na H (Wapem­be sever)

His­to­ri­cal chan­ges of the lake

It is assu­med that the rapid for­ma­ti­on of lar­ge spe­cies groups of East Afri­can cich­lids is cau­sed by abi­otic (phy­si­cal) fac­tors such as geolo­gi­cal pro­ces­ses and cli­ma­tic events, as well as bio­lo­gi­cal cha­rac­te­ris­tics of spre­a­ding orga­nisms. Seve­ral stu­dies have sho­wn that lar­ge fluc­tu­ati­ons in lake levels had a sig­ni­fi­cant impact on roc­ky envi­ron­ments and spe­cies com­mu­ni­ties in East Afri­can rift lakes. The lake was seri­ous­ly affec­ted by a shift to a dry cli­ma­te about 1.1 mil­li­on years ago, cau­sing a drop in the water level by about 650 – 700 meters below the cur­rent level. Then, the lake gra­du­al­ly expan­ded into the peri­od around 550,000 years ago. Anot­her drop in the water level occur­red about 390,000 to 360,000 years ago by 360 meters, bet­we­en 290,000 and 260,000 years ago by 350 meters, and bet­we­en 190,000 and 170,000 years ago, the­re was a drop of 250 meters. In recent his­to­ry, the lake level drop­ped during the late Ple­is­to­ce­ne ice age when the cli­ma­te in Afri­ca beca­me arid. This occur­red app­ro­xi­ma­te­ly 40,00035,000 years ago (a dec­re­a­se of 160 meters) and bet­we­en 23,00018,000 years ago (pro­bab­ly by 600 meters). Any inc­re­a­se in the water level shifts the sho­re­li­ne, for­ming new roc­ky are­as. Once the dis­tan­ces bet­we­en newly for­med are­as exce­ed the abi­li­ty of indi­vi­du­al spe­cies to spre­ad, the gene flow is inter­rup­ted, and gene­tic dif­fe­ren­ces accu­mu­la­te bet­we­en popu­la­ti­ons. Sub­se­qu­ent drops in the water level can lead to secon­da­ry mixing, resul­ting in eit­her inc­re­a­sed gene­tic diver­si­ty or rela­ted­ness of new species.

Dis­se­mi­na­ti­on of the Trop­he­us genus in Lake Tanganyika

Based on gene­tic ana­ly­sis, three peri­ods of Trop­he­us spre­ad in the lake have been iden­ti­fied. The first peri­od occur­red during the rise in lake levels bet­we­en 1.1 mil­li­on – 550,000 years ago, the second spre­ad occur­red during the dec­li­ne in lake levels bet­we­en 390,000360,000 years ago, and the third spre­ad occur­red during the dec­li­ne in lake levels bet­we­en 190,000170,000 years ago. Cli­ma­tic chan­ges around 17,000 years ago cau­sed a dra­ma­tic drop in water levels not only in Tan­ga­ny­i­ka but also in Mala­wi and even the dry­ing up of Lake Vic­to­ria. The­se events synch­ro­ni­zed the pro­ces­ses of cich­lid diver­si­fi­ca­ti­on in all three lakes. The most plau­sib­le expla­na­ti­on for the gene­tic pat­terns of Trop­he­us invol­ves three peri­ods of low lake levels when the water level drop­ped by at least 550 meters, cau­sing the lake to be divi­ded into three sepa­ra­te bodies of water. Trop­he­us groups were divi­ded into eight main groups based on mtD­NA and the­ir occur­ren­ce in spe­ci­fic lake loca­ti­ons, named after sett­le­ments on the shore:

Group A1 (Kib­we, Kab­we, Kiti Point)
Group A2 (Kabe­zi, Iko­la, Bili­la Island, Kyeso I./Kungwe – T. yel­low”, Kala, Mpulungu)
Group A3 (Nyan­za Lac – T. bri­char­di, Ngom­be, Bemba)
Group A4 (Nvu­na Island, Kato­to I.)
Group B (Rutun­ga, Kiriza)
Group C (Kyeso II.)
Group D (Zon­gwe, Moba, Kib­we­sa – T. Kib­we­sa”)
Group E (Bulu – T. pol­li, Bulu – T. Kirschf­leck”)
Group F (Kib­we­sa – T. Kirschf­leck”, Mvua I., Inangu)
Group G (Wapem­be south, Kato­to II., Mvua II.)
Group H (Wapem­be north)


His­to­ris­che Verän­de­run­gen des Sees

Es wird ver­mu­tet, dass die schnel­le Bil­dung gro­ßer Arten­grup­pen ostaf­ri­ka­nis­cher Bunt­bars­che durch abi­otis­che (phy­si­ka­lis­che) Fak­to­ren verur­sacht wird, wie geolo­gis­che Pro­zes­se und kli­ma­tis­che Ere­ig­nis­se, sowie bio­lo­gis­che Merk­ma­le sich ausb­re­i­ten­der Orga­nis­men. Meh­re­re Stu­dien haben geze­igt, dass gro­ße Sch­wan­kun­gen des Sees­pie­gels ernst­haf­te Auswir­kun­gen auf die fel­si­ge Umge­bung und die Arten­zu­sam­men­set­zung in den ostaf­ri­ka­nis­chen Gra­ben­se­en hat­ten. Der See wur­de vor etwa 1,1 Mil­li­onen Jah­ren ernst­haft von einem Wech­sel zu einem troc­ke­nen Kli­ma bee­in­flusst, was zu einem Rück­gang des Was­ser­spie­gels um etwa 650 – 700 Meter unter das aktu­el­le Nive­au führ­te. Dann ver­größer­te sich der See all­mäh­lich bis zur Peri­ode vor etwa 550.000 Jah­ren. Ein wei­te­rer Rück­gang des Was­ser­spie­gels erfolg­te vor etwa 390.000 bis 360.000 Jah­ren um 360 Meter, zwis­chen 290.000 und 260.000 Jah­ren um 350 Meter und zwis­chen 190.000 und 170.000 Jah­ren erfolg­te ein Rück­gang um 250 Meter. In der jün­ge­ren Ges­chich­te sank der Was­ser­spie­gel wäh­rend der spä­ten Eis­ze­it des Ple­is­to­zäns, als das Kli­ma in Afri­ka troc­ken wur­de. Dies ges­chah etwa vor 40.00035.000 Jah­ren (ein Rück­gang um 160 Meter) und zwis­chen 23.00018.000 Jah­ren (wahrs­che­in­lich um 600 Meter). Jeder Ans­tieg des Was­ser­spie­gels vers­chiebt die Küs­ten­li­nie und es ents­te­hen neue fel­si­ge Gebie­te. Sobald die Abstän­de zwis­chen den neu ents­tan­de­nen Gebie­ten die Ausb­re­i­tungs­fä­hig­ke­it ein­zel­ner Arten übersch­re­i­ten, wird der Genaus­tausch unterb­ro­chen und gene­tis­che Unters­chie­de zwis­chen Popu­la­ti­onen sam­meln sich an. Ein ansch­lie­ßen­der Rück­gang des Was­ser­spie­gels kann zu sekun­dä­rer Durch­mis­chung füh­ren, was ent­we­der zu einer erhöh­ten gene­tis­chen Viel­falt oder Ver­wandts­chaft neuer Arten führt.

Verb­re­i­tung der Gat­tung Trop­he­us im Tanganjikasee

Basie­rend auf gene­tis­chen Ana­ly­sen wur­den drei Zeit­rä­u­me der Verb­re­i­tung von Trop­he­us im See iden­ti­fi­ziert. Die ers­te Peri­ode erfolg­te wäh­rend des Ans­tiegs des Sees­pie­gels zwis­chen 1,1 Mil­li­onen und 550.000 Jah­ren, die zwe­i­te Verb­re­i­tung erfolg­te wäh­rend des Rück­gangs des Sees­pie­gels zwis­chen 390.000 und 360.000 Jah­ren und die drit­te Verb­re­i­tung erfolg­te wäh­rend des Rück­gangs des Sees­pie­gels zwis­chen 190.000 und 170.000 Jah­ren. Kli­ma­tis­che Verän­de­run­gen vor 17.000 Jah­ren führ­ten zu einem dra­ma­tis­chen Rück­gang des Was­ser­spie­gels nicht nur im Tan­gan­ji­ka, son­dern auch im Malawi-​See und sogar zum Aus­trock­nen des Vik­to­ria­se­es. Die­se Ere­ig­nis­se synch­ro­ni­sier­ten die Pro­zes­se der Cich­li­den­di­ver­si­fi­ka­ti­on in allen drei Seen. Die plau­si­bels­te Erk­lä­rung für die gene­tis­chen Mus­ter von Trop­he­us umfasst drei Peri­oden nied­ri­ger Was­sers­tän­de, bei denen der Was­sers­tand um min­des­tens 550 Meter sank und der See in drei sepa­ra­te Gewäs­ser auf­ge­te­ilt wur­de. Die Tropheus-​Gruppen wur­den in acht Hauptg­rup­pen unter­te­ilt, basie­rend auf mtD­NA und ihrem Vor­kom­men an bes­timm­ten See­or­ten, benannt nach Sied­lun­gen am Ufer:

Grup­pe A1 (Kib­we, Kab­we, Kiti Point)
Grup­pe A2 (Kabe­zi, Iko­la, Bili­la Island, Kyeso I./Kungwe – T. yel­low”, Kala, Mpulungu)
Grup­pe A3 (Nyan­za Lac – T. bri­char­di, Ngom­be, Bemba)
Grup­pe A4 (Nvu­na Island, Kato­to I.)
Grup­pe B (Rutun­ga, Kiriza)
Grup­pe C (Kyeso II.)
Grup­pe D (Zon­gwe, Moba, Kib­we­sa – T. Kib­we­sa”)
Grup­pe E (Bulu – T. pol­li, Bulu – T. Kirschf­leck”)
Grup­pe F (Kib­we­sa – T. Kirschf­leck”, Mvua I., Inangu)
Grup­pe G (Wapem­be süd­lich, Kato­to II., Mvua II.)
Grup­pe H (Wapem­be nördlich)


Swa­hi­li: Maba­di­li­ko ya His­to­ria kati­ka Ziwa

Ina­a­mi­ni­wa kwam­ba kuun­dwa hara­ka kwa vikun­di vikub­wa vya spis­hi za Cich­lid za Afri­ka Mas­ha­ri­ki kuna­chan­gi­wa na mam­bo ya abi­oti­ki (kimwi­li), kama vile mcha­ka­to wa kiji­olo­jia na matu­kio ya hali ya hewa, pamo­ja na sifa za kiba­olo­jia za vium­be vina­vy­o­enea. Uta­fi­ti kad­haa ume­fu­nua kuwa maba­di­li­ko makub­wa ya kiwan­go cha maji yali­ku­wa na atha­ri kub­wa kwe­nye mazin­gi­ra ya miam­ba na jumu­iya ya spis­hi kati­ka mazi­wa ya bon­de la Ufa la Afri­ka Mas­ha­ri­ki. Ziwa lili­pa­ta atha­ri kub­wa kuto­ka­na na maba­di­li­ko ya hali ya hewa kavu kari­bu mia­ka 1.1 mili­oni ili­y­o­pi­ta, iki­sa­ba­bis­ha kupun­gua kwa kiwan­go cha maji kwa tak­ri­ban mita 650 – 700 chi­ni ya kiwan­go cha sasa. Kis­ha ziwa lika­on­ge­ze­ka pole­po­le hadi kipin­di cha mia­ka tak­ri­ban 550,000 ili­y­o­pi­ta. Kupun­gua kwa kiwan­go kin­gi­ne kili­fa­ny­i­ka tak­ri­ban mia­ka 390,000 hadi 360,000 ili­y­o­pi­ta kwa mita 360, kati ya mia­ka 290,000 hadi 260,000 ili­y­o­pi­ta kwa mita 350, na kati ya mia­ka 190,000 hadi 170,000 ili­y­o­pi­ta kwa kupun­gua kwa mita 250. Kati­ka his­to­ria ya kari­bu, kiwan­go cha maji kili­pun­gua waka­ti wa kipin­di cha Ple­is­to­ce­ne mwis­ho­ni, waka­ti hali ya hewa ili­po­ku­wa kavu bara­ni Afri­ka. Hii ili­to­kea kari­bu mia­ka 40,00035,000 ili­y­o­pi­ta (kipun­gua kwa mita 160) na kati ya mia­ka 23,00018,000 ili­y­o­pi­ta (lab­da kwa mita 600). Onge­ze­ko lolo­te la kiwan­go cha maji kuna­so­ge­za pwa­ni na kusa­ba­bis­ha mae­neo mapya ya miam­ba. Mara tu umba­li kati ya mae­neo mapya yali­y­o­let­wa una­po­vu­ka uwe­zo wa kusam­baa kwa spis­hi binaf­si, mzun­gu­ko wa jeni una­ka­tis­hwa na tofau­ti za kije­ne­ti­ki huku­sa­ny­i­ka kati ya ida­di ya watu. Kupun­gua kwa kiwan­go cha maji baa­da­ye kuna­we­za kusa­ba­bis­ha kuchan­ga­ny­i­ka kwa sekon­da­ri, amba­yo ina­on­go­za kwa kuon­ge­ze­ka kwa tofau­ti za kije­ne­ti­ki au uhu­sia­no wa kari­bu kati ya spis­hi mpya.

Uene­zi wa Jeni la Trop­he­us kati­ka Ziwa Tanganyika

Kulin­ga­na na ucham­bu­zi wa jene­ti­ki, kume­ku­wa na vipin­di vita­tu vya uene­zi wa Trop­he­us kati­ka ziwa. Kipin­di cha kwan­za kili­fa­ny­i­ka waka­ti wa onge­ze­ko la kiwan­go cha maji kati ya mia­ka mili­oni 1.1 hadi 550,000 ili­y­o­pi­ta, uene­zi wa pili uli­fa­ny­i­ka waka­ti wa kupun­gua kwa kiwan­go cha maji kati ya mia­ka 390,000 hadi 360,000 ili­y­o­pi­ta, na uene­zi wa tatu uli­to­kea waka­ti wa kupun­gua kwa kiwan­go cha maji kati ya mia­ka 190,000 hadi 170,000 ili­y­o­pi­ta. Maba­di­li­ko ya hali ya hewa mia­ka 17,000 ili­y­o­pi­ta yali­sa­ba­bis­ha kupun­gua kwa kasi kwa kiwan­go cha maji siyo tu kati­ka Tan­ga­ny­i­ka, bali pia kati­ka Ziwa Mala­wi na hata kukaus­ha Ziwa Vik­to­ria. Matu­kio haya yali­sa­wa­zis­ha mcha­ka­to wa uto­fau­tis­ha­ji wa Cich­lid kati­ka mazi­wa yote mata­tu. Mae­le­zo yana­y­o­we­za kue­le­we­ka zai­di ya mifu­mo ya kije­ne­ti­ki ya Trop­he­us yana­ju­mu­is­ha vipin­di vita­tu vya viwan­go vya chi­ni vya maji, amba­po kiwan­go kili­pun­gua kwa anga­lau mita 550, hivyo ziwa liki­ga­wa­ny­wa kati­ka mazi­wa mata­tu tofau­ti. Vikun­di vya Trop­he­us vili­ga­wa­ny­wa kati­ka vikun­di vita­tu vikuu, kulin­ga­na na mtD­NA na mzun­gu­ko wao kwe­nye mae­neo maa­lum ya ziwa, vili­vy­o­pe­wa maji­na ya viton­go­ji kwe­nye pwani:

Kikun­di A1 (Kib­we, Kab­we, Kiti Point)
Kikun­di A2 (Kabe­zi, Iko­la, Bili­la Island, Kyeso I./Kungwe – T. yel­low”, Kala, Mpulungu)
Kikun­di A3 (Nyan­za Lac – T. bri­char­di, Ngom­be, Bemba)
Kikun­di A4 (Nvu­na Island, Kato­to I.)
Kikun­di B (Rutun­ga, Kiriza)
Kikun­di C (Kyeso II.)
Kikun­di D (Zon­gwe, Moba, Kib­we­sa – T. Kib­we­sa”)
Kikun­di E (Bulu – T. pol­li, Bulu – T. Kirschf­leck”)
Kikun­di F (Kib­we­sa – T. Kirschf­leck”, Mvua I., Inangu)
Kikun­di G (Wapem­be kusi­ni, Kato­to II., Mvua II.)
Kikun­di H (Wapem­be kaskazini)


Na obráz­ku sú zná­zor­ne­né vzťa­hy medzi jed­not­li­vý­mi sku­pi­na­mi rodu Trop­he­us a ich loka­li­zá­cia v jazere.


The rela­ti­ons­hips bet­we­en indi­vi­du­al groups of the genus Trop­he­us and the­ir loca­ti­ons in the lake are illu­stra­ted in the picture.


Auf dem Bild sind die Bez­ie­hun­gen zwis­chen den ein­zel­nen Grup­pen der Gat­tung Trop­he­us und deren Stan­dor­ten im See dargestellt.


Kati­ka picha, uhu­sia­no kati ya vikun­di binaf­si vya jena­si ya Trop­he­us na mae­neo yao kati­ka ziwa unavyoonyeshwa.

Tropheus Phylog[1]

Pri­már­ne šíre­nie rodu Trop­he­us bolo pod­mie­ne­né sil­ným zvý­še­ním hla­di­ny jaze­ra asi pred 700 000 rok­mi. Prvé dve sku­pi­ny (A a B) pochá­dza­li z obsa­de­nia sever­ných čas­tí jaze­ra, sku­pi­na C a D vzni­ka­la na západ­nom pobre­ží cen­trál­nej čas­ti jaze­ra a sku­pi­na E sa roz­ví­ja­la na výcho­de stred­nej čas­ti jaze­ra. Sku­pi­ny F, G a H sa najp­rav­de­po­dob­nej­šie udo­mác­ni­li na juhu jaze­ra. Tre­ba upo­zor­niť, že nedáv­no obja­ve­ná ôsma sku­pi­na C v Kyeso prav­de­po­dob­ne repre­zen­tu­je Trop­he­us annec­tens, pre­to­že Kyeso je loka­li­zo­va­né v tes­nej blíz­kos­ti typu vzo­riek rýb, kto­rý popí­sal Bou­len­ger v roku 1990. Tie­to ryby žili v blíz­kos­ti rýb, kto­ré pat­ria do sku­pi­ny A2, kto­rú obja­vi­li na oboch stra­nách cen­trál­nej čas­ti jazera.

Mor­fo­lo­gic­ké ana­lý­zy uká­za­li, že šesť zo sied­mich jedin­cov malo šty­ri lúče na anál­nej plut­ve a sied­my jedi­nec mal lúčov päť. Ďal­ších pať jedin­cov ulo­ve­ných v Kyeso malo šesť anál­nych lúčov a tiež sa odli­šo­va­li v tva­re úst a sfar­be­ní od T. annec­tens. Je zau­jí­ma­vé, že ryby odchy­te­né v loka­li­te Kyeso pred­tým ozna­če­né ako T. annec­tens pat­ria do sku­pi­ny C na roz­diel od Trop­he­us pol­li (sku­pi­na E) z opač­nej stra­ny jaze­ra, hoci majú podob­nú mor­fo­ló­giu, počet lúčov anál­nej plut­vy a sfarbenie.


The pri­ma­ry spre­ad of the genus Trop­he­us was con­di­ti­oned by a sig­ni­fi­cant inc­re­a­se in the lake level around 700,000 years ago. The first two groups (A and B) ori­gi­na­ted from the occu­pa­ti­on of the nort­hern parts of the lake, groups C and D deve­lo­ped on the wes­tern sho­re of the cen­tral part of the lake, and group E evol­ved in the east of the cen­tral part of the lake. Groups F, G, and H most like­ly beca­me estab­lis­hed in the south of the lake. It should be noted that the recen­tly dis­co­ve­red eighth group C in Kyeso pro­bab­ly repre­sents Trop­he­us annec­tens, as Kyeso is loca­ted in clo­se pro­xi­mi­ty to the type sam­ples of fish desc­ri­bed by Bou­len­ger in 1990. The­se fish lived near fish belo­n­ging to group A2, which was dis­co­ve­red on both sides of the cen­tral part of the lake.

Morp­ho­lo­gi­cal ana­ly­ses sho­wed that six out of seven indi­vi­du­als had four rays on the anal fin, and the seventh indi­vi­du­al had five rays. Anot­her five indi­vi­du­als caught in Kyeso had six anal rays and also dif­fe­red in mouth sha­pe and colo­ra­ti­on from T. annec­tens. Inte­res­tin­gly, the fish caught at the Kyeso site pre­vi­ous­ly iden­ti­fied as T. annec­tens belo­ng to group C, unli­ke Trop­he­us pol­li (group E) from the oppo­si­te side of the lake, alt­hough they have simi­lar morp­ho­lo­gy, the num­ber of anal fin rays, and coloration.


Die pri­mä­re Verb­re­i­tung der Gat­tung Trop­he­us wur­de durch einen sig­ni­fi­kan­ten Ans­tieg des Sees­pie­gels vor etwa 700.000 Jah­ren bedingt. Die ers­ten bei­den Grup­pen (A und B) stamm­ten von der Besied­lung der nörd­li­chen Tei­le des Sees, Grup­pen C und D ent­wic­kel­ten sich am west­li­chen Ufer des zen­tra­len Teils des Sees, und Grup­pe E ents­tand im Osten des zen­tra­len Teils des Sees. Grup­pen F, G und H haben sich höchst­wahrs­che­in­lich im Süden des Sees ange­sie­delt. Es ist zu beach­ten, dass die kürz­lich ent­dec­kte ach­te Grup­pe C in Kyeso wahrs­che­in­lich Trop­he­us annec­tens reprä­sen­tiert, da Kyeso in unmit­tel­ba­rer Nähe der von Bou­len­ger im Jahr 1990 besch­rie­be­nen Typus­pro­ben von Fis­chen liegt. Die­se Fis­che leb­ten in der Nähe von Fis­chen, die zur Grup­pe A2 gehören, die auf bei­den Sei­ten des zen­tra­len Teils des Sees ent­dec­kt wurde.

Morp­ho­lo­gis­che Ana­ly­sen zeig­ten, dass sechs von sie­ben Indi­vi­du­en vier Strah­len auf der Afterf­los­se hat­ten und das sieb­te Indi­vi­du­um fünf Strah­len hat­te. Wei­te­re fünf in Kyeso gefan­ge­ne Indi­vi­du­en hat­ten sechs Afterf­los­sens­trah­len und unters­chie­den sich auch in der Form des Mauls und der Fär­bung von T. annec­tens. Inte­res­san­ter­we­i­se gehören die in der Kyeso-​Stelle gefan­ge­nen Fis­che, die zuvor als T. annec­tens iden­ti­fi­ziert wur­den, zur Grup­pe C, im Gegen­satz zu Trop­he­us pol­li (Grup­pe E) von der gege­nüber­lie­gen­den Sei­te des Sees, obwohl sie eine ähn­li­che Morp­ho­lo­gie, Anzahl der Afterf­los­sens­trah­len und Fär­bung haben.


Usam­ba­za­ji wa kwan­za wa jena­si ya Trop­he­us uli­to­ka­na na onge­ze­ko kub­wa la kiwan­go cha ziwa tak­ri­ba­ni mia­ka 700,000 ili­y­o­pi­ta. Vikun­di vya kwan­za viwi­li (A na B) vilian­zia na eneo la kas­ka­zi­ni la ziwa, vikun­di C na D vili­ji­to­ke­za kwe­nye pwa­ni ya mag­ha­ri­bi ya sehe­mu ya kati ya ziwa, na kun­di E lika­en­de­lea mas­ha­ri­ki mwa sehe­mu ya kati ya ziwa. Vikun­di F, G, na H huen­da vilian­za kuji­to­ke­za kusi­ni mwa ziwa. Ni muhi­mu kutam­bua kuwa kun­di la nane lili­lo­gun­du­li­wa hivi kari­bu­ni C huko Kyeso lina­wa­ki­lis­ha Trop­he­us annec­tens, kwa­ni Kyeso iko kari­bu na sam­pu­li za aina za sama­ki zili­zo­ele­ze­wa na Bou­len­ger mwa­ka 1990. Sama­ki hawa wali­ku­wa kari­bu na sama­ki wana­oan­gu­kia kwe­nye kun­di A2, amba­lo lili­bai­ni­ka pan­de zote mbi­li za sehe­mu ya kati ya ziwa.

Ucham­bu­zi wa umbo uli­ony­es­ha kuwa sita kati ya saba ya watu wali­ku­wa na tin­di nne kwe­nye fini ya haja, na mmo­ja ali­ku­wa na tin­di tano. Watu wen­gi­ne wata­no wali­oka­mat­wa Kyeso wali­ku­wa na tin­di sita kwe­nye fini ya haja na pia wali­to­fau­tia­na kwe­nye umbo la mdo­mo na ran­gi na T. annec­tens. Kuvu­tia, sama­ki wali­oka­mat­wa eneo la Kyeso awa­li wali­oit­wa T. annec­tens wana­hu­sia­na na kun­di C, tofau­ti na Trop­he­us pol­li (kun­di E) upan­de mwin­gi­ne wa ziwa, inga­wa wana umbo sawa, ida­di ya tin­di kwe­nye fini ya haja, na rangi.


Väč­ši­na hlav­ných sku­pín sa roz­ši­ro­va­la do sused­ných oblas­tí počas dru­hé­ho roz­ší­re­nia asi pred 400 000 rok­mi a sku­pi­ny A a D zvlád­li pre­sun k pro­ti­ľah­lé­mu pobre­žiu cen­trál­nej čas­ti Tan­ga­ni­ky. V tom­to obdo­bí sa po obsa­de­ní východ­né­ho pobre­žia sku­pi­na A roz­de­li­la na 4 odliš­né pod­sku­pi­ny. Pod­sku­pi­ny A1A3 sa prav­de­po­dob­ne obja­vi­li po expan­zii na výcho­de sever­né­ho pobre­žia. Pod­sku­pi­na A2 pochá­dza­la z obsa­de­nia seve­ro­zá­pad­né­ho pobre­žia na seve­re aj v stred­nej čas­ti jaze­ra, zatiaľ čo pod­sku­pi­na A4 prav­de­po­dob­ne pochá­dza­la z kolo­ni­zá­cie východ­nej čas­ti juž­né­ho pobre­žia. Sku­pi­na D prav­de­po­dob­ne obsa­di­la veľ­mi krát­ky úsek v oblas­ti Cape Kib­we­sa, kam sa pre­síd­li­li zo západ­nej čas­ti juž­né­ho pobre­žia. To bolo mož­né jedi­ne v obdo­bí pred 400000 rok­mi, keď kles­la hla­di­na o 550 m, pre­to­že Trop­he­usy nie sú schop­né sa pre­sú­vať pri zvý­še­ní vod­nej hla­di­ny a tým aj zväč­še­ní vzdia­le­nos­tí medzi skal­na­tý­mi čas­ťa­mi jaze­ra cez voľ­nú vodu. Iba pokles hla­di­ny o 550 m posta­čo­val na to, aby sa skal­na­té dno dosta­lo do hĺb­ky asi 50 m, čím sa utvo­ri­li pod­mien­ky na pre­sun Tropheusov.

Roz­ší­re­nie Tropheus“Kirschfleck”, kto­ré pat­ria do sku­pi­ny F na východ­nom pobre­ží cen­trál­nej čas­ti jaze­ra a na sever od Kib­we­sa, sa zdá byť záhad­né pod­ľa súčas­né­ho roz­ší­re­nia ostat­ných čle­nov tej­to sku­pi­ny (F) na juho­zá­pa­de oko­lo Came­ron Bay. V oblas­ti Kib­we­sa žijú v blíz­kos­ti tri varian­ty Trop­he­usov (Trop­he­us pol­li, T.“Kibwesa” a T.“Kirschfleck”). Pred­sa však vo vzor­kách T.“Kirschfleck” sa zis­ti­lo pod­ľa mtD­NA, že pat­ri­li dvom sku­pi­nám, čo naz­na­ču­je krí­že­nie prav­de­po­dob­ne pôvod­ných oby­va­te­ľov tej­to oblas­ti – sku­pi­ny T. pol­li (E) a pre­síd­le­ných T. Kirschf­leck” (F). Exis­tu­jú dve alter­na­tí­vy: zástup­co­via sku­pi­ny F sa moh­li pre­su­núť pozdĺž západ­nej čas­ti juž­né­ho pobre­žia až k hra­ni­ci stred­nej čas­ti jaze­ra. Zostá­va však nejas­né, ako sa moh­la sku­pi­na F pre­su­núť cez tak širo­kú oblasť str­mo kle­sa­jú­ce­ho pobre­žia na zápa­de juž­né­ho pobre­žia, kto­ré v súčas­nos­ti obý­va­jú ryby sku­pi­ny D, bez toho aby zane­cha­li neja­kú gene­tic­kú sto­pu ale­bo men­šiu popu­lá­ciu. Alter­na­tív­ne vysvet­le­nie by moh­lo byť, že sku­pi­na F sa pôvod­ne šíri­la pozdĺž juho­vý­chod­né­ho pobre­žia od Kib­we­sa asi po Wapem­be a neskôr bola nahra­de­ná pre­síd­le­ný­mi zástup­ca­mi sku­pi­ny A, tak­že hap­lo­ty­py (sku­pi­na alel v jed­nom chro­mo­zó­me pre­ná­ša­ná z gene­rá­cie na gene­rá­ciu spo­loč­ne, pri­čom poto­mok dedí dva hap­lo­ty­py – jeden od otca a dru­hý od mat­ky) sku­pi­ny F v Kib­we­sa sú pozos­tat­ky pôvod­ne pod­stat­ne roz­ší­re­nej­šej sku­pi­ny. Ďalej by k tej­to hypo­té­ze bolo mož­né dodať, že sku­pi­na F dru­hot­ne osíd­li­la ich súčas­né teri­tó­rium v oko­lí Came­ron Bay na juho­zá­pa­de počas hlav­né­ho obdo­bia stú­pa­nia hla­di­ny jaze­ra pred 400 000 rok­mi. To by vysvet­ľo­va­lo prí­tom­nosť dvoch odliš­ných hap­lo­ty­pov v popu­lá­cii v Mvua (F a G), ako násle­dok krí­že­nia po dru­hot­nom kon­tak­te so zástup­ca­mi sku­pi­ny F. Ak je táto hypo­té­za prav­di­vá, táto kolo­ni­zá­cia moh­la úpl­ne nahra­diť pred­tým sa vysky­tu­jú­cu sku­pi­nu G, kto­rá má v súčas­nos­ti cen­trum výsky­tu juž­ne od ústia rie­ky Lufu­bu. Ak berie­me do úva­hy fakt, že rie­ka Lufu­bu, ako tre­tí naj­väč­ší zdroj vody pre jaze­ro, pred­sta­vu­je vyso­ko sta­bil­nú eko­lo­gic­kú bari­é­ru, kto­rá odde­ľu­je pobre­žie hory Chai­ti­ka od polo­os­tro­va Inan­gu, potom sku­pi­na G si moh­la udr­žia­vať oblasť pôvod­né­ho roz­ší­re­nia juž­ne od rie­ky Lufu­bu, ale bola nahra­de­ná zástup­ca­mi sku­pi­ny F v Came­ron Bay po pokle­se hladiny.

Počas tre­tie­ho šíre­nia asi pred 200 000 rok­mi sa šíri­li 3 pod­sku­pi­ny sku­pi­ny A pozdĺž pobre­žia, kde sa pôvod­ne vysky­to­va­li. Pod­sku­pi­na A2 sa muse­la pre­miest­niť krí­žom cez jaze­ro z juž­né­ho okra­ja cen­trál­nej čas­ti na východ­né pobre­žie juž­nej čas­ti jaze­ra. Pod­sku­pi­ny A2A4 sa roz­ší­ri­li pozdĺž juho­vý­chod­né­ho pobre­žia viac na juh jaze­ra. V loka­li­te Wapem­be na seve­re sa u jed­né­ho jedin­ca zis­til hap­lo­typ, pod­ľa kto­ré­ho pat­rí do sku­pi­ny H, kto­rá sa roz­ší­ri­la pri pri­már­nom šíre­ní a všet­ky ďal­šie jedin­ce pari­li do dvoch pod­sku­pín A. Dva odliš­né Trop­he­usy žijú v blíz­ko prí­buz­nom vzťa­hu blíz­ko Wapem­be. V Kato­to, hlav­nej hra­ni­ci medzi sku­pi­na­mi A a G sa zis­ti­lo asi 50 % popu­lá­cie s hap­lo­ty­pom sku­pi­ny G a 50% z pod­sku­pín A2A4. Pod­sku­pi­na A2 sa zis­ti­la aj v loka­li­te Katu­ku­la, ale táto popu­lá­cia je tvo­re­ná pre­važ­ne ryba­mi zo sku­pi­ny G.


Most of the main groups expan­ded into adja­cent are­as during the second expan­si­on around 400,000 years ago, and groups A and D mana­ged to move to the oppo­si­te sho­re of the cen­tral part of Lake Tan­ga­ny­i­ka. During this peri­od, after occu­py­ing the eas­tern sho­re, group A split into four dis­tinct subg­roups. Subg­roups A1 and A3 like­ly emer­ged after expan­ding to the east of the nort­hern sho­re. Subg­roup A2 ori­gi­na­ted from the occu­pa­ti­on of the nort­hwest sho­re in the north and cen­tral parts of the lake, whi­le subg­roup A4 pro­bab­ly resul­ted from the colo­ni­za­ti­on of the eas­tern part of the sout­hern sho­re. Group D like­ly occu­pied a very short sec­ti­on near Cape Kib­we­sa, mig­ra­ting from the wes­tern part of the sout­hern sho­re. This was only possib­le around 400,000 years ago when the lake level drop­ped by 550 meters, as Trop­he­us can­not move during rising water levels, which would inc­re­a­se dis­tan­ces bet­we­en roc­ky parts of the lake over open water. Only a drop in the level by 550 meters was suf­fi­cient for the roc­ky bot­tom to reach a depth of about 50 meters, cre­a­ting con­di­ti­ons for the move­ment of Tropheus.

The expan­si­on of Trop­he­us Kirschf­leck,” belo­n­ging to group F, on the eas­tern sho­re of the cen­tral part of the lake and north of Kib­we­sa, seems mys­te­ri­ous com­pa­red to the cur­rent dis­tri­bu­ti­on of other mem­bers of this group (F) to the sout­hwest around Came­ron Bay. In the Kib­we­sa area, three Trop­he­us variants (Trop­he­us pol­li, T. Kib­we­sa,” and T. Kirschf­leck”) live in clo­se pro­xi­mi­ty. Howe­ver, in T. Kirschf­leck” sam­ples, two groups were iden­ti­fied accor­ding to mtD­NA, indi­ca­ting crossb­re­e­ding bet­we­en pro­bab­ly ori­gi­nal inha­bi­tants of this area – T. pol­li (E) group and relo­ca­ted T. Kirschf­leck” (F) group. The­re are two alter­na­ti­ves: repre­sen­ta­ti­ves of group F could have moved along the wes­tern part of the sout­hern sho­re to the bor­der of the cen­tral part of the lake. Howe­ver, it remains unc­le­ar how group F could have moved across such a wide area of ste­ep­ly des­cen­ding wes­tern sho­re on the sout­hern coast, cur­ren­tly inha­bi­ted by fish from group D, wit­hout lea­ving any gene­tic tra­ce or a smal­ler popu­la­ti­on. Alter­na­ti­ve­ly, the group F might have ini­tial­ly spre­ad along the sout­he­as­tern sho­re from Kib­we­sa to Wapem­be and later was repla­ced by relo­ca­ted repre­sen­ta­ti­ves of group A, so hap­lo­ty­pes (a group of alle­les on one chro­mo­so­me pas­sed from gene­ra­ti­on to gene­ra­ti­on toget­her, with offs­pring inhe­ri­ting two hap­lo­ty­pes – one from the fat­her and one from the mot­her) of group F in Kib­we­sa are rem­nants of the ori­gi­nal­ly much more exten­si­ve group. Furt­her­mo­re, accor­ding to this hypot­he­sis, group F might have secon­da­ry colo­ni­zed the­ir cur­rent ter­ri­to­ry around Came­ron Bay in the sout­hwest during the main peri­od of rising lake levels befo­re 400,000 years ago. This would explain the pre­sen­ce of two dif­fe­rent hap­lo­ty­pes in the popu­la­ti­on in Mvua (F and G) as a result of crossb­re­e­ding after secon­da­ry con­tact with repre­sen­ta­ti­ves of group F. If this hypot­he­sis is true, this colo­ni­za­ti­on could have com­ple­te­ly repla­ced the pre­vi­ous­ly occur­ring group G, which cur­ren­tly has the cen­ter of occur­ren­ce south of the Lufu­bu River estu­ary. Con­si­de­ring the fact that the Lufu­bu River, as the third-​largest sour­ce of water for the lake, repre­sents a high­ly stab­le eco­lo­gi­cal bar­rier sepa­ra­ting the coast of the Chai­ti­ka Moun­tains from the Inan­gu Penin­su­la, then group G could have main­tai­ned the area of the ori­gi­nal dis­tri­bu­ti­on south of the Lufu­bu River but was repla­ced by repre­sen­ta­ti­ves of group F in Came­ron Bay after the drop in the lake level.

During the third expan­si­on around 200,000 years ago, three subg­roups of group A spre­ad along the coast whe­re they ori­gi­nal­ly occur­red. Subg­roup A2 had to move across the lake from the sout­hern edge of the cen­tral part to the eas­tern sho­re of the sout­hern part of the lake. Subg­roups A2 and A4 exten­ded along the sout­he­as­tern coast furt­her to the south of the lake. In the Wapem­be loca­ti­on in the north, one indi­vi­du­al was found to have a hap­lo­ty­pe belo­n­ging to group H, which spre­ad during the pri­ma­ry expan­si­on, and all other indi­vi­du­als pai­red into two subg­roups A. Two dis­tinct Trop­he­us indi­vi­du­als live in clo­se pro­xi­mi­ty in the rela­ti­ve rela­ti­ons­hip near Wapem­be. In Kato­to, the main boun­da­ry bet­we­en groups A and G, about 50% of the popu­la­ti­on was found with a hap­lo­ty­pe of group G and 50% from subg­roups A2 and A4. Subg­roup A2 was also found in the Katu­ku­la loca­ti­on, but this popu­la­ti­on is main­ly com­po­sed of fish from group G.


Die Mehr­he­it der Hauptg­rup­pen erwe­i­ter­te sich wäh­rend der zwe­i­ten Ausb­re­i­tung vor etwa 400.000 Jah­ren in benach­bar­te Gebie­te, und die Grup­pen A und D schaff­ten es, zur gege­nüber­lie­gen­den Küs­te des zen­tra­len Teils des Tan­gan­ji­ka­se­es zu gelan­gen. Wäh­rend die­ser Peri­ode, nach der Beset­zung der öst­li­chen Küs­te, spal­te­te sich Grup­pe A in vier vers­chie­de­ne Unter­grup­pen. Die Unter­grup­pen A1 und A3 ents­tan­den wahrs­che­in­lich nach der Expan­si­on nach Osten entlang der nörd­li­chen Küs­te. Die Unter­grup­pe A2 stamm­te aus der Beset­zung der nor­dwest­li­chen Küs­te im Nor­den und in der Mit­te des Sees, wäh­rend die Unter­grup­pe A4 wahrs­che­in­lich aus der Kolo­ni­sie­rung des öst­li­chen Teils der süd­li­chen Küs­te resul­tier­te. Grup­pe D besetz­te wahrs­che­in­lich einen sehr kur­zen Abschnitt in der Nähe von Cape Kib­we­sa, wan­der­te von der west­li­chen Sei­te der süd­li­chen Küs­te aus. Dies war nur mög­lich vor etwa 400.000 Jah­ren, als der Sees­pie­gel um 550 Meter sank, da sich Trop­he­us wäh­rend ste­i­gen­der Was­sers­tän­de nicht bewe­gen kann, was die Ent­fer­nun­gen zwis­chen den fel­si­gen Tei­len des Sees über fre­ies Was­ser erhöhen wür­de. Nur ein Abfall des Pegels um 550 Meter reich­te aus, damit der fel­si­ge Boden eine Tie­fe von etwa 50 Metern erre­ich­te und Bedin­gun­gen für die Bewe­gung von Trop­he­us ges­chaf­fen wurden.

Die Ausb­re­i­tung von Trop­he­us Kirschf­leck”, die zur Grup­pe F gehört, an der öst­li­chen Küs­te des zen­tra­len Teils des Sees und nörd­lich von Kib­we­sa, sche­int im Verg­le­ich zur aktu­el­len Ver­te­i­lung ande­rer Mitg­lie­der die­ser Grup­pe (F) im Südwes­ten um Came­ron Bay mys­te­ri­ös zu sein. In der Gegend von Kib­we­sa leben drei Tropheus-​Varianten (Trop­he­us pol­li, T. Kib­we­sa” und T. Kirschf­leck”) in unmit­tel­ba­rer Nähe. In den Pro­ben von T. Kirschf­leck” wur­den jedoch zwei Grup­pen gemäß mtD­NA iden­ti­fi­ziert, was auf eine Kre­uzung zwis­chen wahrs­che­in­lich urs­prün­gli­chen Bewoh­nern die­ses Gebiets – Grup­pe T. pol­li (E) und umge­sie­del­ten T. Kirschf­leck” (F) – hin­we­ist. Es gibt zwei Alter­na­ti­ven: Ver­tre­ter der Grup­pe F hät­ten sich entlang der west­li­chen Sei­te der süd­li­chen Küs­te bis an die Gren­ze des zen­tra­len Teils des Sees bewe­gen kön­nen. Es ble­ibt jedoch unk­lar, wie die Grup­pe F über eine so wei­te Flä­che ste­il abfal­len­der west­li­cher Küs­te an der Süd­küs­te hät­te wan­dern kön­nen, die der­ze­it von Fis­chen der Grup­pe D bewohnt wird, ohne dabei gene­tis­che Spu­ren oder eine kle­i­ne­re Popu­la­ti­on zu hin­ter­las­sen. Als Alter­na­ti­ve könn­te die Grup­pe F sich urs­prün­glich entlang der südöst­li­chen Küs­te von Kib­we­sa bis nach Wapem­be aus­geb­re­i­tet haben und wur­de spä­ter durch umge­sie­del­te Ver­tre­ter der Grup­pe A ersetzt. Daher sind Hap­lo­ty­pen (eine Grup­pe von Alle­len auf einem Chro­mo­som, die von Gene­ra­ti­on zu Gene­ra­ti­on geme­in­sam wei­ter­ge­ge­ben wer­den, wobei der Nach­kom­me zwei Hap­lo­ty­pen erbt – einen vom Vater und einen von der Mut­ter) der Grup­pe F in Kib­we­sa Über­res­te der urs­prün­glich viel umfan­gre­i­che­ren Grup­pe. Darüber hinaus könn­te nach die­ser Hypot­he­se die Grup­pe F wäh­rend der Haupt­pe­ri­ode des Ans­tiegs des Sees­pie­gels vor 400.000 Jah­ren ihr der­ze­i­ti­ges Ter­ri­to­rium um Came­ron Bay im Südwes­ten sekun­där kolo­ni­siert haben. Dies wür­de die Anwe­sen­he­it von zwei vers­chie­de­nen Hap­lo­ty­pen in der Bevöl­ke­rung in Mvua (F und G) als Ergeb­nis von Kre­uzung nach dem sekun­dä­ren Kon­takt mit Ver­tre­tern der Grup­pe F erk­lä­ren. Wenn die­se Hypot­he­se wahr ist, könn­te die­se Kolo­ni­sie­rung die zuvor auft­re­ten­de Grup­pe G volls­tän­dig ersetzt haben, die der­ze­it das Zen­trum des Auft­re­tens süd­lich der Mün­dung des Flus­ses Lufu­bu hat. Ange­sichts der Tat­sa­che, dass der Fluss Lufu­bu als drittg­rößte Was­se­rqu­el­le für den See eine sehr sta­bi­le öko­lo­gis­che Bar­rie­re dars­tellt, die die Küs­te der Chaitika-​Berge von der Inangu-​Halbinsel trennt, könn­te die Grup­pe G das Gebiet der urs­prün­gli­chen Verb­re­i­tung süd­lich des Flus­ses Lufu­bu bei­be­hal­ten haben, wur­de aber durch Ver­tre­ter der Grup­pe F in Came­ron Bay nach dem Rück­gang des Sees­pie­gels ersetzt.

Wäh­rend der drit­ten Ausb­re­i­tung vor etwa 200.000 Jah­ren bre­i­te­ten sich drei Unter­grup­pen der Grup­pe A entlang der Küs­te aus, wo sie urs­prün­glich vor­ka­men. Die Unter­grup­pe A2 muss­te über den See vom süd­li­chen Rand des zen­tra­len Teils zur öst­li­chen Küs­te des süd­li­chen Teils des Sees zie­hen. Die Unter­grup­pen A2 und A4 ers­trec­kten sich entlang der südöst­li­chen Küs­te wei­ter nach Süden. Am Stan­dort Wapem­be im Nor­den wur­de bei einem Indi­vi­du­um ein Hap­lo­typ gefun­den, der zur Grup­pe H gehört, die sich wäh­rend der pri­mä­ren Ausb­re­i­tung verb­re­i­te­te, und alle ande­ren Indi­vi­du­en paar­ten sich in zwei Unter­grup­pen A. Zwei vers­chie­de­ne Tropheus-​Individuen leben in unmit­tel­ba­rer Nähe in der rela­ti­ven Bez­ie­hung nahe Wapem­be. In Kato­to, der Hauptg­ren­ze zwis­chen den Grup­pen A und G, wur­de bei etwa 50% der Bevöl­ke­rung ein Hap­lo­typ der Grup­pe G und bei 50% aus den Unter­grup­pen A2 und A4 fest­ges­tellt. Die Unter­grup­pe A2 wur­de auch am Stan­dort Katu­ku­la gefun­den, aber die­se Popu­la­ti­on bes­teht haupt­säch­lich aus Fis­chen der Grup­pe G.


Zai­di ya makun­di makuu yali­sam­baa kati­ka mae­neo jira­ni waka­ti wa upa­nu­zi wa pili tak­ri­ba­ni mia­ka 400,000 ili­y­o­pi­ta, na makun­di A na D yali­fa­ni­ki­wa kuha­mia upan­de wa pili wa pwa­ni ya kati­ka­ti ya Ziwa Tan­ga­ny­i­ka. Kati­ka kipin­di hiki, baa­da ya kuha­mia pwa­ni ya mas­ha­ri­ki, kun­di la A lili­ga­wa­ny­i­ka kati­ka vikun­di 4 tofau­ti. Vikun­di A1 na A3 lab­da vili­ji­to­ke­za baa­da ya upa­nu­zi upan­de wa mas­ha­ri­ki wa pwa­ni ya kas­ka­zi­ni. Kikun­di cha A2 kilian­zia uva­mi­zi wa pwa­ni ya kaskazini-​magharibi kas­ka­zi­ni na kati­ka­ti mwa ziwa, waka­ti kikun­di cha A4 kili­pa­ti­ka­na kuto­ka­na na uko­lo­ni wa sehe­mu ya mas­ha­ri­ki ya pwa­ni ya kusi­ni. Kikun­di cha D kili­chu­kua kwa uwe­ze­ka­no sehe­mu fupi sana kati­ka eneo la Cape Kib­we­sa, kiki­ha­mia kuto­ka sehe­mu ya mag­ha­ri­bi ya pwa­ni ya kusi­ni. Hii ili­ku­wa ni waka­ti wa pekee kari­bu mia­ka 400,000 ili­y­o­pi­ta, amba­po kiwan­go cha maji kilis­hu­ka kwa mita 550. Trop­he­us hawa­we­zi kuha­mia waka­ti wa onge­ze­ko la kiwan­go cha maji, hivyo kuon­ge­ze­ka kwa umba­li kati ya sehe­mu za miam­ba za ziwa juu ya maji wazi. Kupun­gua kwa mita 550 tu kuli­tos­ha kwa saka­fu ya miam­ba kufi­kia kina cha tak­ri­ba­ni mita 50, kuun­da mazin­gi­ra ya uha­mia­ji wa Tropheus.

Usam­ba­za­ji wa Trop­he­us Kirschf­leck,” wana­opa­ti­ka­na kwe­nye kun­di F kwe­nye mwam­bao wa mas­ha­ri­ki wa sehe­mu ya kati ya ziwa na kas­ka­zi­ni mwa Kib­we­sa, una­one­ka­na kuwa wa kisi­ri kulin­ga­na na usam­ba­za­ji wa sasa wa wana­cha­ma wen­gi­ne wa kun­di hili (F) kusi­ni mag­ha­ri­bi mwa Came­ron Bay. Kwe­nye eneo la Kib­we­sa, kuna aina tatu za Trop­he­us (Trop­he­us pol­li, T.“Kibwesa,” na T.“Kirschfleck”) wana­ois­hi kari­bu. Hata hivyo, kwe­nye sam­pu­li za T.“Kirschfleck,” kulin­ga­na na mtD­NA, wali­ku­wa sehe­mu ya makun­di mawi­li, iki­ony­es­ha mchan­ga­ny­i­ko kati ya waka­zi wa awa­li wa eneo hili – kun­di la T. pol­li (E) na T. Kirschf­leck” wali­oha­mis­hwa (F). Kuna njia mbi­li mba­da­la: wawa­ki­lis­hi wa kun­di F wan­ge­we­za kuha­ma kan­do ya pwa­ni ya kusi­ni mag­ha­ri­bi hadi mpa­ka wa sehe­mu ya kati ya ziwa. Hata hivyo, ina­ba­ki wazi jin­si kun­di F lili­vy­o­we­za kuha­mia eneo kub­wa la pwa­ni ya kusi­ni mag­ha­ri­bi ina­y­os­hu­ka kwa kasi, amba­yo kwa sasa ina­ka­li­wa na sama­ki wa kun­di D, bila kuacha isha­ra yoy­o­te ya kije­ne­ti­ki au ida­di ndo­go ya watu. Mae­le­zo mba­da­la yana­we­za kuwa kwam­ba kun­di F awa­li lili­sam­baa kan­do ya pwa­ni ya kusi­ni mas­ha­ri­ki kuto­ka Kib­we­sa hadi Wapem­be na baa­da­ye lika­chu­ku­li­wa na wawa­ki­lis­hi wa kun­di A, hivyo hap­lo­ty­pes (kun­di la ale­li kwe­nye kro­mo­so­mu moja lina­lo­pi­tis­hwa pamo­ja kuto­ka kiza­zi hadi kiza­zi, na uzao una­rit­hi hap­lo­ty­pes mbi­li – moja kuto­ka kwa baba na nyin­gi­ne kuto­ka kwa mama) za kun­di F huko Kib­we­sa ni maba­ki ya kun­di lili­lo­sam­baa awa­li kwa kia­si kikub­wa. Zai­di ya hayo, kwa nad­ha­ria hii, ina­we­za kuon­ge­zwa kwam­ba kun­di F kili­ka­lia tena eneo lake la sasa kari­bu na Came­ron Bay kusi­ni mag­ha­ri­bi waka­ti wa kipin­di kikuu cha onge­ze­ko la kiwan­go cha maji ya ziwa tak­ri­ban mia­ka 400,000 ili­y­o­pi­ta. Hii inge­e­le­za uwe­po wa hap­lo­ty­pes mbi­li tofau­ti kati­ka ida­di ya watu ya Mvua (F na G) kama mato­keo ya mchan­ga­ny­i­ko baa­da ya mawa­si­lia­no ya pili na wawa­ki­lis­hi wa kun­di F. Iki­wa nad­ha­ria hii ni kwe­li, uko­lo­ni huu unge­we­za kuchu­kua nafa­si kabi­sa kun­di lili­lo­ku­we­po hapo awa­li la G, amba­lo kwa sasa lina kito­vu cha usam­ba­za­ji kusi­ni mwa mdo­mo wa Mto Lufu­bu. Kwa kuzin­ga­tia ukwe­li kwam­ba Mto Lufu­bu, kama chan­zo cha tatu kikub­wa cha maji kwa ziwa, ina­wa­ki­lis­ha kizu­izi cha eko­lo­jia kili­cho­jen­gwa vizu­ri kina­cho­ten­ga­nis­ha pwa­ni ya Mli­ma Chai­ti­ka na Rasi ya Inan­gu, basi kun­di la G lin­ge­we­za kudu­mis­ha eneo la usam­ba­za­ji la awa­li kusi­ni mwa Mto Lufu­bu laki­ni lika­chu­ku­li­wa na wawa­ki­lis­hi wa kun­di F huko Came­ron Bay baa­da ya kupun­gua kwa viwan­go vya maji.

Waka­ti wa kue­nea kwa tatu kari­bu mia­ka 200,000 ili­y­o­pi­ta, vikun­di vita­tu vya kun­di A vili­sam­baa pwa­ni amba­po awa­li vili­ku­we­po. Kikun­di cha A2 kili­la­zi­mi­ka kuha­mia upan­de wa pili wa ziwa kuto­ka kwe­nye ukin­go wa kusi­ni wa sehe­mu ya kati hadi pwa­ni ya mas­ha­ri­ki ya sehe­mu ya kusi­ni ya ziwa. Vikun­di vya A2 na A4 vili­sam­baa kan­do ya pwa­ni ya kusi­ni mas­ha­ri­ki zai­di ya ziwa. Kati­ka eneo la Wapem­be kas­ka­zi­ni, mtu mmo­ja ali­gun­du­li­wa kuwa na hap­lo­ty­ping ina­y­o­mi­li­ki­wa na kun­di H, amba­yo ili­sam­baa waka­ti wa kue­nea kwa kwan­za, na watu wote wen­gi­ne wali­pan­gwa kati­ka vikun­di viwi­li vya A. Trop­he­us wawi­li tofau­ti wana­we­za kuone­ka­na wanais­hi kati­ka uhu­sia­no wa kari­bu kari­bu na Wapem­be. Kati­ka eneo la Kato­to, mpa­ka mkuu kati ya vikun­di vya A na G, tak­ri­ban 50% ya ida­di ya watu wali­ku­wa na hap­lo­ty­ping ya kun­di G, na 50% wali­ku­wa na vikun­di vya A2 na A4. Kikun­di cha A2 pia kili­gun­du­li­wa kati­ka eneo la Katu­ku­la, laki­ni ida­di ya watu hii kwa kia­si kikub­wa ina­ju­mu­is­ha sama­ki kuto­ka kun­di la G.


Súhrn

Trop­he­usy 7 sku­pín nezme­ni­li dra­ma­tic­ky ich roz­pä­tie výsky­tu, čo môže byť kvô­li sta­bi­li­te ich život­né­ho pro­stre­dia, kto­ré je tvo­re­né kol­mo kle­sa­jú­cim pobre­žím. Tie­to oblas­ti nebo­li prí­liš ovplyv­ne­né kolí­sa­ním hla­di­ny jaze­ra, pre­to­že sa pre­sú­va­li iba sme­rom dolu a hore pozdĺž úte­sov. Jed­na pod­sku­pi­na (A2) sa zis­ti­la tak­mer po celom jaze­re a aj jedin­ci zo vzdia­le­ných popu­lá­cií sú v úzkom vzťa­hu. Keď­že sa zis­ti­li podob­né cha­rak­te­ris­ti­ky roz­ší­re­nia aj iných rodov tan­ga­nic­kých cich­líd (Eret­mo­dus, Cyp­ric­hro­mis), prav­de­po­dob­ne mali zme­ny v jaze­re (kli­ma­tic­ké a geolo­gic­ké) podob­ný vplyv na gene­tic­kú štruk­tú­ru popu­lá­cií aj iných druhov.


Sum­ma­ry

The seven groups of Trop­he­us have not dra­ma­ti­cal­ly chan­ged the­ir dis­tri­bu­ti­on ran­ge, which may be att­ri­bu­ted to the sta­bi­li­ty of the­ir envi­ron­ment cha­rac­te­ri­zed by ver­ti­cal­ly des­cen­ding coast­li­nes. The­se are­as were less affec­ted by fluc­tu­ati­ons in the lake­’s water level, as the Trop­he­us moved only up and down along the cliffs. One subg­roup (A2) was found almost throug­hout the enti­re lake, and indi­vi­du­als from dis­tant popu­la­ti­ons show clo­se rela­ti­ons­hips. Simi­lar dis­tri­bu­ti­on cha­rac­te­ris­tics have been obser­ved in other gene­ra of Tan­ga­ny­i­kan cich­lids (Eret­mo­dus, Cyp­ric­hro­mis), sug­ges­ting that chan­ges in the lake (cli­ma­tic and geolo­gi­cal) like­ly had a simi­lar impact on the gene­tic struc­tu­re of popu­la­ti­ons of other species.


Zusam­men­fas­sung

Die sie­ben Grup­pen von Trop­he­us haben ihre Verb­re­i­tungs­be­re­i­che nicht dra­ma­tisch verän­dert, was auf die Sta­bi­li­tät ihrer Umge­bung zurück­zu­füh­ren sein könn­te, die durch sen­krecht abfal­len­de Küs­ten gep­rägt ist. Die­se Gebie­te wur­den von Sch­wan­kun­gen des See­was­ser­spie­gels wenig bee­in­flusst, da sich die Trop­he­us nur auf und ab entlang der Klip­pen beweg­ten. Eine Unter­grup­pe (A2) wur­de fast im gesam­ten See gefun­den, und Indi­vi­du­en aus ent­fern­ten Popu­la­ti­onen zei­gen enge Ver­bin­dun­gen. Da ähn­li­che Verb­re­i­tung­smerk­ma­le auch bei ande­ren Gat­tun­gen der Tanganjika-​Buntbarsche (Eret­mo­dus, Cyp­ric­hro­mis) fest­ges­tellt wur­den, deutet dies darauf hin, dass Verän­de­run­gen im See (kli­ma­tis­che und geolo­gis­che) wahrs­che­in­lich einen ähn­li­chen Ein­fluss auf die gene­tis­che Struk­tur von Popu­la­ti­onen ande­rer Arten hatten.


Muh­ta­sa­ri

Trop­he­us wa makun­di 7 hawa­ja­ba­di­lis­ha sana eneo lao la usam­ba­za­ji, amba­lo lina­we­za kuwa kuto­ka­na na utu­li­vu wa mazin­gi­ra yao yana­y­o­to­ka­na na pwa­ni ina­y­os­hu­ka wima. Mae­neo haya hay­aku­at­hi­ri­wa sana na maba­di­li­ko ya kiwan­go cha ziwa, kwa­ni Trop­he­us wali­son­ga tu juu na chi­ni kan­do ya miam­ba. Kun­di moja (A2) lili­pa­ti­ka­na kari­bu kote ziwa, na watu binaf­si kuto­ka makun­di ya mba­li pia wanas­hi­ri­ki uhu­sia­no wa kari­bu. Kwa kuwa sifa sawa za usam­ba­za­ji zime­one­ka­na pia kwa maje­na­si men­gi­ne wa cich­lids wa Tan­ga­ny­i­ka (Eret­mo­dus, Cyp­ric­hro­mis), ni kwa kia­si kikub­wa kwam­ba maba­di­li­ko kati­ka ziwa (ya hali ya hewa na kiji­olo­jia) yali­ku­wa na atha­ri sawa kwe­nye muun­do wa kije­ne­ti­ki wa jamii za spis­hi nyingine.


Lite­ra­tú­ra

Baric, S. et al.: Phy­lo­ge­og­rap­hy and evo­lu­ti­on of the Tan­ga­ny­i­kan cich­lid genus Trop­he­us based upon mito­chon­drial DNA saqu­en­ces. J. Mol. Evol., 56, 2003, 54 – 68.
Cohen, A.S., Soreg­han, M.R., Scholz, C.A.: Esti­man­ting the age of for­ma­ti­on of lakes: An exam­ple from Lake Tan­ga­ny­i­ka, East Afri­can Rift Sys­tem. Geolo­gy, 21, 1993, 511 – 514.
Cohen, A.S. et al.: New pala­e­oge­og­rap­hic and lake-​level recons­truc­ti­ons of Lake Tan­ga­ny­i­ka: Impli­ca­ti­ons for tec­to­nic cli­ma­tic and bio­lo­gi­cal evo­lu­ti­on in a rift lake. Basin Res., 9, 1997, 107 – 132.
Gas­se, F. et al.: Water level fluc­tu­ati­ons of Lake Tan­ga­ny­i­ka in pha­se with oce­a­nic chan­ges during the last gla­cia­ti­on and degla­cia­ti­on. Natu­re, 342, 1989, 57 – 59.
Sturm­bau­er, C.: Explo­si­ve spe­cia­ti­on in cich­lid fis­hes of the Afri­can Gre­at Lakes: A dyna­mic model of adap­ti­ve radia­ti­on. J. Fish Biol., 53, 1998, 18 – 36.
Sturm­bau­er, C., Mey­er, A.: Gene­tic diver­gen­ce, spe­cia­ti­on and morp­ho­lo­gi­cal sta­sis in a line­a­ge of Afri­can cich­lid fis­hes. Natu­re, 358, 1992, 578 – 581.
Sturm­bau­er, C. et al.: Lake level fluc­tu­ati­on synch­ro­ni­ze gene­tic diver­gen­ces of cich­lid fis­hes in Afri­can lakes. Mol. Biol. Evol., 18, 2001, 144 – 154.

S pou­ži­tím uve­de­nej lite­ra­tú­ry spra­co­val: Róbert Toman


With the use of the pro­vi­ded lite­ra­tu­re, pro­ces­sed by: Róbert Toman.


Unter Ver­wen­dung der ange­ge­be­nen Lite­ra­tur verar­be­i­tet von: Róbert Toman.


Kwa kutu­mia mare­jeo yali­y­o­to­le­wa, ili­y­o­sin­dik­wa na: Róbert Toman.

Use Facebook to Comment on this Post

Biológia, Organizmy, Príroda, Živočíchy

Biológia rýb a rastlín

Hits: 22235

Mož­no ste sa už aj vy stret­li s tým, že neja­ký cho­va­teľ tvr­dil, že čosi je vo vzdu­chu. Sami na sebe vie­me, že poča­sie, roč­né obdo­bie, sve­tel­ný režim dňa a noci má aj na nás veľ­ký vplyv. Máme mož­nosť počuť, resp. vyslo­viť podob­né vety vte­dy, keď nám ryby kapú, keď sú bez zjav­nej prí­či­ny cho­ré, prí­pad­ne aké­si malát­ne. Súvi­sí to z bio­lo­gic­ký­mi pochod­mi, s bio­ryt­ma­mi, kto­ré v živo­te orga­niz­mu hra­jú dôle­ži­tú úlo­hu, a na kto­ré by sme nema­li zabú­dať. Ešte raz sa vrá­tim ana­lo­gic­ky ku ľuďom – len si pred­stav­te ako by ste sa sprá­va­li, keby ste nemoh­li spať, prí­pad­ne keby vás zavre­li na samot­ku. Jed­nou z vecí na kto­rú sa veľ­mi v pra­xi akva­ris­tu veľ­mi nemys­lí, ale kto­rá má vplyv aj na ryby je atmo­sfé­ric­ký tlak. Bio­ge­o­gra­fic­ké oblas­ti – hlav­né oblas­ti výsky­tu rýb a rastlín


Es ist mög­lich, dass Sie bere­its auf einen Züch­ter ges­to­ßen sind, der behaup­tet hat, dass etwas in der Luft liegt. Wir wis­sen aus eige­ner Erfah­rung, dass Wet­ter, Jah­res­ze­i­ten und der Licht­zyk­lus von Tag und Nacht auch einen gro­ßen Ein­fluss auf uns haben. Ähn­li­che Aus­sa­gen kön­nen wir hören oder machen, wenn unse­re Fis­che lai­chen, ohne offen­sicht­li­chen Grund krank sind oder sich merk­wür­dig ver­hal­ten. Dies hängt mit bio­lo­gis­chen Pro­zes­sen und Bio­r­hyth­men zusam­men, die im Leben eines Orga­nis­mus eine wich­ti­ge Rol­le spie­len und die wir nicht ver­nach­läs­si­gen soll­ten. Ich wer­de noch ein­mal ana­log zu Men­schen zurück­keh­ren – stel­len Sie sich vor, wie Sie sich ver­hal­ten wür­den, wenn Sie nicht sch­la­fen könn­ten oder wenn man Sie alle­i­ne eins­per­ren wür­de. Eines der Din­ge, an die ein Aqu­aria­ner im prak­tis­chen Sinn oft nicht denkt, die aber auch Ein­fluss auf die Fis­che hat, ist der atmo­sp­hä­ris­che Druck. Bio­ge­o­gra­fis­che Gebie­te – Haupt­verb­re­i­tungs­ge­bie­te von Fis­chen und Pflanzen.


  • Medzi naj­zná­mej­šie oblas­ti pat­rí neot­ro­pic­ká oblasť – Juž­ná Ame­ri­ka a Sever­ná Ame­ri­ka. V Juž­nej Ame­ri­ke je to naj­mä: Ori­no­co, Ama­zon, Rio Neg­ro – oblasť rast­li­ny Echi­no­do­rus. V Juž­nej Ame­ri­ke žije napr. ska­lá­re, ter­čov­ce – dis­ku­sy, cich­li­dy pávie (oce­lá­ty), Apis­to­gram­ma, čeľaď tet­ro­vi­té, gup­ky, Poeci­li­dae, kap­ro­zúb­ky, sum­če­ky Bro­chis Cory­do­ras. Nie­kto­ré sum­če­ky žijú čas­to aj v pomer­ne stu­de­ných vodách – 10°C a dosa­hu­jú úcty­hod­ných roz­me­rov – až 50 cm.
  • Sever­ná Ame­ri­ka. V Mexi­ku žijú pred­sta­vi­te­lia živo­ro­diek rodu Xip­hop­ho­rus – zná­me pla­tymečov­ky
  • Stred­ná Ame­ri­ka. Ak roz­lí­šim túto pomer­ne špe­ci­fic­kú oblasť, tak tu žijú veľ­mi zau­jí­ma­vé men­šie cich­li­dy a množ­stvo iných zau­jí­ma­vých druhov.
  • Afri­ka. Oblasť rast­lín Apo­no­ge­ton, Anu­bias: eti­óp­ska oblasť; Kon­go – Stred­ná Afri­ka; Niger; Zambe­zi; Tan­ga­ni­ka – vyso­ký obsah hyd­ro­ge­nuh­li­či­ta­nu sod­né­ho; Mala­wi – výskyt mbu­na cich­líd – rýb via­žu­cich sa na skal­na­té pro­stre­die a uta­ka cich­líd – via­žu­cich sa na voľ­nú vodu; Vic­to­ria – veľa dru­ho­vo sku­pi­ny Hap­loc­hro­mi­nae. Jaze­ro Mala­wi. Domo­rod­ci jaze­ro nazý­va­jú Nja­sa. S tým­to pome­no­va­ní sa môže­me stret­núť aj v star­šej lite­ra­tú­re. Jaze­ro Mala­wi sa nachá­dza vo výcho­do­af­ric­kej prie­ko­po­vej pre­pad­li­ne, na mies­tach, kde sa tvo­rí budú­ci oce­án­sky chr­bát. Podob­ne ako jaze­ro Tan­ga­ni­ka vznik­lo už v dáv­nych dobách. Má pre­tiah­ly, úzky tvar, no cel­ko­vá plo­cha ho radí ku jed­ným z naj­väč­ších jazier na sve­te. Žijú v ňom pre­važ­ne cich­li­dy, v pre­važ­nej mie­re ende­mic­ké dru­hy (vysky­tu­jú­ce sa len tu). Zoop­lank­tón tvo­rí: Meso­cyc­lops leuc­kar­ti, Diap­ha­no­so­ma exci­sum, Bos­mi­na lon­gi­ros­tris, Diap­to­mus sp., atď. Jaze­ro Tan­ga­ni­ka. Jaze­ro pat­rí k naj­väč­ším na sve­te, ide o dru­hé naj­hl­b­šie jaze­ro po Baj­kal­skom jaze­re. Nachá­dza sa vo výcho­do­af­ric­kej prie­ko­po­vej pre­pad­li­ne – v rif­te. Prie­mer­ná tep­lo­ta počas roka dosa­hu­je 23°C. Žijú tu pre­važ­ne cich­li­dy, z veľ­kej mie­re ende­mic­ké, no okrem toho aj množ­stvo archaic­kých foriem rýb. Zoop­lank­tón tvo­rí: Cyc­lops, Diap­to­mus sim­plex, Lim­no­chi­da tan­ga­ni­ka atď. Jaze­ro Vic­to­ria. Obrov­ské jaze­ro, s veľ­kým množ­stvom cich­líd, ich počet však nie je taký domi­nant­ný ako v prí­pa­de Mala­wi a Tan­ga­ni­ka. Žije tu naj­mä sku­pi­na Hap­loc­hro­mi­nae. Zoop­lank­tón tvo­rí: Daph­nia spp., Cyc­lops sp., Chy­do­rus sp., Diap­to­mus sp., Lep­to­do­ra sp., Cari­di­na nilo­ti­ca, Kera­tel­la sp., Phi­lo­di­na spp., Lim­noc­ni­da vic­to­riae, Asp­lanch­na bright­wel­li atď.
  • Juho­vý­chod­ná Ázia. Rie­ky Mekong, Gan­ga – oblas­ti veľ­ké­ho množ­stva rast­lín ako napr. Vesi­cu­la­ria, Cryp­to­co­ry­ne, Mic­ro­so­rium, rýb: dánia, raz­bo­ry, mren­ky, labyrintky.
  • Euró­pa. Sta­rý kon­ti­nent nepos­ky­tu­je akva­ris­tom toľ­ko rados­ti. Snáď len v oblas­ti stu­de­no­vod­nej akva­ris­ti­ky. Na dru­hej stra­ne aj na Slo­ven­sku na via­ce­rých mies­tach exis­tu­jú tep­lé prú­dy, zväč­ša geoter­mál­ne­ho pôvo­du, kto­ré posky­tu­jú v užšom pries­to­re z hľa­dis­ka tep­lo­ty pre­ži­tie subt­ro­pic­kých a tro­pic­kých dru­hov. V spod­ných kaná­loch rie­ky Dunaj sa nachá­dza­jú gup­ky – Poeci­lia reti­cu­la­ta. Dokon­ca tu doš­lo k tomu, že sa gene­tic­ká infor­má­cia sa pre­sa­di­la natoľ­ko, že sa tu vysky­tu­jú aj pôvod­né prí­rod­né for­my s pôvod­ným tva­rom tela a kres­bou. Totiž gup­ky sa sem dosta­li z rúk cho­va­te­ľov a cho­va­te­lia prí­rod­né for­my gupiek tak­mer necho­va­jú. Tie­to pôvod­ne sfar­be­né ryb­ky sú prak­tic­ky necho­va­teľ­né, dlho v akvá­riu nevy­dr­žia, zrej­me sú prí­liš divo­ké. Tep­lé prú­dy sa nachá­dza­jú na via­ce­rých mies­tach. Zná­my je prí­pad, že na Zele­nej vode pri Novom Mes­te nad Váhom sa vyskyt­li pira­ne. Bolo to v lete, ale kto­vie či si tu, ale­bo na inom mies­te nedo­ká­žu ony, ale­bo iný druh nájsť ces­tu k živo­tu aj cez zimu. Chcel by som varo­vať cho­va­te­ľov pred takou­to intro­duk­ci­ou nepô­vod­né­ho dru­hu, pre­to­že eko­sys­tém sa oby­čaj­ne nedo­ká­že pris­pô­so­biť bez ujmy, a je to neetic­ké voči prí­ro­de aj voči rybám. Nie­ke­dy je tep­lá voda von­ku udr­žia­va­ná člo­ve­kom, napr. v jazier­kach v kúpeľ­ných mes­tách. Tak je tomu aj v Pieš­ťa­noch. Jazier­ka sú napá­ja­né z ter­mál­ne­ho lie­či­vé­ho pra­me­ňa, kto­rý však obsa­hu­je veľ­ké množ­stvo solí. Pre­to v jazier­kach doká­žu žiť len nie­kto­ré dru­hy rýb: black­mol­ly, gup­ky, mečov­ky, kara­sy apod. Jazier­ka sú okráš­le­né lek­na­mi, vik­tó­ri­ou regi­ou, na bre­hoch bam­bu­som apod. Venu­je sa im ten­to článok.
  • More. Nemož­no však zabud­núť aj na mor­ské pro­stre­die: Paci­fik, Atlan­tik, Indic­ký oce­án, Bal­tik, Jad­ran, Kas­pic­ké more atď.

Zu den bekann­tes­ten Gebie­ten gehört die neot­ro­pis­che Regi­on – Süd- und Nor­da­me­ri­ka. In Süda­me­ri­ka sind beson­ders die Flüs­se Ori­no­co, Ama­zo­nas und Rio Neg­ro erwäh­nen­swert, in deren Umge­bung die Pflan­zen­gat­tung Echi­no­do­rus gede­iht. In Süda­me­ri­ka fin­det man zum Beis­piel Ska­la­re, Dis­kus­se (Ter­zi­nen), Pfau­e­nau­gen­bunt­bars­che (Oze­lots), Apis­to­gram­ma, Tetras, Gup­pys, Lebend­ge­bä­ren­de wie die Poeci­li­dae, Pan­zer­wel­se, Bro­chis und Cory­do­ras. Eini­ge Pan­zer­wel­se leben sogar in rela­tiv kal­tem Was­ser – bei 10°C – und erre­i­chen bee­in­druc­ken­de Größen von bis zu 50 cm.

Nor­da­me­ri­ka: In Mexi­ko leben Ver­tre­ter der lebend­ge­bä­ren­den Gat­tung Xip­hop­ho­rus – bekann­te Pla­tis und Schwertträger.

Mit­te­la­me­ri­ka: In die­ser spe­zi­fis­chen Regi­on leben sehr inte­res­san­te kle­i­ne­re Bunt­bars­che und vie­le ande­re fas­zi­nie­ren­de Arten.

Afri­ka: Gebie­te mit Pflan­zen wie Apo­no­ge­ton und Anu­bias sind Äthi­opien, der Kon­go in Zen­tra­laf­ri­ka, der Niger, der Sam­be­si und der Tan­gan­ji­ka mit einem hohen Gehalt an Natrium­hyd­ro­gen­car­bo­nat. Im Mala­wi­see gibt es Mbuna-​Buntbarsche, die sich an fel­si­ge Umge­bun­gen bin­den, und Utaka-​Buntbarsche, die sich im fre­ien Was­ser auf­hal­ten. Im Vik­to­ria­see fin­det man vie­le Arten der Haplochrominae-​Gruppe. Der Mala­wi­see, auch Nja­sa genannt, liegt in der ostaf­ri­ka­nis­chen Gra­benb­ru­ch­zo­ne, an Stel­len, wo sich zukünf­ti­ge oze­a­nis­che Rüc­ken bil­den. Ähn­lich wie der Tan­gan­ji­ka­see ents­tand er schon in fer­ner Ver­gan­gen­he­it. Er hat eine lang­ge­zo­ge­ne, sch­ma­le Form, aber die Gesamtf­lä­che macht ihn zu einem der größten Seen der Welt. Er beher­bergt haupt­säch­lich Bunt­bars­che, darun­ter vie­le ende­mis­che Arten (die nur hier vor­kom­men). Der Zoop­lank­ton bes­teht aus Meso­cyc­lops leuc­kar­ti, Diap­ha­no­so­ma exci­sum, Bos­mi­na lon­gi­ros­tris, Diap­to­mus sp. usw.

Tan­gan­ji­ka­see: Der See zählt zu den größten der Welt und ist nach dem Bai­kal­see der zwe­it­tiefs­te. Er liegt im Ostaf­ri­ka­nis­chen Gra­benb­ruch – im Rift. Die durch­schnitt­li­che Tem­pe­ra­tur bet­rägt 23°C. Hier leben haupt­säch­lich Bunt­bars­che, vie­le davon ende­misch, aber auch vie­le archais­che Fis­char­ten. Zoop­lank­ton umfasst Cyc­lops, Diap­to­mus sim­plex, Lim­no­chi­da tan­ga­ni­ka usw.

Victoria-​See: Ein rie­si­ger See mit einer Viel­zahl von Bunt­bars­chen, deren Anzahl jedoch nicht so domi­nant ist wie bei Mala­wi und Tan­gan­ji­ka. Hier lebt haupt­säch­lich die Grup­pe der Hap­loc­hro­mi­nae. Zoop­lank­ton umfasst Daph­nia spp., Cyc­lops sp., Chy­do­rus sp., Diap­to­mus sp., Lep­to­do­ra sp., Cari­di­na nilo­ti­ca, Kera­tel­la sp., Phi­lo­di­na spp., Lim­noc­ni­da vic­to­riae, Asp­lanch­na bright­wel­li usw.

Südos­ta­sien: Flüs­se wie der Mekong und der Gan­ges – Gebie­te mit vie­len Pflan­zen wie Vesi­cu­la­ria, Cryp­to­co­ry­ne, Mic­ro­so­rium, Fis­chen wie Dani­os, Ras­bo­ras, Bärb­lin­gen, Labyrinthen.

Euro­pa: Der alte Kon­ti­nent bie­tet den Aqu­aria­nern nicht so viel Fre­ude, außer im Bere­ich der Kalt­was­se­ra­qu­aris­tik. Ande­rer­se­its gibt es auch in der Slo­wa­kei an vers­chie­de­nen Orten war­me Strömun­gen, meist geot­her­mis­chen Urs­prungs, die in einem enge­ren Tem­pe­ra­tur­spek­trum das Über­le­ben subt­ro­pis­cher und tro­pis­cher Arten ermög­li­chen. In den unte­ren Kanä­len der Donau in der Slo­wa­kei leben Gup­pys – Poeci­lia reti­cu­la­ta. Tat­säch­lich hat sich gene­tis­ches Mate­rial so weit durch­ge­setzt, dass hier sogar natür­li­che For­men mit ori­gi­na­ler Kör­per­form und Zeich­nung vor­kom­men. Gup­pys wur­den hier von Züch­tern ein­ge­fü­hrt, und natür­li­che For­men von Gup­pys wer­den kaum gezüch­tet. Die­se urs­prün­glich gefärb­ten Fis­che sind prak­tisch nicht zücht­bar und über­le­ben im Aqu­arium nicht lan­ge, wahrs­che­in­lich sind sie zu wild. War­me Strömun­gen gibt es an vers­chie­de­nen Orten. Es ist bekannt, dass am Grünen See bei Nové Mes­to nad Váhom Piran­has vor­ka­men. Das war im Som­mer, aber wer weiß, ob sie hier oder an einem ande­ren Ort einen Weg zum Über­le­ben auch im Win­ter fin­den kön­nen. Ich möch­te die Züch­ter vor solch einer Ein­füh­rung nicht hei­mis­cher Arten war­nen, da sich das Öko­sys­tem nor­ma­ler­we­i­se nicht ohne Scha­den anpas­sen kann, und es ist sowohl der Natur als auch den Fis­chen gege­nüber unet­hisch. Manch­mal wird war­mes Was­ser drau­ßen vom Men­schen auf­rech­ter­hal­ten, zum Beis­piel in Tei­chen in Kurorts­täd­ten. So ist es auch in Pieš­ťa­ny. Die Tei­che wer­den aus einem ther­mis­chen Hei­lqu­el­len ges­pe­ist, die jedoch eine gro­ße Men­ge an Sal­zen ent­hält. Daher kön­nen nur eini­ge Fis­char­ten in den Tei­chen über­le­ben: Black Mol­lys, Gup­pys, Sch­wertt­rä­ger, Karp­fen usw. Die Tei­che sind mit See­ro­sen, Vik­to­rien, am Ufer mit Bam­bus usw. ver­ziert. Die­sem The­ma wid­met sich die­ser Artikel.

Meer: Aber man darf auch die Mee­re­sum­ge­bung nicht ver­ges­sen: Pazi­fik, Atlan­tik, Indis­cher Oze­an, Ost­see, Adria, Kas­pis­ches Meer usw.


Cich­li­dy – Cich­li­dae Pred­sta­vu­jú asi 1600 dru­hov – sú naj­väč­šou čeľa­ďou rýb, a jed­nou z naj­väč­ších z orga­niz­mov vôbec. Cich­li­dy žijú na troch kon­ti­nen­toch: v Afri­ke – Pel­vi­cac­hro­mis, Ste­a­toc­ra­nus, Hap­loc­hro­mis, Pse­udot­rop­he­us, Trop­he­us v Juž­nej Ame­ri­ke – Cic­hla­so­ma, Astro­no­tus, Apis­to­gram­ma v Ázii – Etrop­lus. Mala­ws­ké cichlidy


Cich­li­den – Cich­li­dae stel­len etwa 1600 Arten dar – sie sind die größte Fisch­fa­mi­lie und eine der größten Orga­nis­men­grup­pen über­haupt. Cich­li­den leben auf drei Kon­ti­nen­ten: in Afri­ka – Pel­vi­cac­hro­mis, Ste­a­toc­ra­nus, Hap­loc­hro­mis, Pse­udot­rop­he­us, Trop­he­us in Süda­me­ri­ka – Cic­hla­so­ma, Astro­no­tus, Apis­to­gram­ma in Asien – Etrop­lus. Malawisee-Cichliden


  • Aulo­no­ca­ra: Aulo­no­ca­ra aqu­ilo­nium, audi­tor, baen­schi, bre­vi­ni­dus, bre­vi­ros­tris, cji­ten­di, cobué, ethe­lwyn­nae, eure­ka, ger­tru­dae, guent­he­ri, hans­ba­en­schi, hue­se­ri, chi­tan­de, chi­ten­di, iwan­da, jacobf­re­i­ber­gi, jalo, kan­de, kan­de­en­se, kor­ne­liae, kor­ne­liae, lupin­gu, mac­ro­chir, mai­so­ni, male­ri, mame­lea, mar­ma­la­de cat, may­lan­di, nyas­sae, ob, rostra­tum, sau­lo­si, ste­ve­ni, stu­artg­ran­ti, tre­ma­to­cep­ha­lum, tre­ma­toc­ra­nus, usi­sya, walteri
  • Buc­coc­hro­mis: Buc­coc­hro­mis atri­ta­e­nia­tus, hete­ro­ta­e­nia, lep­tu­rus, noto­ta­e­nia, ocu­la­tus, rho­ade­sii, spec­ta­bi­lis, trewavasae
  • Pse­udot­rop­he­us: Pse­udot­rop­he­us ater, auro­ra, bar­lo­wi, crab­ro, cyane­us, dema­so­ni, ele­gans, elon­ga­tus, fain­zil­be­ri, fla­vus, fus­co­ides, fus­cus, hajo­ma­y­lan­di, lanis­ti­co­la, living­sto­nii, lom­bar­doi, lon­gi­or, lucer­na, mac­ropht­hal­mus, mic­ros­to­ma, minu­tus, modes­tus, novem­fas­cia­tus, pur­pu­ra­tus, sau­lo­si, soco­lo­fi, trop­he­ops, tur­si­ops, wil­liam­si, zeb­ra
  • May­lan­dia: May­lan­dia auro­ra, bar­lo­wi, bene­tos, cal­lai­nos, crab­ro, cyne­us­mar­gi­na­tus, ele­gans, emmil­tos, est­he­rae, fain­zil­be­ri, gres­ha­kei, hajo­ma­y­lan­di, hete­ro­pic­ta, chry­so­mal­los, lanis­ti­co­la, living­sto­ni, lom­bar­doi, mben­ji, melab­ran­chi­on, pha­e­os, pur­sa, pyr­so­no­tus, thap­si­no­gen, xans­to­ma­chus, zebra
  • Mela­noc­hro­mis: Mela­noc­hro­mis aura­tus, bali­odig­ma, bene­tos, bre­vis, chi­po­kae, cyane­or­hab­dos, dia­lep­tos, elas­to­de­ma, hete­roc­hro­mis, inter­rup­tus, joan­john­so­nae, johan­nii, lab­ro­sus, lepi­dia­dap­tes, loriae, main­ga­no, mela­nop­te­rus, mel­li­tus, paral­le­lus, peri­le­ucos, per­spi­cax, robus­tus, simu­lans, ver­mi­vo­rus, xanthodigma
  • Uta­ka cich­li­dy: afric­ké cich­li­dy žijú­ce vo voľ­nej vode: Alti­cor­pus, Aris­toc­hro­mis, Aulo­no­ca­ra, Buc­coc­hro­mis, Cap­ric­hro­mis, Cham­psoc­hro­mis, Che­i­loc­hro­mis, Chi­lo­ti­la­pia, Chro­mis, Pla­ci­doc­hro­mis, Copa­dic­hro­mis, Core­ma­to­dus, Cte­nop­ha­rynx, Cyr­to­ca­ra, Dimi­di­oc­hro­mis, Dip­lo­ta­xo­don, Doci­mo­dus, Eclec­toc­hro­mis, Exo­choc­hro­mis, Fos­so­roc­hro­mis, Hap­loc­hro­mis, Hemi­ta­e­ni­oc­hro­mis, Hemi­ti­la­pia, Leth­ri­nops, Lich­noc­hro­mis, Myloc­hro­mis, Nae­voc­hro­mis, Nim­boc­hro­mis, Nyas­sac­hro­mis, Otop­ha­rynx, Pal­li­doc­hro­mis, Pla­ci­doc­hro­mis, Pla­tyh­nat­hoc­hro­mis, Pro­to­me­las, Pse­udo­hap­loc­hro­mis, Pse­udoc­re­ni­lab­rus, Rhamp­hoc­hro­mis, Scia­e­noc­hro­mis, Stig­ma­toc­hro­mis, Tae­ni­oleth­ri­nops, Tra­mi­ti­chor­mis, Tyrannochromis. 

Tan­ga­nic­ké cichlidy


Tanganyika-​Cichliden


  • Alto­lam­pro­lo­gus: Alto­lam­pro­lo­gus cal­vus, com­pres­si­ceps, fas­cia­tus, sumbu

Juho­ame­ric­ké cichlidy

Sůda­me­ri­ka­nis­che Buntbarsche


  • Aequ­idens: Aequ­idens awa­ni, bise­ria­tus, chi­man­ta­nus, coeru­le­opunc­ta­tus, dia­de­ma, dor­si­ger, duopunc­ta­tus, epae, gea­yi, ger­ci­liae, hoeh­nei, latif­rons, maro­nii, mau­e­sa­nus, metae, micha­e­li, pal­li­dus, palo­eme­uen­sis, pat­ric­ki, pla­gi­ozo­na­tus, por­ta­leg­ren­sis, pota­ro­en­sis, pul­cher, pulch­rus, rivu­la­tus, ron­do­ni, sapa­y­en­sis, tetramerus
  • Apis­to­gram­ma: Apis­to­gram­ma agas­si­zii, black, amo­enum, arua, bita­e­nia­ta, borel­lii, bre­vis, caca­tu­oides, cae­tei, comm­brae, cru­zi, dip­lo­ta­e­nia, eli­za­bet­hae, euno­tus, geis­le­ri, gep­hy­ra, gib­bi­ceps, gos­sei, hip­po­ly­tae, hoig­nei, hongs­loi, incons­pi­cua, ini­ri­dae, juru­en­sis, lin­kei, lue­lin­gi, maci­lien­sis, mac­mas­te­ri, mein­ke­ni, moae, nijs­se­ni, nor­ber­ti, ort­man­ni, pan­du­ri­ni, par­va, pau­ci­squ­amis, pay­ami­no­nis, per­so­na­ta, per­ten­se, piau­ien­sis, ple­uro­ta­e­nia, pulch­ra, rega­ni, res­ti­cu­lo­sa, rorai­mae, rupu­nu­ni, sta­ec­ki, ste­in­dach­ne­ri, tae­nia­tum, tri­fas­cia­ta, uau­pe­si, urte­a­gai, vie­ji­ta, vie­ji­ta red, vie­ji­ta snickers
  • Archo­cen­trus: Archo­cen­trus cen­trar­chus, cut­te­ri, nano­lu­te­us, nig­ro­fas­cia­tus, saji­ca, spilurus

Živo­rod­ky žijú v juž­nej čas­ti Sever­nej Ame­ri­ky, v Stred­nej a Juž­nej Ame­ri­ke a malá časť v Juho­vý­chod­nej Ázii. Čo sa týka vyme­dze­nia sku­pi­ny živo­rod­ky” tak nara­zí­me na prob­lém ume­lo vytvo­re­nej sku­pi­ny, kto­rá nemá jas­né taxo­no­mic­ké odô­vod­ne­nie. Je to skôr funkč­ná sku­pi­na, ale­bo fyzi­olo­gic­ká. Pred­sta­vu­jú šty­ri čeľa­de: Goode­i­dae, Anab­le­pi­dae, Poeci­li­i­dae (pat­ria­ce do radu Cyp­ri­no­don­ti­for­mes), Hemi­ramp­hi­dae (pat­ria­ce medzi Belo­ni­for­mes). Medzi tzv. živo­rod­ka­mi náj­de­me pomer­ne dosť dru­hov, kto­ré sa živo­ro­dos­ťou nevyz­na­ču­jú. Viac v samos­tat­nom člán­ku. Tet­ry sú vďač­né ryby naj­mä svo­jím spo­lo­čen­ským sprá­va­ním. Hor­šie je to už z ich roz­mno­žo­va­ním – pochá­dza­jú zväč­ša z Juž­nej Ame­ri­ky, z povo­dia Ama­zo­nu, kde sú pod­mien­ky pomer­ne homo­gén­ne a špe­ci­fic­ké. Mno­ho tetier žije v kys­lej vode, z níz­kou hla­di­nou váp­ni­ka a hor­čí­ka, ale často­krát z vyš­ším obsa­hom ostat­ných iónov. Pre úče­ly akva­ris­tu sa teda naj­mä pre roz­mno­žo­va­nie hodí voda v roz­sa­hu pH 66,8, nie je výnim­kou aj 4.55, cel­ko­vá tvrdo­sť maxi­mál­ne do 10 °dGH, uhli­či­ta­no­vá tvrdo­sť 05 °dKH, vodi­vosť 200450 µS. Ikry tetier sú zväč­ša náchyl­né na svet­lo. Vytie­ra­ciu nádrž a pre­dov­šet­kým ikry po tre­ní je vhod­né zatem­niť. Dvom dru­hom Para­che­i­ro­don inne­si Para­che­i­ro­don axel­ro­di sa venu­jem pod­rob­nej­šie. Tet­ry sa vyslo­ve­ne hodia do spo­lo­čen­ské­ho akvá­ria, kde sa ak ich je dosta­tok veľ­mi pek­ne pre­ja­ví ich hej­no­vi­té sprá­va­nie. Mys­lím, že nemu­sí to byť ani nad­še­nec pre ryby, ale kaž­dé­mu sa zapá­či keď pozo­ru­je ako sa naraz pohne 50 neóniek čer­ve­ných, ale­bo hoci tetier cit­ró­no­vých. Rod Asty­anax: Asty­anax abra­mis, abra­mo­ides, acant­ho­gas­ter, aene­us, albe­olus, albur­nus, alti­pa­ra­nae, angus­tif­rons, ante­ri­or, ante­ro­ides, arman­doi, asym­met­ri­cus, atra­to­en­sis, bima­cu­la­tus, bour­ge­ti, bre­vir­hi­nus, cor­do­vae, dagu­ae, eigen­man­ni­orum, esse­qu­iben­sis, fas­cia­tus, fes­tae, fili­fe­rus, giton, goy­acen­sis, gra­ci­li­or, guapo­ren­sis, guia­nen­sis, gym­no­ge­nys, inte­ger, jor­da­ni, keit­hi, ken­ne­dyi, kul­lan­de­ri, leopol­di, line­a­tus, lon­gi­or, mag­da­le­nae, mari­onae, maro­nien­sis, maxi­mus, megas­pi­lu­ra, metae, meunie­ri, mexi­ca­nus, mic­ro­le­pis, muc­ro­na­tus, mul­ti­dens, muta­tor, myer­si, nasu­tus, nica­ra­gu­en­sis, ocel­la­tus, ort­ho­dus, para­gu­ay­en­sis, para­na­hy­bae, pin­na­tus, poetzsch­kei, poly­le­pis, pota­ro­en­sis, rega­ni, ribe­i­rae, ruber­ri­mus, sal­tor, scab­ri­pin­nis, schu­bar­ti, scin­til­lans, sco­lo­gas­ter, stil­be, super­bus, sym­met­ri­cus, tae­nia­tus, trie­ryth­rop­te­rus, vali­dus, vene­zu­e­lae, zonatus. 


Lebend­ge­bä­ren­de Zahn­karp­fen, auch als živo­rod­ky” bekannt, leben im süd­li­chen Teil Nor­da­me­ri­kas, in Mittel- und Süda­me­ri­ka sowie in einem kle­i­nen Teil Südos­ta­siens. Die Grup­pe živo­rod­ky” stößt jedoch auf das Prob­lem einer künst­lich ges­chaf­fe­nen Grup­pie­rung, die kei­ne kla­re taxo­no­mis­che Beg­rün­dung hat. Es han­delt sich eher um eine funk­ti­ona­le oder phy­si­olo­gis­che Grup­pe. Sie umfasst vier Fami­lien: Goode­i­dae, Anab­le­pi­dae, Poeci­li­i­dae (gehört zur Ord­nung Cyp­ri­no­don­ti­for­mes) und Hemi­ramp­hi­dae (gehört zu den Belo­ni­for­mes). Unter den soge­nann­ten živo­rod­ky” gibt es vie­le Arten, die sich nicht durch Lebend­ge­burt aus­ze­ich­nen. Mehr dazu in einem sepa­ra­ten Artikel.

Tetras sind dank­ba­re Fis­che, beson­ders wegen ihres sozia­len Ver­hal­tens. Es wird jedoch sch­wie­ri­ger, wenn es um ihre Fortpf­lan­zung geht. Sie stam­men größten­te­ils aus Süda­me­ri­ka, aus dem Amazonas-​Einzugsgebiet, wo die Bedin­gun­gen ziem­lich homo­gen und spe­zi­fisch sind. Vie­le Tetras leben in sau­rem Was­ser mit nied­ri­gem Gehalt an Kal­zium und Mag­ne­sium, aber oft mit einem höhe­ren Gehalt an ande­ren Ionen. Für die Zucht ist daher Was­ser im Bere­ich von pH 66,8, gele­gen­tlich auch 4,55, Gesamt­här­te maxi­mal 10 °dGH, Kar­bo­nat­här­te 0 – 5 °dKH, Leit­fä­hig­ke­it 200 – 450 µS am bes­ten gee­ig­net. Tetra-​Eier sind in der Regel lich­temp­find­lich. Es ist rat­sam, das Laich­bec­ken und beson­ders die Eier nach dem Ablai­chen abzudecken.

Ich befas­se mich genau­er mit zwei Arten, Para­che­i­ro­don inne­si und Para­che­i­ro­don axel­ro­di. Tetras eig­nen sich beson­ders gut für Geme­in­schaft­sa­qu­arien, in denen ihr sch­war­mar­ti­ges Ver­hal­ten gut zur Gel­tung kommt. Ich den­ke, man muss kein Fisch­lieb­ha­ber sein, um es zu schät­zen, wenn man sieht, wie sich 50 Rote Neons oder Zit­ro­nen­te­tras gle­i­ch­ze­i­tig bewe­gen. Die Gat­tung Asty­anax umfasst Arten wie Asty­anax abra­mis, abramoides …


Kap­ro­zúb­ky – halan­čí­ky sú dru­hy Ame­ri­ky, Afri­ky, kto­ré žijú v peri­odic­kých vodách, naj­mä v Juž­nej Ame­ri­ke čas­to doslo­va v kalu­žiach, kto­ré sú v obdo­bí daž­ďov zalia­te vodou a v obdo­bí sucha vysy­cha­jú. Tie­to ryby sa teda čas­to doží­va­jú iba jedi­ný rok. Afric­ké dru­hy sú aj 2 až 4 roč­né. Typic­ké kap­ro­zúb­ky nakla­dú ikry, kto­ré jed­no­du­cho neskôr vyschnú. Impulz na vývoj zárod­ku done­sie so sebou až opä­tov­ný dážď na začiat­ku obdo­bia daž­ďov. Simu­lá­cia toh­to pro­ce­su je aj zákla­dom úspe­chu pri ich roz­mno­žo­va­ní v zaja­tí, v našich nádr­žiach. Kap­ro­zúb­ky, v Čechách ozna­čo­va­né ako halan­čí­ky sú blíz­ke prí­buz­né živo­rod­kám. Nie­kto­ré zná­me rody: Aphy­o­se­mi­on, Cyno­le­bias, Epi­pla­tys. Aphy­o­se­mi­on: Aphy­o­se­mi­on ahli, …


Halb­schnäb­ler, auch als halan­čí­ky bekannt, sind Arten aus Ame­ri­ka und Afri­ka, die in peri­odis­chen Gewäs­sern leben, ins­be­son­de­re in Süda­me­ri­ka oft buchs­täb­lich in Pfüt­zen, die in der Regen­ze­it übersch­wemmt und in der Troc­ken­ze­it aus­get­rock­net sind. Die­se Fis­che leben daher oft nur ein Jahr. Afri­ka­nis­che Arten kön­nen auch 2 bis 4 Jah­re alt wer­den. Typis­che Halb­schnäb­ler legen Eier, die spä­ter ein­fach aus­trock­nen. Der Impuls für die Embry­o­ent­wick­lung erfolgt mit dem erne­uten Regen zu Beginn der Regen­ze­it. Die Simu­la­ti­on die­ses Pro­zes­ses ist auch die Grund­la­ge für erfolg­re­i­che Zucht in Gefan­gen­schaft, in unse­ren Aqu­arien. Halb­schnäb­ler, in Tsche­chien als halan­čí­ky bez­e­ich­net, sind enge Ver­wand­te der Lebend­ge­bä­ren­den Zahn­karp­fen. Eini­ge bekann­te Gat­tun­gen sind: Aphy­o­se­mi­on, Cyno­le­bias, Epi­pla­tys. Aphy­o­se­mi­on: Aphy­o­se­mi­on ahli …


Kap­ro­vi­té sú zväč­ša veľ­mi zve­da­vé ryby žijú naj­mä v juho­vý­chod­nej Ázii, v Indii, v Číne. Rody Bar­bus, Capo­tea, Pun­tius. Nie­kto­ré ako napr. Pun­tius sa doká­žu pris­pô­so­biť aj pomer­ne chlad­nej vode. Mre­ny Bar­bus: Bar­bus abla­bes, abo­inen­sis, acu­ti­ceps, aene­us, afro­ha­mil­to­ni, afro­ver­na­yi, alba­ni­cus, alber­ti, allu­au­di, alo­yi, altia­na­lis alti­dor­sa­lis, alva­re­zi, aman­po­ae, ama­to­li­cus, ambo­se­li, amp­hi­gram­ma, andre­wi, ane­ma, annec­tens, anniae, anop­lus, ansor­gii, aple­uro­gram­ma, apo­en­sis, ara­bi­cus, aram­bour­gi, arcis­lon­gae, argen­te­us, aspi­lus, aspius, ata­ko­ren­sis, atkin­so­ni, atro­ma­cu­la­tus, bagb­wen­sis, bar­bus, bar­nar­di, barot­se­en­sis, bate­sii, bau­do­ni, bawku­en­sis, bellc­ros­si, bif­re­na­tus, bigor­nei, bino­ta­tus, boboi, boca­gei, bour­da­riei, bra­chy­cep­ha­lus, bra­chy­gram­ma, braz­zai, bre­vi­ceps, bre­vi­dor­sa­lis, bre­vi­la­te­ra­lis, bre­vi­pin­nis, bre­vis­pi­nis, bri­char­di, byn­ni, cade­na­ti, cali­dus, cal­len­sis, cal­lip­te­rus, camp­ta­cant­hus, can­dens, cani­nus, canis, capen­sis, capi­to, car­do­zoi, carens, cas­tra­si­bu­tum, cate­na­rius, cau­do­sig­na­tus, cau­do­vit­ta­tus, cer­cops, chi­ca­pa­en­sis, chium­be­en­sis, chlo­ro­ta­e­nia, cho­lo­en­sis, cis­cau­ca­si­cus, cit­ri­nus, clau­di­nae, clau­se­ni, cod­ring­to­ni, col­lar­ti, comi­zo, com­pi­nei, con­dei, con­gi­cus, cyc­lo­le­pis, dar­te­vel­lei, degu­idei, deser­ti, dia­lo­nen­sis, diti­nen­sis, dor­so­li­ne­a­tus, ebur­ne­en­sis, elep­han­tis, ensis, eru­bes­cens, eryt­hro­zo­nus, eso­ci­nus, ethi­opi­cus, eubo­icus, eurys­to­mus, euta­e­nia, evan­si, eve­ret­ti, exu­la­tus, fas­ci­ola­tus, fasolt, fou­ten­sis, frits­chii, gana­nen­sis, ges­tet­ne­ri, girar­di, gokts­chai­cus, gra­e­cus, gra­ell­sii, gre­en­wo­odi, gru­ve­li, guil­di, guine­en­sis, guira­li, guira­onis, guliel­mi, gur­ne­yi, haa­si, haa­sia­nus, habe­re­ri, holo­ta­e­nia, hos­pes, hulo­ti, huls­ta­er­ti, hume­ra­lis, humi­lis, humph­ri, hyp­so­le­pis, ina­e­qu­alis, inno­cens, inter­me­dius, itu­rii, jack­so­ni, jae, jans­sen­si, johns­to­nii, jub­bi, kamo­lon­do­en­sis, kers­te­nii, kess­le­ri, kim­ber­le­y­en­sis, kis­sien­sis, kuilu­en­sis, lacer­ta, lago­en­sis, lama­ni, late­ris­tri­ga, lati­ceps, lau­zan­nei, leonen­sis, libe­rien­sis, line­a­tus, line­oma­cu­la­tus, litam­ba, lon­gi­ceps, lon­gi­fi­lis, love­rid­gii, luapu­lae, lucius, lufu­kien­sis, luikae, lujae, lukin­dae, luku­sien­sis, lulu­ae, mace­do­ni­cus, macha­doi, maci­nen­sis, mac­ro­ceps, mac­ro­le­pis, mac­rops, mac­ro­ta­e­nia, mag­da­le­nae, mala­cant­hus, mani­cen­sis, mare­qu­en­sis, mariae, mar­mo­ra­tus, mar­to­rel­li, matt­he­si, mat­to­zi, mawam­bi, mawam­bien­sis, mba­mi, medi­osqu­ama­tus, meri­di­ona­lis, mic­ro­bar­bis, mic­ro­cep­ha­lus, mic­ro­ne­ma, mic­ro­te­ro­le­pis, mimus, miole­pis, mira­bi­lis, moco­en­sis, moha­si­cus, mote­ben­sis, mul­ti­li­ne­a­tus, mun­go­en­sis, mur­sa, musum­bi, myer­si, nan­ning­si, nasus, nata­len­sis, neefi, neg­lec­tus, neuma­y­eri, nige­rien­sis, nig­ri­fi­lis, nig­ro­lu­te­us, nioko­lo­en­sis, nou­nen­sis, nyan­zae, oli­go­gram­mus, oli­go­le­pis, oli­va­ce­us, owe­nae, oxyr­hyn­chus, pagens­te­che­ri, pal­li­dus, palu­di­no­sus, papi­lio, parab­la­bes, para­jae, para­wal­dro­ni, pau­ci­squ­ama­tus, pel­leg­ri­ni, pelo­pon­ne­sius, pen­ta­zo­na, perin­ce, petch­kov­skyi, petit­je­a­ni, pier­rei, pin­nau­ra­tus, pla­tyr­hi­nus, ple­be­jus, ple­uro­gram­ma, ple­urop­ho­lis, pobe­gu­ini, poechii, poly­le­pis, pre­spen­sis, pri­ona­cant­hus, pro­ge­nys, pse­udog­nat­ho­don, pse­udo­top­pi­ni, puel­lus, pumi­lus, punc­ti­ta­e­nia­tus, pyg­ma­e­us, quad­ri­punc­ta­tus, radia­tus, raim­baul­ti, rei­nii, rhi­nop­ho­rus, roca­da­si, roha­ni, rosae, rous­sel­lei, rou­xi, roy­lii, ruasae, sach­si, sac­ra­tus, sales­sei, sal­mo, schou­te­de­ni, sch­wa­nen­fel­di, scla­te­ri, ser­ra, sexra­dia­tus, some­re­ni, somp­hong­si, spe­le­ops, stan­le­yi, stap­per­sii, stau­chi, ste­in­dach­ne­ri, stig­ma­se­mi­on, stig­ma­to­py­gus, subi­nen­sis, sub­li­mus, sub­li­ne­a­tus, syl­va­ti­cus, syn­tre­cha­le­pis, tae­ni­op­le­ura, tae­niu­rus, tai­ten­sis, tan­gan­den­sis, tau­ri­cus, tegu­li­fer, tetras­pi­lus, tetras­tig­ma, tet­ra­zo­na, tha­ma­la­ka­nen­sis, thy­si, tie­ko­roi, tit­te­ya, tomien­sis, ton­ga­en­sis, top­pi­ni, tra­chyp­te­rus, tra­orei, tre­uren­sis, tre­ve­ly­ani, tri­ma­cu­la­tus, tri­no­ta­tus, tris­pi­lo­ides, tris­pi­lo­mi­mus, tris­pi­lop­le­ura, tris­pi­los, tro­pi­do­le­pis, tybe­ri­nus, uni­ta­e­nia­tus, uros­tig­ma, uro­ta­e­nia, usam­ba­rae, van­de­rys­ti, vik­to­ria­nus, vivi­pa­rus, wal­ke­ri, well­ma­ni, wurt­zi, yeien­sis, yon­gei, zal­bien­sis, zan­zi­ba­ri­cus. Botia: Botia almor­hae, beau­for­ti, berd­mo­rei, bir­di, cau­di­punc­ta­ta, dario, dayi, eos, guili­nien­sis, helo­des, his­tri­oni­ca, hyme­nop­hy­sa, lecon­tei, loha­cha­ta, lon­gi­dor­sa­lis, lon­gi­ven­tra­lis, mac­ra­cant­hus, modes­ta, mor­le­ti, nig­ro­li­ne­a­ta, pulch­ra, ree­ve­sae, rever­sa, rostra­ta, sidt­hi­mun­ki, stria­ta, superciliaris.


Die Karp­fen­fis­che sind in der Regel sehr neugie­ri­ge Fis­che und leben haupt­säch­lich in Südos­ta­sien, Indien und Chi­na. Zu den Gat­tun­gen gehören Bar­bus, Capo­tea, Pun­tius. Eini­ge, wie zum Beis­piel Pun­tius, kön­nen sich auch an rela­tiv küh­les Was­ser anpas­sen. Karp­fen­fis­che der Gat­tung Barbus.


Laby­rint­ky mož­no ozna­čiť ako pokoj­né ryby. Dru­hy, kto­ré na dýcha­nie pou­ží­va­jú zvlášt­ny apa­rát – laby­rint. Žijú naj­mä v juho­vý­chod­nej Ázii, kde je vo vode obrov­ské množ­stvo mate­riá­lu – orga­nic­ké­ho mate­riá­lu, rast­lín pri­sad­nu­tých aj plá­va­jú­cich a v tro­pic­kej Afri­ke. Mož­no aj pre­to vznik­lo také pris­pô­so­be­nie, pre­to­že kys­lí­ka je v tých­to vodách pome­nej. Pat­ria sem aj popu­lár­ne bojov­ni­ce (Bet­ta), kto­rých sa vyzna­ču­jú zau­jí­ma­vý džen­tl­men­ský sprá­va­ním pri boji medzi sok­mi. Medzi nimi sú nie­kto­ré dru­hy papu­ľov­ce podob­ne ako je čas­té u cich­líd. Koli­za je druh, kto­rý rov­na­ko sta­via pri roz­mno­žo­va­ní peno­vé hniez­da, ale kto­ré­ho poter pat­rí medzi naj­men­ší na sve­te – pre jeho odcho­ve je dopo­ru­če­ná maxi­mál­na výš­ka hla­di­ny 10 cm. Nie­kto­ré zná­me rody: Tri­cho­gas­ter – gura­ma, Coli­sa, Bet­ta – bojov­ni­ca. Belo­n­tia: Belo­n­tia has­sel­ti, sig­na­ta, Bojov­ni­ce Bet­ta: Bet­ta aka­ren­sis, albi­mar­gi­na­ta, ana­ba­to­ides, balun­ga, bel­li­ca, bre­vi­obe­sus, bro­wno­rum, bur­di­ga­la, chan­no­ides, chi­ni, chlo­rop­ha­rynx, coc­ci­na, dimi­dia­ta, edit­hae, eni­sae, foers­chi, fus­ca, hip­po­si­de­ros, imbel­lis, livi­da, mac­ros­to­ma, mini­opin­na, ocel­la­ta, pato­ti, per­sep­ho­ne, pi, pic­ta, pin­gu­is, pri­ma, pug­nax, pulch­ra, rena­ta, rub­ra, ruti­lans, schal­le­ri, simo­rum, sim­plex, sma­rag­di­na, spi­lo­to­ge­na, splen­dens, stro­hi, tae­nia­ta, tomi, tus­sy­ae, uni­ma­cu­la­ta, wase­ri Pan­cier­ni­ky – Cal­lich­ty­i­dae sa roz­de­ľu­jú sa na dve pod­če­ľa­de: Cal­licht­hy­i­nae s rod­mi: Cal­licht­hys, Hop­los­ter­num, Mega­le­chis, Lept­hop­los­ter­num, Dia­ne­ma, kto­rá obsa­hu­je len hŕs­tku dru­hov a na obrov­skú sku­pi­nu Cory­do­ra­di­nae s rod­mi: Cory­do­ras, Bro­chis, Aspi­do­ras. Do prvej sku­pi­ny pat­ria pomer­ne veľ­ké dru­hy, kto­ré tvo­ria podob­ne ako laby­rint­ky peno­vé hniez­do. Pod­če­ľaď Cory­do­ra­di­nae ikry oby­čaj­ne lepí na sub­strát. Pan­cier­ni­ky sa čas­to mno­žia v pra­xi hro­mad­ne. Vypro­vo­ku­je ich výdat­ná stra­va (niten­ky, prí­pad­ne patent­ky), čas­to stu­de­ná voda, čerstvá voda, zni­žo­va­nie hla­di­ny vody.


Laby­rinth­fis­che kön­nen als fried­li­che Fis­che bet­rach­tet wer­den. Es han­delt sich um Arten, die zum Atmen ein spe­ziel­les Organ – das Laby­rinth – ver­wen­den. Sie leben haupt­säch­lich in Südos­ta­sien, wo es eine rie­si­ge Men­ge an Mate­rial in Form von orga­nis­chem Mate­rial gibt, darun­ter Pflan­zen, die am Boden wach­sen, sowie sch­wim­men­de Pflan­zen, und in tro­pis­chem Afri­ka. Mög­li­cher­we­i­se hat sich die­se Anpas­sung des­halb ent­wic­kelt, weil in die­sen Gewäs­sern weni­ger Sau­ers­toff vor­han­den ist. Dazu gehören auch die belieb­ten Kampf­fis­che (Bet­ta), die sich durch inte­res­san­tes Gentleman-​Verhalten wäh­rend Kämp­fen zwis­chen Riva­len aus­ze­ich­nen. Eini­ge von ihnen haben Merk­ma­le von Laby­rinth­fis­chen, ähn­lich wie es bei Bunt­bars­chen häu­fig der Fall ist. Der Coli­sa ist eine Art, die beim Lai­chen eben­falls ein Schaum­nest baut, aber deren Nach­wuchs zu den kle­ins­ten der Welt gehört – die maxi­ma­le Was­ser­spie­gel­höhe für die Auf­zucht bet­rägt emp­foh­le­ner­we­i­se 10 cm. Eini­ge bekann­te Gat­tun­gen sind Tri­cho­gas­ter – Gura­mis, Coli­sa, Bet­ta – Kampf­fis­che. Belo­n­tia: Belo­n­tia has­sel­ti, sig­na­ta, Kampf­fis­che Bet­ta: Bet­ta aka­ren­sis, albi­mar­gi­na­ta, ana­ba­to­ides, balun­ga, bel­li­ca, bre­vi­obe­sus, bro­wno­rum, bur­di­ga­la, chan­no­ides, chi­ni, chlo­rop­ha­rynx, coc­ci­na, dimi­dia­ta, edit­hae, eni­sae, foers­chi, fus­ca, hip­po­si­de­ros, imbel­lis, livi­da, mac­ros­to­ma, mini­opin­na, ocel­la­ta, pato­ti, per­sep­ho­ne, pi, pic­ta, pin­gu­is, pri­ma, pug­nax, pulch­ra, rena­ta, rub­ra, ruti­lans, schal­le­ri, simo­rum, sim­plex, sma­rag­di­na, spi­lo­to­ge­na, splen­dens, stro­hi, tae­nia­ta, tomi, tus­sy­ae, uni­ma­cu­la­ta, wase­ri Pan­zer­wel­se – Cal­lich­ty­i­dae wer­den in zwei Unter­fa­mi­lien unter­te­ilt: Cal­licht­hy­i­nae mit den Gat­tun­gen Cal­licht­hys, Hop­los­ter­num, Mega­le­chis, Lept­hop­los­ter­num, Dia­ne­ma, die nur eine Hand­voll Arten ent­hält, und die rie­si­ge Grup­pe Cory­do­ra­di­nae mit den Gat­tun­gen Cory­do­ras, Bro­chis, Aspi­do­ras. Die ers­te Grup­pe umfasst ziem­lich gro­ße Arten, die ähn­lich wie Laby­rinth­fis­che Schaum­nes­ter bau­en. Die Unter­fa­mi­lie Cory­do­ra­di­nae legt ihre Eier nor­ma­ler­we­i­se an den Sub­stra­ten. Pan­zer­wel­se ver­meh­ren sich oft in der Pra­xis in gro­ßen Grup­pen. Aus­ge­löst wird dies durch reich­hal­ti­ge Nahrung (Würm­chen, gele­gen­tlich Arte­mia), oft küh­les Was­ser, fris­ches Was­ser und das Absen­ken des Wasserspiegels.


Z iných druhov

  • Jese­te­ry: Aci­pen­ser: Aci­pen­ser bae­rii, bai­ca­len­sis, bre­vi­ros­trum, dab­ry­anus, ful­ves­cens, guel­dens­ta­ed­tii, medi­ros­tris, mika­doi, mul­tis­cu­ta­tus, nacca­rii, nudi­ven­tris, oxy­rin­chus deso­toi, oxy­rin­chus oxy­rin­chus, per­si­cus, rut­he­nus, sch­renc­kii, sinen­sis, stel­la­tus, stu­rio, transmontanus
  • Klau­ni: Amp­hip­ri­on: Amp­hip­ri­on akal­lo­pi­sos, akin­dy­nos, allar­di, bicinc­tus, cha­go­sen­sis, chry­so­gas­ter, chry­sop­te­rus, clar­kii, ephip­pium, fre­na­tus, fus­co­cau­da­tus, late­zo­na­tus, lati­fas­cia­tus, leucok­ra­nos, mccul­lo­chi, mela­no­pus, nig­ri­pes, ocel­la­ris, oma­nen­sis, per­cu­la, peri­de­rai­on, polym­nus, rub­ro­cinc­tus, san­da­ra­ci­nos, sebae, thiel­lei, tricinctus
  • Prí­sav­ní­ky. Ancis­trus: Ancis­trus alga, bau­den­sis, boden­ha­me­ri, boli­via­nus, bre­vi­fi­lis, bre­vi­pin­nis, bro­wn LDA 160, bufo­nius, cala­mi­ta, cau­ca­nus, cen­tro­le­pis, chag­re­si, cirr­ho­sus, cla­ro LDA 08, cle­men­ti­nae, cryp­topht­hal­mus, damas­ce­ni, doli­chop­te­rus, dubius, eri­na­ce­us, eus­tic­tus, for­mo­so, ful­vus, gala­ni, gym­nor­hyn­chus, hete­ror­hyn­chus, hop­lo­ge­nys, jel­skii, latif­rons, leucos­tic­tus, line­ola­tus, lit­hur­gi­cus, mac­ropht­hal­mus, macu­la­tus, mala­cops, mara­cas­se, mar­ti­ni, mat­tog­ros­sen­sis, mega­los­to­mus, melas, mon­ta­nus, mul­tis­pi­nis, nudi­ceps, occi­den­ta­lis, occ­loi, pira­re­ta, piri­for­mis, punc­ta­tus, ranun­cu­lus, roths­chil­di, spi­no­sus, stig­ma­ti­cus, tam­bo­en­sis, tau­na­yi, tec­ti­ros­tris, tem­minc­ki, tri­ra­dia­tus, variolus

Störe: Aci­pen­ser: Aci­pen­ser baerii …
Clo­wn­fis­che (Ane­mo­nen­fis­che): Amp­hip­ri­on: Amp­hip­ri­on akallopisos …
Saug­mau­lwel­se (Har­nisch­wel­se): Ancis­trus: Ancis­trus alga …


Per­haps you have alre­a­dy encoun­te­red a situ­ati­on whe­re a bre­e­der clai­med that somet­hing is in the air. We our­sel­ves know that weat­her, sea­sons, light con­di­ti­ons during the day and night have a sig­ni­fi­cant impact on us. Simi­lar sta­te­ments can be heard or expres­sed when our fish are spa­wning, are ine­x­pli­cab­ly sick, or not doing well. This is rela­ted to bio­lo­gi­cal pro­ces­ses, bio­r­hythms that play an impor­tant role in the life of orga­nisms, and should not be forgotten.

Let’s return ana­lo­gi­cal­ly to humans – just ima­gi­ne how you would beha­ve if you could­n’t sle­ep or if you were loc­ked up alo­ne. One thing that aqu­arium hob­by­ists often don’t think about, but which also affects fish, is atmo­sp­he­ric pressure.

Bio­ge­og­rap­hic regi­ons – main are­as of fish and plant distribution.

Among the most well-​known regi­ons is the neot­ro­pi­cal regi­on – South Ame­ri­ca and North Ame­ri­ca. In South Ame­ri­ca, this inc­lu­des the Ori­no­co, Ama­zon, Rio Neg­ro – the area of the Echi­no­do­rus plant. In South Ame­ri­ca, you can find angel­fish, dis­cus, cich­lids such as Apis­to­gram­ma and pea­cock cich­lids, tet­ra fami­ly, gup­pies, kil­li­fish, and Bro­chis and Cory­do­ras cat­fish. Some cat­fish often live in rela­ti­ve­ly cold waters – 10°C and reach impres­si­ve sizes – up to 50 cm.

North Ame­ri­ca: In Mexi­co, repre­sen­ta­ti­ves of the live­be­a­rer genus Xip­hop­ho­rus live – kno­wn as pla­ties and swordtails.

Cen­tral Ame­ri­ca: If we dis­tin­gu­ish this rela­ti­ve­ly spe­ci­fic regi­on, you can find very inte­res­ting smal­ler cich­lids and many other inte­res­ting spe­cies here.

Afri­ca: Regi­ons with plants like Apo­no­ge­ton, Anu­bias inc­lu­de the Ethi­opian regi­on; Con­go – Cen­tral Afri­ca; Niger; Zambe­zi; Tan­ga­ny­i­ka – high con­tent of sodium bicar­bo­na­te; Mala­wi – occur­ren­ce of mbu­na cich­lids – rock-​dwelling fish and uta­ka cich­lids – free-​swimming fish; Vic­to­ria – many spe­cies of the Hap­loc­hro­mi­nae group.

Lake Mala­wi: The lake is loca­ted in the East Afri­can Rift Val­ley, whe­re a futu­re oce­a­nic rid­ge is for­ming. It is one of the lar­gest lakes in the world. It is home to pre­do­mi­nan­tly cich­lids, many of which are ende­mic spe­cies (found only there).

Lake Tan­ga­ny­i­ka: It is one of the lar­gest lakes in the world and the second dee­pest after Lake Bai­kal. It is loca­ted in the East Afri­can Rift, and its ave­ra­ge tem­pe­ra­tu­re during the year is around 23°C. The lake is home to pre­do­mi­nan­tly cich­lids, inc­lu­ding many ende­mic spe­cies and archaic fish forms.

Lake Vic­to­ria: A huge lake with a lar­ge num­ber of cich­lids, main­ly belo­n­ging to the Hap­loc­hro­mi­nae group.

Sout­he­ast Asia: Rivers like the Mekong and Gan­ges are are­as with a lar­ge num­ber of plants such as Vesi­cu­la­ria, Cryp­to­co­ry­ne, Mic­ro­so­rium, and fish like dani­os, ras­bo­ras, loaches, and laby­rinth fish.

Euro­pe: The old con­ti­nent does not pro­vi­de as much joy for aqu­arium ent­hu­siasts, except in col­dwa­ter aqu­ariums. Howe­ver, in seve­ral pla­ces in Slo­va­kia, the­re are warm cur­rents, usu­al­ly of geot­her­mal ori­gin, which pro­vi­de a nar­ro­wer tem­pe­ra­tu­re ran­ge for the sur­vi­val of subt­ro­pi­cal and tro­pi­cal species.

Sea: Mari­ne envi­ron­ments such as the Paci­fic, Atlan­tic, Indian Oce­an, Bal­tic Sea, Adria­tic Sea, Cas­pian Sea, etc.

Cich­lids – Cich­li­dae: Repre­sent about 1600 spe­cies, making them the lar­gest fami­ly of fish and one of the lar­gest among all orga­nisms. Cich­lids live on three con­ti­nents: in Afri­ca – Pel­vi­cac­hro­mis, Ste­a­toc­ra­nus, Hap­loc­hro­mis, Pse­udot­rop­he­us, Trop­he­us in South Ame­ri­ca – Cic­hla­so­ma, Astro­no­tus, Apis­to­gram­ma in Asia – Etroplus.

Mala­wi Cichlids:

Aulo­no­ca­ra, Buc­coc­hro­mis, Pse­udot­rop­he­us, May­lan­dia, Mela­noc­hro­mis, Uta­ka cich­lids (Afri­ca­na cich­lids living in open water): Alti­cor­pus, Aris­toc­hro­mis, Aulo­no­ca­ra, Buc­coc­hro­mis, Cap­ric­hro­mis, Cham­psoc­hro­mis, Che­i­loc­hro­mis, Chi­lo­ti­la­pia, Chro­mis, Pla­ci­doc­hro­mis, Copa­dic­hro­mis, Core­ma­to­dus, Cte­nop­ha­rynx, Cyr­to­ca­ra, Dimi­di­oc­hro­mis, Dip­lo­ta­xo­don, Doci­mo­dus, Eclec­toc­hro­mis, Exo­choc­hro­mis, Fos­so­roc­hro­mis, Hap­loc­hro­mis, Hemi­ta­e­ni­oc­hro­mis, Hemi­ti­la­pia, Leth­ri­nops, Lich­noc­hro­mis, Myloc­hro­mis, Nae­voc­hro­mis, Nim­boc­hro­mis, Nyas­sac­hro­mis, Otop­ha­rynx, Pal­li­doc­hro­mis, Pla­ci­doc­hro­mis, Pla­tyh­nat­hoc­hro­mis, Pro­to­me­las, Pse­udo­hap­loc­hro­mis, Pse­udoc­re­ni­lab­rus, Pte­roc­hro­mis, Rhamp­hoc­hro­mis, Scia­e­noc­hro­mis, Tae­ni­oleth­ri­nops, Tae­ni­oc­hro­mis, Tra­mi­tic­hro­mis, Tre­ma­toc­ra­nus, Tyran­noc­hro­mis, Tyran­noc­hro­mis, Pla­ci­doc­hro­mis, Pro­to­me­las, Pse­udo­hap­loc­hro­mis, Pse­udoc­re­ni­lab­rus, Pte­roc­hro­mis, Rhamp­hoc­hro­mis, Scia­e­noc­hro­mis, Tae­ni­oleth­ri­nops, Tae­ni­oc­hro­mis, Tra­mi­tic­hro­mis, Tre­ma­toc­ra­nus, Tyran­noc­hro­mis, Tyran­noc­hro­mis, Pse­udot­rop­he­us, Labi­doc­hro­mis, Iodot­rop­he­us, Nkhomo-​benga, Labe­ot­rop­he­us, Trop­he­ops, Labi­doc­hro­mis, Nim­bos­ta­tus, Nim­boc­hro­mis, Nim­boc­hro­mis, Nim­boc­hro­mis, Nim­bos­ta­tus, Nim­boc­hro­mis, Nim­boc­hro­mis, Labe­ot­rop­he­us, Labe­ot­rop­he­us, Labe­ot­rop­he­us, Pse­udot­rop­he­us, Labi­doc­hro­mis, Iodot­rop­he­us, Nkhomo-​benga, Labe­ot­rop­he­us, Trop­he­ops, Labi­doc­hro­mis, Nim­bos­ta­tus, Nim­boc­hro­mis, Nim­boc­hro­mis, Nim­boc­hro­mis, Nim­bos­ta­tus, Nim­boc­hro­mis, Nim­boc­hro­mis, Labe­ot­rop­he­us, Labe­ot­rop­he­us, Labe­ot­rop­he­us, Pse­udot­rop­he­us, Labi­doc­hro­mis, Iodot­rop­he­us, Nkhomo-​benga, Labe­ot­rop­he­us, Trop­he­ops, Labi­doc­hro­mis, Nim­bos­ta­tus, Nim­boc­hro­mis, Nim­boc­hro­mis, Nim­boc­hro­mis, Nim­bos­ta­tus, Nim­boc­hro­mis, Nim­boc­hro­mis, Labe­ot­rop­he­us, Labe­ot­rop­he­us, Labe­ot­rop­he­us, Pse­udot­rop­he­us, Labi­doc­hro­mis, Iodot­rop­he­us, Nkhomo-​benga, Labe­ot­rop­he­us, Trop­he­ops, Labi­doc­hro­mis, Nim­bos­ta­tus, Nim­boc­hro­mis, Nim­boc­hro­mis, Nim­boc­hro­mis, Nim­bos­ta­tus, Nim­boc­hro­mis, Nim­boc­hro­mis, Labe­ot­rop­he­us, Labe­ot­rop­he­us, Labe­ot­rop­he­us, Pse­udot­rop­he­us, Labi­doc­hro­mis, Iodot­rop­he­us, Nkhomo-​benga, Labe­ot­rop­he­us, Tropheops.

Tan­ga­ny­i­ka Cichlids:

As with Mala­wi, you can find a varie­ty of cich­lids here. The main dif­fe­ren­ce is that the rock-​dwelling cich­lids, mbu­na, are usu­al­ly smal­ler and have more spe­cies than in Lake Mala­wi. Howe­ver, you can also find lar­ger pre­da­tors here. Repre­sen­ta­ti­ves: Juli­doc­hro­mis, Neolam­pro­lo­gus, Cyp­ric­hro­mis, Para­cyp­ric­hro­mis, Lam­pricht­hys, Hap­loc­hro­mis, Cyp­ho­ti­la­pia, Pet­roc­hro­mis, Alto­lam­pro­lo­gus, Xeno­ti­la­pia, Enan­ti­opus, Opt­hal­mo­ti­la­pia, Eretmodus.

Ame­ri­can Cichlids:

The Ame­ri­can con­ti­nent offers a rich varie­ty of cich­lids. Apis­to­gram­ma, Cre­ni­cich­la, Gym­no­ge­op­ha­gus, Mik­ro­ge­op­ha­gus, Cic­hla­so­ma, Aequ­idens, Cle­ith­ra­ca­ra, Bio­to­do­ma, Lae­ta­ca­ra, Nan­na­ca­ra, Cre­ni­ca­ra, Iva­na­ca­ra, Retro­cu­lus, Dic­ros­sus, Meso­nau­ta, Aequ­idens, Cle­ith­ra­ca­ra, Bio­to­do­ma, Lae­ta­ca­ra, Nan­na­ca­ra, Cre­ni­ca­ra, Iva­na­ca­ra, Retro­cu­lus, Dic­ros­sus, Meso­nau­ta, Cre­ni­cich­la, Gym­no­ge­op­ha­gus, Mik­ro­ge­op­ha­gus, Cic­hla­so­ma, Aequ­idens, Cle­ith­ra­ca­ra, Bio­to­do­ma, Lae­ta­ca­ra, Nan­na­ca­ra, Cre­ni­ca­ra, Iva­na­ca­ra, Retro­cu­lus, Dic­ros­sus, Meso­nau­ta, Cre­ni­cich­la, Gym­no­ge­op­ha­gus, Mik­ro­ge­op­ha­gus, Cic­hla­so­ma, Aequ­idens, Cle­ith­ra­ca­ra, Bio­to­do­ma, Lae­ta­ca­ra, Nan­na­ca­ra, Cre­ni­ca­ra, Iva­na­ca­ra, Retro­cu­lus, Dic­ros­sus, Meso­nau­ta, Cre­ni­cich­la, Gym­no­ge­op­ha­gus, Mik­ro­ge­op­ha­gus, Cic­hla­so­ma, Aequ­idens, Cle­ith­ra­ca­ra, Bio­to­do­ma, Lae­ta­ca­ra, Nan­na­ca­ra, Cre­ni­ca­ra, Iva­na­ca­ra, Retro­cu­lus, Dic­ros­sus, Meso­nau­ta, Apis­to­gram­ma, Cre­ni­cich­la, Gym­no­ge­op­ha­gus, Mik­ro­ge­op­ha­gus, Cic­hla­so­ma, Aequ­idens, Cle­ith­ra­ca­ra, Bio­to­do­ma, Lae­ta­ca­ra, Nan­na­ca­ra, Cre­ni­ca­ra, Iva­na­ca­ra, Retro­cu­lus, Dic­ros­sus, Mesonauta.

Asian Cich­lids:

Etrop­lus, Etrop­lus sura­ten­sis (gre­en chro­mi­de) – repre­sents the only cich­lid spe­cies in India.

Indian cich­lid Etrop­lus macu­la­tus is an ende­mic spe­cies to India.

Kri­ben­sis cich­lid (Pel­vi­cac­hro­mis pul­cher): Found in the Niger Del­ta, Nige­ria, and Cameroon.

Dwarf cich­lids (Apis­to­gram­ma, Mik­ro­ge­op­ha­gus, Nan­na­ca­ra, Tae­nia­ca­ra): They are found in South Ame­ri­ca, pri­ma­ri­ly in the Ama­zon River basin.

The­re is an inc­re­dib­le diver­si­ty of fish spe­cies across the glo­be, each adap­ted to its spe­ci­fic envi­ron­ment. It’s essen­tial for aqu­arium hob­by­ists to unders­tand the natu­ral habi­tats of the fish they keep to pro­vi­de the best possib­le care and repli­ca­te tho­se con­di­ti­ons as clo­se­ly as possib­le in the aquarium.

Use Facebook to Comment on this Post

Akvaristika, Biológia

Kyslík v živote rýb – pozitíva i negatíva

Hits: 12638

Autor prís­pev­ku: Róbert Toman

Pozi­tív­ne pôso­be­nie kys­lí­ka na živé orga­niz­my je vše­obec­ne zná­me. Ryby potre­bu­jú k svoj­mu živo­tu kys­lík rov­na­ko ako sucho­zem­ské sta­vov­ce, hoci spô­sob ich dýcha­nia je úpl­ne odliš­ný. Keď­že nema­jú pľú­ca, kys­lík musí pre­ni­kať z vody do krvi pria­mo cez tka­ni­vá, kto­ré sú v pria­mom kon­tak­te s vodou, teda cez žiab­re. Kys­lík, kto­rý má difun­do­vať do krvi cez žiab­re musí byť samoz­rej­me roz­pus­te­ný, pre­to­že ryby nema­jú schop­nosť pri­jí­mať kys­lík vo for­me bub­li­niek. Odchyt rýb, tran­s­port a ich chov v zaja­tí má váž­ne meta­bo­lic­ké náro­ky v moz­gu, sva­loch, srd­ci, žiab­rach a ďal­ších tka­ni­vách. Vše­obec­ne ich nazý­va­me stres, ale fyzi­olo­gic­ká situ­ácia je omno­ho kom­pli­ko­va­nej­šia. Stres spo­je­ný s odchy­tom a vypus­te­ním rýb do iné­ho pro­stre­dia môže pris­pieť k úmr­tnos­ti rýb. Pocho­pe­nie ener­ge­tic­ké­ho meta­bo­liz­mu rýb a fak­to­rov, kto­ré ho ovplyv­ňu­jú sú dôle­ži­té pre správ­ne zaob­chá­dza­nie s ryba­mi ich ošet­re­nie po odchy­te. Pred zhod­no­te­ním rizík, kto­ré súvi­sia s kys­lí­kom vo vode a pre ich pocho­pe­nie si pri­blíž­me aspoň v krát­kos­ti fyzi­olo­gic­ké pocho­dy spo­je­né s fun­kci­ou kys­lí­ka v orga­niz­me rýb.

Ener­ge­tic­ký meta­bo­liz­mus a potre­ba kyslíka 

Ener­gia, kto­rá sa pou­ží­va na zabez­pe­če­nie všet­kých bun­ko­vých fun­kcií sa zís­ka­va z ade­no­zín­tri­fos­fá­tu (ATP). Je potreb­ný na kon­trak­cie sva­lov, vede­nie ner­vo­vých impul­zov v moz­gu, čin­nosť srd­ca, na prí­jem kys­lí­ka žiab­ra­mi atď. Ak bun­ka potre­bu­je ener­giu, roz­po­je­ním väzieb v ATP sa uvoľ­ní ener­gia. Ved­ľaj­ším pro­duk­tom tej­to reak­cie je ade­no­zín­di­fos­fát (ADP) a anor­ga­nic­ký fos­fát. V bun­ke ADP a fos­fát môžu zno­va rea­go­vať cez kom­pli­ko­va­né meta­bo­lic­ké deje a tvo­rí sa ATP. Väč­ši­na slad­ko­vod­ných rýb potre­bu­je veľ­ké množ­stvo kys­lí­ka v pro­stre­dí. Ten­to kys­lík je potreb­ný hlav­ne ako pali­vo” pre bio­che­mic­ké mecha­niz­my spo­je­né s pro­ces­mi cyk­lu ener­gie. Ener­ge­tic­ký meta­bo­liz­mus, kto­rý je spo­je­ný s kys­lí­kom je vyso­ko účin­ný a zabez­pe­ču­je trva­lé dodá­va­nie ener­gie, kto­rú potre­bu­je ryba na základ­né fyzi­olo­gic­ké fun­kcie. Ten­to meta­bo­liz­mus sa ozna­ču­je aerób­ny metabolizmus.

Nie všet­ka pro­duk­cia ener­gie vyža­du­je kys­lík. Bun­ky majú vyvi­nu­tý mecha­niz­mus udr­žia­vať dodáv­ku ener­gie počas krát­ke­ho obdo­bia, keď je hla­di­na kys­lí­ka níz­ka (hypo­xia). Ana­e­rób­ny ale­bo hypo­xic­ký ener­ge­tic­ký meta­bo­liz­mus je málo účin­ný a nie je schop­ný pro­du­ko­vať dosta­tok ener­gie pre tka­ni­vá počas dlhé­ho obdo­bia. Ryby potre­bu­jú kon­štant­ný prí­sun ener­gie. K tomu potre­bu­jú stá­le a dosta­toč­né množ­stvo kys­lí­ka. Nedos­ta­tok kys­lí­ka rých­lo zba­vu­je ryby ener­gie, kto­rú potre­bu­jú k živo­tu. Ryby sú schop­né plá­vať nepretr­ži­te na dlhé vzdia­le­nos­ti bez úna­vy v znač­nej rých­los­ti. Ten­to typ plá­va­nia ryby využí­va­jú pri nor­mál­nom plá­va­ní a na dlhé vzdia­le­nos­ti. Sva­ly, kto­ré sa na tom­to pohy­be podie­ľa­jú, využí­va­jú veľ­ké množ­stvo kys­lí­ka na syn­té­zu ener­gie. Ak majú ryby dosta­tok kys­lí­ka, nikdy sa neuna­via pri dlho­do­bom plá­va­ní. Rých­le, prud­ké a vyso­ko inten­zív­ne plá­va­nie trvá nor­mál­ne iba nie­koľ­ko sekúnd, prí­pad­ne minút a kon­čí fyzic­kým sta­vom vyčer­pa­nia. Ten­to typ plá­va­nia využí­va­jú ryby pri love, mig­rá­cii pro­ti prú­du ale­bo pri úte­ku. Ten­to typ pohy­bu úpl­ne vyčer­pá ener­ge­tic­ké záso­by. Obno­va môže trvať hodi­ny, nie­ke­dy aj dni, čo závi­sí na prí­stup­nos­ti kys­lí­ka, trva­ní rých­le­ho plá­va­nia a stup­ni vyčer­pa­nia ener­ge­tic­kých zásob. Ak sa naprí­klad ryba, kto­rá bola pri odchy­te úpl­ne zba­ve­ná ener­gie, umiest­ni do inej nádr­že, potre­bu­je množ­stvo kys­lí­ka a pokoj­né mies­to, kde by obno­vi­la záso­by ener­gie. Ak sa však umiest­ni do nádo­by, kde je málo kys­lí­ka, nedo­ká­že obno­viť ener­giu a skôr či neskôr hynie. Nie nedos­ta­tok kys­lí­ka zabí­ja rybu, ale nedos­ta­tok ener­gie a neschop­nosť obno­viť ener­ge­tic­ké záso­by. Je jas­né, že to sú pod­mien­ky, kto­ré extrém­ne stre­su­jú ryby.

Fak­to­ry ovplyv­ňu­jú­ce obno­vu energie

Spo­lu so stra­tou ener­ge­tic­kých zásob počas rých­le­ho plá­va­nia naras­tá v tka­ni­vách a krvi hla­di­na lak­tá­tu. Keď­že sa jed­ná o kyse­li­nu, pro­du­ku­je ióny vodí­ka, kto­ré zni­žu­jú pH tka­nív a dodá­va­nie ener­gie do bun­ky. Tiež zvy­šu­je vypla­vo­va­nie dôle­ži­tých meta­bo­li­tov z bun­ky, kto­ré sú potreb­né pri obno­ve ener­gie. Vylu­čo­va­nie lak­tá­tu a obno­va nor­mál­nej fun­kcie buniek môže trvať od 4 do 12 hodín. Pri tom­to pro­ce­se hrá dôle­ži­tú úlo­hu veľ­kosť tela, tep­lo­ta vody, tvrdo­sť a pH vody a dostup­nosť kyslíka.

  • Veľ­kosť tela – exis­tu­je pozi­tív­na kore­lá­cia medzi ana­e­rób­nym ener­ge­tic­kým meta­bo­liz­mom a potre­bou ener­gie. Väč­šie ryby teda potre­bu­jú viac ener­gie na rých­le plá­va­nie. To spô­so­bu­je vyš­ší výdaj ener­gie a dlh­ší čas obnovy
  • Tep­lo­ta vody – vylu­čo­va­nie lak­tá­tu a iných meta­bo­li­tov výraz­ne ovplyv­ňu­je tep­lo­ta vody. Väč­šie zme­ny tep­lo­ty výraz­ne ovplyv­ňu­jú schop­nosť rýb obno­viť ener­ge­tic­ké záso­by. Je pre­to potreb­né sa vyva­ro­vať veľ­kým zme­nám tep­lo­ty, kto­ré zni­žu­jú schop­nosť obno­vy energie.
  • Tvrdo­sť vody – zní­že­nie tvrdo­s­ti vody má dôle­ži­tý úči­nok na meta­bo­liz­mus a aci­do­bá­zic­kú rov­no­vá­hu krvi. Väč­ši­na prác sa zaobe­ra­la vply­vom na mor­ské dru­hy a nie je úpl­ne jas­né, či sú tie­to výsled­ky pre­nos­né aj na slad­ko­vod­né ryby. Keď sú slad­ko­vod­né ryby stre­so­va­né, voda pre­ni­ká cez bun­ko­vé mem­brá­ny, hlav­ne žia­bier a krv je red­šia. Toto zrie­de­nie krvi zvy­šu­je náro­ky na udr­žia­va­nie rov­no­vá­hy solí v orga­niz­me, čiže udr­žia­va­nie osmo­tic­kej rov­no­vá­hy. Viac sa dočí­ta­te nižšie.
  • pH vody – v kys­lej­šom pro­stre­dí sú ryby schop­né obno­viť ener­giu rých­lej­šie. Vyš­šie pH ten­to pro­ces výraz­ne spo­ma­ľu­je, čo je rizi­ko­vé pre dru­hy vyža­du­jú­ce vyš­šie pH, ako napr. afric­ké cich­li­dy jazier Mala­wi a Tanganika.

Regu­lá­cia osmo­tic­ké­ho tla­ku – udr­žia­va­nie rov­no­vá­hy solí stre­so­va­ných rýb

Regu­lá­cia hla­di­ny solí je zákla­dom živo­ta. Štruk­tú­ra a fun­kcia bun­ky úzko súvi­sí s vodou a látok v nej roz­pus­te­ných. Ryba pou­ží­va znač­nú ener­giu na kon­tro­lu zlo­že­nia vnút­ro­bun­ko­vých a mimo­bun­ko­vých teku­tín. U rýb táto osmo­re­gu­lá­cia spot­re­bu­je asi 2550% cel­ko­vé­ho meta­bo­lic­ké­ho výda­ja, čo je prav­de­po­dob­ne naj­viac spo­me­dzi živo­čí­chov. Mecha­niz­mus, kto­rý ryby využí­va­jú na udr­žia­va­nie rov­no­vá­hy solí je veľ­mi kom­pli­ko­va­ný a extrém­ne závis­lý na ener­gii. Pre­to­že účin­nosť ana­e­rób­ne­ho ener­ge­tic­ké­ho meta­bo­liz­mu je iba na úrov­ni 110 ener­ge­tic­ké­ho meta­bo­liz­mu v pro­stre­dí boha­tom na kys­lík, ener­ge­tic­ká potre­ba pre osmo­re­gu­lá­ciu tka­nív nie je mož­ná iba ana­e­rób­nym ener­ge­tic­kým meta­bo­liz­mom. Rých­ly pokles hla­di­ny ATP v bun­ke spô­so­bu­je spo­ma­le­nie až zasta­ve­nie fun­kcie bun­ko­vých ióno­vých púmp, kto­ré regu­lu­jú pohyb solí cez bun­ko­vú mem­brá­nu. Pre­ru­še­nie čin­nos­ti ióno­vej pum­py spô­so­bu­je stra­tu rov­no­vá­hy iónov v bun­ke a dochá­dza k rizi­ku smr­ti bun­ky a ryby.

Slad­ko­vod­né aj mor­ské ryby trva­lo čelia nut­nos­ti ióno­vej a osmo­tic­kej regu­lá­cie. Slad­ko­vod­né ryby, kto­rých kon­cen­trá­cia iónov v tka­ni­vách je omno­ho vyš­šia ako vo vode, musia regu­lo­vať prí­jem a stra­tu vody cez prie­pust­né epi­te­liál­ne tka­ni­vá a močom. Tie­to ryby pro­du­ku­jú veľ­ké množ­stvo moču, kto­ré­ho den­né množ­stvo tvo­rí 20% hmot­nos­ti tela. Oblič­ky rýb sú vyso­ko účin­né v odstra­ňo­va­ní vody z tela a sú takis­to účin­né aj v zadr­žia­va­ní solí v tele. Zatiaľ čo veľ­mi malé množ­stvo soli pre­ni­ká do moču, väč­ši­na osmo­re­gu­lač­ných dejov sa zabez­pe­ču­je žiab­ra­mi. Sodík je hlav­ný ión tka­nív. Tran­s­port sodí­ka cez bun­ko­vú mem­brá­nu je vyso­ko závis­lý na ener­gii a umož­ňu­je ho enzým Na/​K‑ATP-​áza. Ten­to enzým sa nachá­dza v bun­ko­vej mem­brá­ne a využí­va ener­giu, kto­rú dodá­va ATP na pre­nos sodí­ka jed­ným sme­rom cez bun­ko­vú mem­brá­nu. Dras­lík sa pohy­bu­je opač­ným sme­rom. Ten­to pro­ces umož­ňu­je sva­lo­vú kon­trak­ciu, posky­tu­je elek­tro­che­mic­ký gra­dient potreb­ný na čin­nosť srd­ca a umož­ňu­je pre­nos všet­kých sig­ná­lov v moz­gu a ner­voch. Väč­ši­na osmo­re­gu­lá­cie u rýb sa deje v žiab­rach a fun­gu­je nasle­dov­ne: Čpa­vok sa tvo­rí ako odpa­do­vý pro­dukt meta­bo­liz­mu rýb. Keď sú ryby v pohy­be, tvo­ria väč­šie množ­stvo čpav­ku a ten sa musí vylú­čiť z krvi. Na roz­diel od vyš­ších živo­čí­chov, ryby nevy­lu­ču­jú čpa­vok močom. Čpa­vok a väč­ši­na dusí­ka­tých odpa­do­vých látok pre­stu­pu­je cez mem­brá­nu žia­bier (asi 8090%). Čpa­vok sa vymie­ňa pri pre­cho­de cez mem­brá­nu žia­bier za sodík. Tak­to sa zni­žu­je množ­stvo čpav­ku v krvi a zvy­šu­je sa jeho kon­cen­trá­cia v bun­kách žia­bier. Naopak, sodík pre­chá­dza z buniek žia­bier do krvi. Aby sa nahra­dil sodík v bun­kách žia­bier a obno­vi­la sa rov­no­vá­ha solí, bun­ky žia­bier vylú­čia čpa­vok do vody a vyme­nia ho za sodík z vody. Podob­ným spô­so­bom sa vymie­ňa­jú chlo­ri­do­vé ióny za bikar­bo­nát. Pri dýcha­ní je ved­ľaj­ší pro­dukt CO2 a voda. Bikar­bo­nát sa tvo­rí, keď CO2 z bun­ko­vé­ho dýcha­nia rea­gu­je s vodou v bun­ke. Ryby nemô­žu, na roz­diel od sucho­zem­ských živo­čí­chov, vydých­nuť CO2 a mies­to toho sa zlu­ču­je s vodou a tvo­rí sa bikar­bo­ná­to­vý ión. Chlo­ri­do­vé ióny sa dostá­va­jú do bun­ky a bikar­bo­nát von z bun­ky do vody. Tým­to spô­so­bom sa zamie­ňa vodík za sodík, čím sa napo­má­ha kon­tro­le pH krvi.

Tie­to dva mecha­niz­my výme­ny iónov sa nazý­va­jú absor­pcia a sek­ré­cia a vysky­tu­jú sa v dvoch typoch buniek žia­bier, res­pi­rač­ných a chlo­ri­do­vých. Chlo­ri­do­vé bun­ky vylu­ču­jú soli, sú väč­šie a vyvi­nu­tej­šie u mor­ských dru­hov rýb. Res­pi­rač­né bun­ky, kto­ré sú potreb­né pre výme­nu ply­nov, odstra­ňo­va­nie dusí­ka­tých odpa­do­vých pro­duk­tov a udr­žia­va­nie aci­do­bá­zic­kej rov­no­vá­hy, sú vyvi­nu­tej­šie u slad­ko­vod­ných rýb. Sú záso­bo­va­né arte­riál­nou krvou a zabez­pe­ču­jú výme­nu sodí­ka a chlo­ri­dov za čpa­vok a bikar­bo­nát. Tie­to pro­ce­sy sú opäť vyso­ko závis­lé na prí­stup­nos­ti ener­gie. Ak nie je dosta­tok ener­gie na fun­go­va­nie ióno­vej pum­py, nemô­že dochá­dzať k ich výme­ne a voda zapla­ví” bun­ky difú­zi­ou a to spô­so­bí smrť rýb.

Dôsled­ky nedos­tat­ku kys­lí­ka v pro­ce­se osmoregulácie

Len nie­koľ­ko minút nedos­tat­ku kys­lí­ka, mem­brá­na buniek moz­gu strá­ca schop­nosť kon­tro­lo­vať rov­no­vá­hu iónov a uvoľ­ňu­jú sa neuro­trans­mi­te­ry, kto­ré urých­ľu­jú vstup váp­ni­ka do bun­ky. Zvý­še­ná hla­di­na váp­ni­ka v bun­kách spúš­ťa množ­stvo dege­ne­ra­tív­nych pro­ce­sov, kto­ré vedú k poško­de­niu ner­vo­vej sústa­vy a k smr­ti. Tie­to pro­ce­sy zahŕňa­jú poško­de­nie DNA, dôle­ži­tých bun­ko­vých pro­te­ínov a bun­ko­vej mem­brá­ny. Tvo­ria sa voľ­né radi­ká­ly a oxid dusi­tý, kto­ré poško­dzu­jú bun­ko­vé orga­ne­ly. Podob­né pro­ce­sy sa dejú aj v iných orgá­noch (pečeň, sva­ly, srd­ce a krv­né bun­ky). Ak sa dosta­ne do bun­ky váp­nik, je potreb­né veľ­ké množ­stvo ener­gie na jeho odstrá­ne­nie kal­ci­ový­mi pum­pa­mi, kto­ré vyža­du­jú ATP. Ďal­ší dôsle­dok hypo­xie je uvoľ­ňo­va­nie hor­mó­nov z hypo­fý­zy, z kto­rých u rýb pre­va­žu­je pro­lak­tín. Uvoľ­ne­nie toh­to hor­mó­nu ovplyv­ňu­je prie­pust­nosť bun­ko­vej mem­brá­ny v žiab­rach, koži, oblič­kách, čre­ve a ovplyv­ňu­je mecha­niz­mus tran­s­por­tu iónov. Jeho uvoľ­ne­nie napo­má­ha regu­lá­cii rov­no­vá­hy vody a iónov zni­žo­va­ním príj­mu vody a zadr­žia­va­ním dôle­ži­tých iónov, hlav­ne Na+ a Cl-. Tým pomá­ha udr­žia­vať rov­no­vá­hu solí v krvi a v tka­ni­vách a brá­ni nabobt­na­niu rýb vodou.

Naj­väč­šia hroz­ba pre slad­ko­vod­né ryby je stra­ta iónov difú­zi­ou do vody, skôr než vylu­čo­va­nie nad­byt­ku vody. Hoci regu­lá­cia rov­no­vá­hy vody môže mať význam, je sekun­dár­na vo vzťa­hu k zadr­žia­va­niu iónov. Pro­lak­tín zni­žu­je osmo­tic­kú prie­pust­nosť žia­bier zadr­žia­va­ním iónov a vylu­čo­va­ním vody. Zvy­šu­je tiež vylu­čo­va­nie hlie­nu žiab­ra­mi, čím napo­má­ha udr­žia­vať rov­no­vá­hu iónov a vody tým, že zabra­ňu­je pre­cho­du mole­kúl cez mem­brá­nu. U rýb, kto­ré boli stre­so­va­né chy­ta­ním, prud­kým plá­va­ním, sa z tka­nív odčer­pá­va ener­gia a trvá nie­koľ­ko hodín až dní, kým sa jej záso­by obno­via. Ana­e­rób­ny ener­ge­tic­ký meta­bo­liz­mus nie je schop­ný to zabez­pe­čiť v plnej mie­re a je potreb­né veľ­ké množ­stvo kys­lí­ka. Ak je ho nedos­ta­tok, vedie to k úhy­nu rýb. Nemu­sia však uhy­núť hneď. Rov­no­vá­ha solí sa nemô­že zabez­pe­čiť bez dostat­ku kyslíka.

Potre­ba kyslíka

Kys­lík je hlav­ným fak­to­rom, kto­rý ovplyv­ňu­je pre­ži­tie rýb v stre­se. Nie tep­lo­ta vody ani hla­di­na soli. Pred­sa však je tep­lo­ta hlav­ný uka­zo­va­teľ toho, koľ­ko kys­lí­ka vo vode je pre ryby dostup­né­ho a ako rých­lo ho budú môcť využiť. Maxi­mál­ne množ­stvo roz­pus­te­né­ho kys­lí­ka vo vode sa ozna­ču­je hla­di­na satu­rá­cie. Táto kle­sá so stú­pa­ním tep­lo­ty. Napr. pri tep­lo­te 21°C je voda nasý­te­ná kys­lí­kom pri jeho kon­cen­trá­cii 8,9 mg/​l, pri 26°C je to pri kon­cen­trá­cii 8 mg/​l a pri 32°C len 7,3 mg/​l. Pri vyš­ších tep­lo­tách sa zvy­šu­je meta­bo­liz­mus rýb a rých­lej­šie využí­va­jú aj kys­lík. Kon­cen­trá­cia kys­lí­ka pod 5 mg/​l pri 26°C môže byť rých­lo smrteľná.

Vzduch a kys­lík vo vode – môže aj ško­diť. Pri cho­ve cich­líd sa čas­to cho­va­teľ sna­ží zabez­pe­čiť maxi­mál­ne pre­vzduš­ne­nie vody veľ­mi sil­ným vzdu­cho­va­ním. Nie­kto­rí cho­va­te­lia využí­va­jú mož­nos­ti pri­sá­va­nia vzdu­chu pred vyús­te­ním vývo­du inter­né­ho ale­bo exter­né­ho fil­tra, iní pou­ží­va­jú samos­tat­né vzdu­cho­vé kom­pre­so­ry, kto­rý­mi vhá­ňa­jú vzduch do vody cez vzdu­cho­va­cie kame­ne s veľ­mi jem­ný­mi pór­mi. Oba spô­so­by vzdu­cho­va­nia sú schop­né vytvo­riť obrov­ské množ­stvo mik­ro­sko­pic­kých bub­li­niek. Veľ­kosť bub­lín kys­lí­ka ale­bo vzdu­chu môže význam­ne zme­niť ché­miu vody, stu­peň pre­no­su ply­nov a kon­cen­trá­ciu roz­pus­te­ných ply­nov. Rizi­ko poško­de­nia zdra­via a úhy­nu rýb vzni­ká naj­mä pri tran­s­por­te v uzav­re­tých nádo­bách, do kto­rých sa vhá­ňa vzduch ale­bo kys­lík pod tla­kom. Urči­té rizi­ko však vzni­ká aj pri nad­mer­nom jem­nom vzdu­cho­va­ní v akvá­riách. Mik­ro­sko­pic­ké bub­lin­ky ply­nu sa môžu pri­le­piť na žiab­re, skre­ly, kožu a oči a spô­so­bo­vať trau­mu a ply­no­vú embó­liu. Poško­de­nie žia­bier a ply­no­vá embó­lia nega­tív­ne ovplyv­ňu­jú zdra­vie rýb a pre­ží­va­teľ­nosť, obme­dzu­jú výme­nu ply­nov pri dýcha­ní a vedú k hypo­xii, zadr­žia­va­niu CO2 a res­pi­rač­nej aci­dó­ze. Čis­tý kys­lík je účin­né oxi­do­vad­lo. Mik­ro­sko­pic­ké bub­lin­ky obsa­hu­jú­ce čis­tý kys­lík sa môžu pri­chy­tiť na lís­t­ky žia­bier, vysu­šu­jú ich, dráž­dia, oxi­du­jú a spô­so­bu­jú che­mic­ké popá­le­nie jem­né­ho epi­te­liál­ne­ho tka­ni­va. Ak voda vyze­rá mlieč­ne zaka­le­ná s množ­stvom minia­túr­nych bub­lín, kto­ré sa pri­le­pu­jú na skre­ly a žiab­re ale­bo na vnú­tor­né ste­ny nádo­by, je potreb­né tie­to pod­mien­ky pova­žo­vať za poten­ciál­ne toxic­ké a vše­obec­ne nezdra­vé pre ryby. Ak je pôso­be­nie ply­nu v tom­to sta­ve dlh­šie trva­jú­ce a par­ciál­ny tlak kys­lí­ka sa pohy­bu­je oko­lo 1 atmo­sfé­ry (namies­to 0,2 atm., ako je vo vzdu­chu), šan­ca pre­ži­tia pre ryby kle­sá. Stla­če­ný vzduch je vhod­ný, ak sa dopĺňa kon­ti­nu­ál­ne v roz­me­dzí bez­peč­nej kon­cen­trá­cie kys­lí­ka, ale pôso­be­ním stla­če­né­ho vzdu­chu ale­bo dodá­va­né­ho pod vyso­kým par­ciál­nym tla­kom vo vode, môžu ryby pre­stať dýchať, čím sa zvy­šu­je kon­cen­trá­cia CO2 v ich orga­niz­me. To môže viesť k zme­nám aci­do­bá­zic­kej rov­no­vá­hy (res­pi­rač­nej aci­dó­zy) v orga­niz­me rýb a zvy­šo­vať úhyn. Čis­tý stla­če­ný kys­lík obsa­hu­je 5‑násobne vyš­ší obsah kys­lí­ka ako vzduch. Pre­to je potre­ba jeho dodá­va­nia asi 15 pri čis­tom kys­lí­ku opro­ti záso­bo­va­niu vzdu­chom. Veľ­mi malé bub­li­ny kys­lí­ka sa roz­púš­ťa­jú rých­lej­šie než väč­šie, pre­to­že majú väč­ší povrch vzhľa­dom k obje­mu, ale kaž­dá ply­no­vá bub­li­na potre­bu­je na roz­pus­te­nie vo vode dosta­toč­ný pries­tor. Ak ten­to pries­tor chý­ba ale­bo je nedos­ta­toč­ný, mik­ro­bub­li­ny môžu zostať v sus­pen­zii vo vode, pri­chy­tá­va­jú sa k povr­chom pred­me­tov vo vode ale­bo poma­ly stú­pa­jú k hladine.

Mik­ro­sko­pic­ké bub­lin­ky ply­nu sa roz­púš­ťa­jú vo vode rých­lej­šie a dodá­va­jú viac ply­nu do roz­to­ku než väč­šie bub­li­ny. Tie­to pod­mien­ky môžu pre­sy­co­vať vodu kys­lí­kom, ak množ­stvo bub­li­niek ply­nu tvo­rí hmlu” vo vode a zostá­va­jú rozp­tý­le­né (v sus­pen­zii) a kys­lík s vyso­kým tla­kom môže byť toxic­ký kvô­li tvor­be voľ­ných radi­ká­lov. Mik­ro­sko­pic­ké vzdu­cho­vé bub­lin­ky môžu tiež spô­so­biť ply­no­vú embó­liu. Arte­riál­na ply­no­vá embó­lia a emfy­zém tka­nív môžu byť reál­ne a tvo­ria nebez­pe­čen­stvo naj­mä pri tran­s­por­te živých rýb. Je pre­to potreb­né sa vyhnúť sus­pen­zii ply­no­vých bub­lín v tran­s­port­nej vode. Prob­lém arte­riál­nej ply­no­vej embó­lie počas tran­s­por­tu vzni­ká aj pre­to, že ryby nema­jú mož­nosť sa poto­piť do väč­šej hĺb­ky (ako to robia ryby vypus­te­né do jaze­ra), kde je vyš­ší tlak vody, kto­rý by roz­pus­til jem­né bub­lin­ky v obe­ho­vom sys­té­me. Dva kľú­čo­vé body zlep­šu­jú poho­du veľ­ké­ho počtu odchy­te­ných a stre­so­va­ných rýb pri transporte:

  • Zvý­šiť par­ciál­ny tlak O2 nad nasý­te­nie stla­če­ným kys­lí­kom a doda­nie dosť veľ­kých bub­lín, aby unik­li povr­chom vody. Vzduch tvo­rí naj­mä dusík a mik­ro­sko­pic­ké bub­lin­ky dusí­ka tiež môžu pri­lip­núť na žiab­re. Bub­lin­ky aké­ho­koľ­vek ply­nu pri­chy­te­né na žiab­re môžu ovplyv­niť dýcha­nie a naru­šiť zdra­vie rýb. Ak sa tran­s­por­tu­jú ryby vo vode pre­sý­te­nej bub­lin­ka­mi, vzni­ká prav­de­po­dob­nosť vzni­ku hypo­xie, hyper­kar­bie, res­pi­rač­nej aci­dó­zy, ocho­re­nia a smrti.
  • Zvý­šiť sla­nosť vody na 3 – 5 mg/​l. Soľ (sta­čí aj neiodi­do­va­ná NaCl) je vhod­ná pri tran­s­por­te rýb. V stre­se ryby strá­ca­jú ióny a toto môže byť pre ne viac stre­su­jú­ce. Ener­ge­tic­ká potre­ba tran­s­por­tu iónov cez mem­brá­ny buniek môže pred­sta­vo­vať význam­nú stra­tu ener­gie vyža­du­jú­cu ešte viac kys­lí­ka. Tran­s­port rýb v nádo­bách, kto­ré obsa­hu­jú hmlu mik­ro­sko­pic­kých bub­lín, môžu byť nebez­peč­ná pre tran­s­por­to­va­né ryby zvy­šo­va­ním mož­nos­ti one­sko­re­nej smr­ti po vypus­te­ní. Ryby tran­s­por­to­va­né v ako­by mlieč­ne zaka­le­nej vode sú stre­so­va­né, dochá­dza k ich fyzic­ké­mu poško­de­niu, zvy­šu­je sa cit­li­vosť k infek­ciám, ocho­re­niu a úhyn po vypus­te­ní po tran­s­por­te. Po vypus­te­ní rýb, kto­ré pre­ži­li prvot­ný toxic­ký vplyv kys­lí­ka, po tran­s­por­te môžu byť kvô­li poško­de­ným žiab­ram cit­li­vej­šie na rôz­ne pato­gé­ny a násled­ne sa môže vysky­to­vať zvý­še­ný úhyn počas nie­koľ­kých dní až týž­dňov po tran­s­por­te. Veľ­mi pre­vzduš­ne­ná voda nezna­me­ná pre­kys­li­če­ná. Veľ­mi pre­vzduš­ne­ná voda je čas­to pre­sý­te­ná plyn­ným dusí­kom, kto­rý môže spô­so­biť ocho­re­nie. Mik­ro­sko­pic­ké bub­lin­ky obsa­hu­jú­ce naj­mä dusík, môžu spô­so­biť emfy­zém tka­nív pri tran­s­por­te, podob­ne, ako je tomu u potápačov.

Aut­hor of the post: Róbert Toman

The posi­ti­ve impact of oxy­gen on living orga­nisms is gene­ral­ly well-​known. Fish, like ter­res­trial ver­teb­ra­tes, need oxy­gen for the­ir sur­vi­val, alt­hough the way they bre­at­he is enti­re­ly dif­fe­rent. Sin­ce they lack lungs, oxy­gen must penet­ra­te from the water into the blo­od direct­ly through tis­su­es that are in direct con­tact with the water, such as gills. Oxy­gen, which is sup­po­sed to dif­fu­se into the blo­od through the gills, must be dis­sol­ved, as fish can­not take in oxy­gen in the form of bubb­les. The cap­tu­re, tran­s­por­ta­ti­on, and cap­ti­vi­ty of fish have seri­ous meta­bo­lic demands on the brain, musc­les, heart, gills, and other tis­su­es. We com­mon­ly refer to them as stress, but the phy­si­olo­gi­cal situ­ati­on is much more com­pli­ca­ted. Stress asso­cia­ted with the cap­tu­re and rele­a­se of fish into a dif­fe­rent envi­ron­ment can con­tri­bu­te to fish mor­ta­li­ty. Unders­tan­ding the ener­gy meta­bo­lism of fish and the fac­tors that influ­en­ce it is cru­cial for the pro­per hand­ling and tre­at­ment of fish after cap­tu­re. Befo­re eva­lu­ating the risks asso­cia­ted with oxy­gen in the water and unders­tan­ding them, let’s brief­ly out­li­ne the phy­si­olo­gi­cal pro­ces­ses rela­ted to the func­ti­on of oxy­gen in the fis­h’s body.

Ener­gy Meta­bo­lism and Oxy­gen Requirement

The ener­gy used to ensu­re all cel­lu­lar func­ti­ons are per­for­med is deri­ved from ade­no­si­ne trip­hosp­ha­te (ATP). It is requ­ired for musc­le con­trac­ti­ons, trans­mis­si­on of ner­ve impul­ses in the brain, heart acti­vi­ty, and oxy­gen inta­ke through the gills, among other func­ti­ons. When a cell needs ener­gy, bre­a­king the bonds in ATP rele­a­ses ener­gy. The by-​products of this reac­ti­on are ade­no­si­ne dip­hosp­ha­te (ADP) and inor­ga­nic phosp­ha­te. In the cell, ADP and phosp­ha­te can react again through com­plex meta­bo­lic pro­ces­ses to form ATP. Most fres­hwa­ter fish requ­ire a sig­ni­fi­cant amount of oxy­gen in the­ir envi­ron­ment. This oxy­gen is needed pri­ma­ri­ly as fuel” for bio­che­mi­cal mecha­nisms asso­cia­ted with ener­gy cyc­le pro­ces­ses. The ener­gy meta­bo­lism asso­cia­ted with oxy­gen is high­ly effi­cient and ensu­res a con­ti­nu­ous supp­ly of ener­gy needed for the fis­h’s basic phy­si­olo­gi­cal func­ti­ons. This meta­bo­lism is refer­red to as aero­bic metabolism.

Not all ener­gy pro­duc­ti­on requ­ires oxy­gen. Cells have deve­lo­ped a mecha­nism to main­tain ener­gy supp­ly during short peri­ods when oxy­gen levels are low (hypo­xia). Ana­e­ro­bic or hypo­xic ener­gy meta­bo­lism is less effi­cient and can­not pro­du­ce enough ener­gy for tis­su­es over a long peri­od. Fish need a cons­tant supp­ly of ener­gy, requ­iring a con­ti­nu­ous and suf­fi­cient amount of oxy­gen. Oxy­gen defi­cien­cy quick­ly dep­ri­ves fish of the ener­gy they need to live. Fish are capab­le of swim­ming con­ti­nu­ous­ly for long dis­tan­ces wit­hout fati­gue at con­si­de­rab­le spe­ed. They use this type of swim­ming during nor­mal acti­vi­ty and for long-​distance tra­vel. The musc­les invol­ved in this move­ment uti­li­ze a lar­ge amount of oxy­gen for ener­gy synt­he­sis. If fish have enough oxy­gen, they never tire during pro­lon­ged swim­ming. Rapid, inten­se swim­ming lasts nor­mal­ly only a few seconds or minu­tes and ends in a sta­te of phy­si­cal exhaus­ti­on. Fish use this type of move­ment during hun­ting, ups­tre­am mig­ra­ti­on, or esca­pe. This type of move­ment com­ple­te­ly dep­le­tes ener­gy reser­ves. Reco­ve­ry can take hours, some­ti­mes even days, depen­ding on oxy­gen avai­la­bi­li­ty, the dura­ti­on of rapid swim­ming, and the degree of dep­le­ti­on of ener­gy reser­ves. For exam­ple, if a fish com­ple­te­ly dep­le­ted of ener­gy during cap­tu­re is pla­ced in anot­her tank, it needs a sig­ni­fi­cant amount of oxy­gen and a calm pla­ce to reple­nish ener­gy reser­ves. Howe­ver, if pla­ced in a con­tai­ner with low oxy­gen, it can­not res­to­re ener­gy and sooner or later dies. It is cle­ar that the­se are con­di­ti­ons that extre­me­ly stress fish.

Fac­tors Influ­en­cing Ener­gy Recovery

Along with the dep­le­ti­on of ener­gy reser­ves during rapid swim­ming, the levels of lac­ta­te in tis­su­es and blo­od inc­re­a­se. As lac­ta­te is an acid, it pro­du­ces hyd­ro­gen ions that lower the pH of tis­su­es and impe­de the deli­ve­ry of ener­gy to the cell. It also inc­re­a­ses the eff­lux of impor­tant meta­bo­li­tes from the cell, neces­sa­ry for ener­gy reco­ve­ry. The eli­mi­na­ti­on of lac­ta­te and the res­to­ra­ti­on of nor­mal cell func­ti­on can take from 4 to 12 hours. In this pro­cess, body size, water tem­pe­ra­tu­re, water hard­ness and pH, and oxy­gen avai­la­bi­li­ty play cru­cial roles.

  • Body Size: The­re is a posi­ti­ve cor­re­la­ti­on bet­we­en ana­e­ro­bic ener­gy meta­bo­lism and ener­gy demand. Lar­ger fish, the­re­fo­re, requ­ire more ener­gy for rapid swim­ming. This results in hig­her ener­gy expen­di­tu­re and a lon­ger reco­ve­ry time.
  • Water Tem­pe­ra­tu­re: The exc­re­ti­on of lac­ta­te and other meta­bo­li­tes is sig­ni­fi­can­tly influ­en­ced by water tem­pe­ra­tu­re. Sub­stan­tial chan­ges in tem­pe­ra­tu­re sig­ni­fi­can­tly affect the fis­h’s abi­li­ty to reple­nish ener­gy reser­ves. It is neces­sa­ry to avo­id lar­ge tem­pe­ra­tu­re fluc­tu­ati­ons, which redu­ce the abi­li­ty to reco­ver energy.
  • Water Hard­ness: Dec­re­a­sing water hard­ness has a sig­ni­fi­cant effect on meta­bo­lism and the acid-​base balan­ce of blo­od. Most stu­dies have focu­sed on the impact on mari­ne spe­cies, and it is not enti­re­ly cle­ar whet­her the­se results are trans­fe­rab­le to fres­hwa­ter fish. When fres­hwa­ter fish are stres­sed, water penet­ra­tes through cell mem­bra­nes, espe­cial­ly gills, and the blo­od beco­mes dilu­ted. This blo­od dilu­ti­on inc­re­a­ses the demands on main­tai­ning salt balan­ce in the body, i.e., main­tai­ning osmo­tic balan­ce. More infor­ma­ti­on on this is pro­vi­ded below.
  • Water pH: In an aci­dic envi­ron­ment, fish can reco­ver ener­gy more quick­ly. Hig­her pH sig­ni­fi­can­tly slo­ws down this pro­cess, which poses a risk for spe­cies requ­iring hig­her pH, such as Afri­can cich­lids from the Mala­wi and Tan­ga­ny­i­ka lakes.

Osmo­tic Pre­ssu­re Regu­la­ti­on – Main­tai­ning Salt Balan­ce in Stres­sed Fish

Regu­la­ti­on of salt levels is fun­da­men­tal to life. The struc­tu­re and func­ti­on of cells are clo­se­ly rela­ted to the water and dis­sol­ved sub­stan­ces wit­hin them. Fish expend sig­ni­fi­cant ener­gy to con­trol the com­po­si­ti­on of intra­cel­lu­lar and extra­cel­lu­lar flu­ids. In fish, osmo­re­gu­la­ti­on con­su­mes about 25 – 50% of the total meta­bo­lic expen­di­tu­re, like­ly the hig­hest among ani­mals. The mecha­nism fish use to main­tain salt balan­ce is high­ly com­plex and extre­me­ly energy-​dependent. Sin­ce the effi­cien­cy of ana­e­ro­bic ener­gy meta­bo­lism is only about 110 of the ener­gy meta­bo­lism in an oxygen-​rich envi­ron­ment, the ener­gy requ­ire­ment for tis­sue osmo­re­gu­la­ti­on is not fea­sib­le through ana­e­ro­bic ener­gy meta­bo­lism alo­ne. A rapid dec­re­a­se in ATP levels in the cell slo­ws down or stops the func­ti­on of cel­lu­lar ion pumps that regu­la­te the move­ment of salts across the cell mem­bra­ne. The inter­rup­ti­on of ion pump acti­vi­ty leads to an imba­lan­ce of ions in the cell, posing a risk of cell and fish death.

Both fres­hwa­ter and mari­ne fish cons­tan­tly face the need for ion and osmo­tic regu­la­ti­on. Fres­hwa­ter fish, with ion con­cen­tra­ti­ons in tis­su­es much hig­her than in water, must regu­la­te water inta­ke and loss through per­me­ab­le epit­he­lial tis­su­es and uri­ne. The­se fish pro­du­ce a lar­ge amount of uri­ne, with dai­ly amounts cons­ti­tu­ting 20% of body weight. Fish kid­ne­ys are high­ly effi­cient in remo­ving water from the body and are also effec­ti­ve in retai­ning salts. Whi­le very litt­le salt penet­ra­tes into the uri­ne, most osmo­re­gu­la­to­ry pro­ces­ses are faci­li­ta­ted by the gills. Sodium is the main ion in tis­su­es. The tran­s­port of sodium across the cell mem­bra­ne is high­ly depen­dent on ener­gy and is faci­li­ta­ted by the enzy­me Na/​K‑ATPase. This enzy­me is loca­ted in the cell mem­bra­ne and uses the ener­gy supp­lied by ATP to tran­s­port sodium uni­di­rec­ti­onal­ly across the cell mem­bra­ne. Potas­sium moves in the oppo­si­te direc­ti­on. This pro­cess enab­les musc­le con­trac­ti­on, pro­vi­des the elect­ro­che­mi­cal gra­dient neces­sa­ry for heart func­ti­on, and allo­ws the trans­mis­si­on of all sig­nals in the brain and ner­ves. Most osmo­re­gu­la­ti­on in fish occurs in the gills and works as fol­lo­ws: Ammo­nia is pro­du­ced as a was­te pro­duct of fish meta­bo­lism. When fish are in moti­on, a lar­ger amount of ammo­nia is pro­du­ced, and it must be exc­re­ted from the blo­od. Unli­ke hig­her ani­mals, fish do not exc­re­te ammo­nia through uri­ne. Ammo­nia and most nit­ro­ge­nous was­te sub­stan­ces pass through the gill mem­bra­ne (about 80 – 90%). As ammo­nia pas­ses through the gill mem­bra­ne, it is exchan­ged for sodium. This redu­ces the amount of ammo­nia in the blo­od and inc­re­a­ses its con­cen­tra­ti­on in gill cells. Con­ver­se­ly, sodium pas­ses from gill cells to the blo­od. To repla­ce sodium in gill cells and res­to­re salt balan­ce, gill cells exc­re­te ammo­nia into the water and exchan­ge it for sodium from the water. Simi­lar­ly, chlo­ri­de ions are exchan­ged for bicar­bo­na­te. During res­pi­ra­ti­on, the byp­ro­duct is CO2 and water. Bicar­bo­na­te is for­med when CO2 from cel­lu­lar res­pi­ra­ti­on reacts with water in the cell. Fish can­not, unli­ke ter­res­trial ani­mals, exha­le CO2 and ins­te­ad com­bi­ne it with water to form bicar­bo­na­te ions. Chlo­ri­de ions enter the cell, and bicar­bo­na­te exits the cell into the water. This exchan­ge of hyd­ro­gen for sodium helps con­trol blo­od pH.

The­se two mecha­nisms of ion exchan­ge are cal­led absorp­ti­on and sec­re­ti­on, occur­ring in two types of gill cells: res­pi­ra­to­ry and chlo­ri­de cells. Chlo­ri­de cells, res­pon­sib­le for exc­re­ting salts, are lar­ger and more deve­lo­ped in mari­ne fish spe­cies. Res­pi­ra­to­ry cells, cru­cial for gas exchan­ge, remo­val of nit­ro­ge­nous was­te pro­ducts, and main­tai­ning acid-​base balan­ce, are more deve­lo­ped in fres­hwa­ter fish. They are supp­lied by arte­rial blo­od and faci­li­ta­te the exchan­ge of sodium and chlo­ri­de for ammo­nia and bicar­bo­na­te. The­se pro­ces­ses are again high­ly depen­dent on ener­gy acces­si­bi­li­ty. If the­re is not enough ener­gy for the ion pump to func­ti­on, the exchan­ge can­not occur, and water flo­ods” the cells through dif­fu­si­on, lea­ding to the death of the fish.

Con­se­qu­en­ces of Oxy­gen Shor­ta­ge in Osmoregulation

Just a few minu­tes of oxy­gen dep­ri­va­ti­on cau­se the brain cell mem­bra­ne to lose the abi­li­ty to con­trol ion balan­ce, rele­a­sing neuro­trans­mit­ters that acce­le­ra­te cal­cium entry into the cell. Ele­va­ted cal­cium levels in cells trig­ger nume­rous dege­ne­ra­ti­ve pro­ces­ses that lead to dama­ge to the ner­vous sys­tem and death. The­se pro­ces­ses inc­lu­de DNA dama­ge, impor­tant cel­lu­lar pro­te­ins, and the cell mem­bra­ne. Free radi­cals and nit­ro­gen oxi­de are for­med, dama­ging cel­lu­lar orga­nel­les. Simi­lar pro­ces­ses occur in other organs (liver, musc­les, heart, and blo­od cells). If cal­cium enters the cell, a lar­ge amount of ener­gy is needed to remo­ve it with cal­cium pumps, which requ­ire ATP. Anot­her con­se­qu­en­ce of hypo­xia is the rele­a­se of hor­mo­nes from the pitu­ita­ry gland, with pro­lac­tin pre­vai­ling in fish. The rele­a­se of this hor­mo­ne affects the per­me­a­bi­li­ty of the cell mem­bra­ne in the gills, skin, kid­ne­ys, intes­ti­nes, influ­en­cing the ion tran­s­port mecha­nism. Its rele­a­se helps regu­la­te the balan­ce of water and ions by redu­cing water inta­ke and retai­ning impor­tant ions, main­ly Na+ and Cl-. This helps main­tain salt balan­ce in the blo­od and tis­su­es and pre­vents fish from swel­ling with water.

The big­gest thre­at to fres­hwa­ter fish is the loss of ions through dif­fu­si­on into the water rat­her than exc­re­ti­on of excess water. Alt­hough water balan­ce regu­la­ti­on may be impor­tant, it is secon­da­ry to ion reten­ti­on. Pro­lac­tin redu­ces the osmo­tic per­me­a­bi­li­ty of the gills by retai­ning ions and exc­re­ting water. It also inc­re­a­ses mucus sec­re­ti­on in the gills, hel­ping main­tain the balan­ce of ions and water by pre­ven­ting the pas­sa­ge of mole­cu­les through the mem­bra­ne. In fish stres­sed by cap­tu­re or vigo­rous swim­ming, ener­gy is dep­le­ted from the tis­su­es, and it takes seve­ral hours to days for its reser­ves to reple­nish. Ana­e­ro­bic ener­gy meta­bo­lism can­not ful­ly pro­vi­de for this, requ­iring a sub­stan­tial amount of oxy­gen. A lack of oxy­gen leads to fish mor­ta­li­ty. Howe­ver, they may not die imme­dia­te­ly. Salt balan­ce can­not be main­tai­ned wit­hout an ade­qu­ate supp­ly of oxygen.

The need for oxy­gen is a cri­ti­cal fac­tor that influ­en­ces the sur­vi­val of fish under stress, more so than water tem­pe­ra­tu­re or sali­ni­ty levels. Howe­ver, water tem­pe­ra­tu­re is a key indi­ca­tor of how much oxy­gen is avai­lab­le to fish and how quick­ly they can uti­li­ze it. The maxi­mum amount of dis­sol­ved oxy­gen in water is kno­wn as the satu­ra­ti­on level, and it dec­re­a­ses as the water tem­pe­ra­tu­re rises. For exam­ple, at a tem­pe­ra­tu­re of 21°C, water is satu­ra­ted with oxy­gen at a con­cen­tra­ti­on of 8.9 mg/​l, at 26°C, it’s satu­ra­ted at 8 mg/​l, and at 32°C, it drops to only 7.3 mg/​l. Hig­her tem­pe­ra­tu­res inc­re­a­se the meta­bo­lism of fish, lea­ding to a fas­ter uti­li­za­ti­on of oxy­gen. A con­cen­tra­ti­on of oxy­gen below 5 mg/​l at 26°C can be rapid­ly lethal.

Air and Oxy­gen in Water – Can Harm Too

In some cich­lid bre­e­ding setups, hob­by­ists often aim for maxi­mum water aera­ti­on through power­ful air pumps. Some use air inta­ke befo­re the out­let of inter­nal or exter­nal fil­ters, whi­le others employ sepa­ra­te air com­pres­sors to inject air into the water through air sto­nes with very fine pores. Both aera­ti­on met­hods can cre­a­te a vast num­ber of mic­ros­co­pic bubb­les. The size of oxy­gen or air bubb­les can sig­ni­fi­can­tly alter water che­mis­try, gas exchan­ge effi­cien­cy, and the con­cen­tra­ti­on of dis­sol­ved gases. Risks to the health and sur­vi­val of fish ari­se, espe­cial­ly during tran­s­por­ta­ti­on in clo­sed con­tai­ners whe­re air or oxy­gen is for­ced into the water under pre­ssu­re. The­re­’s also a risk with exces­si­ve and fine aera­ti­on in aqu­ariums. Mic­ros­co­pic gas bubb­les can adhe­re to gills, sca­les, skin, and eyes, cau­sing trau­ma and gas embo­lism. Dama­ged gills and gas embo­lism nega­ti­ve­ly affect fish health and sur­vi­va­bi­li­ty, limi­ting gas exchan­ge during bre­at­hing and lea­ding to hypo­xia, CO2 reten­ti­on, and res­pi­ra­to­ry aci­do­sis. Pure oxy­gen is an effec­ti­ve oxi­di­zer. Mic­ros­co­pic bubb­les con­tai­ning pure oxy­gen can attach to gill fila­ments, dry­ing them out, irri­ta­ting them, cau­sing oxi­da­ti­on, and resul­ting in che­mi­cal burns to the deli­ca­te epit­he­lial tis­sue. If the water appe­ars mil­ky with nume­rous tiny bubb­les stic­king to sca­les, gills, or the tan­k’s inner walls, the­se con­di­ti­ons should be con­si­de­red poten­tial­ly toxic and gene­ral­ly unhe­alt­hy for fish. If the acti­on of gas is pro­lon­ged and the par­tial pre­ssu­re of oxy­gen hovers around 1 atmo­sp­he­re (ins­te­ad of the nor­mal 0.2 atm. in air), the chan­ces of fish sur­vi­val dec­re­a­se. Com­pres­sed air is suitab­le if it is con­ti­nu­ous­ly supp­lied wit­hin a safe oxy­gen con­cen­tra­ti­on ran­ge. Howe­ver, the acti­on of com­pres­sed air or oxy­gen supp­lied under high pre­ssu­re into the water can cau­se fish to stop bre­at­hing, inc­re­a­sing the con­cen­tra­ti­on of CO2 in the­ir bodies. This can lead to chan­ges in the acid-​base balan­ce (res­pi­ra­to­ry aci­do­sis) in fish, rai­sing mor­ta­li­ty. Pure com­pres­sed oxy­gen con­tains five times more oxy­gen than air. The­re­fo­re, the need for its supp­ly is about 15 of that for air. Very small oxy­gen bubb­les dis­sol­ve fas­ter than lar­ger ones becau­se they have a lar­ger sur­fa­ce area rela­ti­ve to volu­me. Howe­ver, each gas bubb­le needs suf­fi­cient spa­ce to dis­sol­ve in water. If this spa­ce is lac­king or insuf­fi­cient, mic­ro­bubb­les may remain in sus­pen­si­on in the water, adhe­re to sur­fa­ces in the water, or slo­wly rise to the surface.

Mic­ros­co­pic gas bubb­les dis­sol­ve in water quick­ly, deli­ve­ring more gas into the solu­ti­on than lar­ger bubb­les. The­se con­di­ti­ons can over­sa­tu­ra­te water with oxy­gen if the quan­ti­ty of gas bubb­les cre­a­tes a mist” in the water and remains dis­per­sed (in sus­pen­si­on). High-​pressure oxy­gen can be toxic due to the for­ma­ti­on of free radi­cals. Mic­ros­co­pic oxy­gen bubb­les can also cau­se gas embo­lism. Arte­rial gas embo­lism and tis­sue emp­hy­se­ma can be real dan­gers, espe­cial­ly during the tran­s­port of live fish. It is neces­sa­ry to avo­id the sus­pen­si­on of gas bubb­les in tran­s­port water. The prob­lem of arte­rial gas embo­lism during tran­s­port ari­ses becau­se fish do not have the oppor­tu­ni­ty to sub­mer­ge into dee­per waters (as fish rele­a­sed into a lake might), whe­re the water pre­ssu­re is hig­her, hel­ping to dis­sol­ve fine bubb­les in the cir­cu­la­to­ry sys­tem. Two key points impro­ve the well-​being of a lar­ge num­ber of caught and stres­sed fish during transport:

  • Inc­re­a­sing the Par­tial Pre­ssu­re of O2 Abo­ve Satu­ra­ti­on with Com­pres­sed Oxy­gen and Supp­ly­ing Suf­fi­cien­tly Lar­ge Bubb­les to Esca­pe the Water Sur­fa­ce. Air main­ly con­sists of nit­ro­gen, and mic­ros­co­pic nit­ro­gen bubb­les can also adhe­re to the gills. Bubb­les of any gas atta­ched to the gills can affect bre­at­hing and dis­rupt the health of fish. If fish are tran­s­por­ted in water over­sa­tu­ra­ted with bubb­les, the­re is a like­li­ho­od of hypo­xia, hyper­car­bia, res­pi­ra­to­ry aci­do­sis, dise­a­ses, and death.
  • Inc­re­a­sing the Sali­ni­ty of Water to 3 – 5 mg/​l. Salt (non-​iodized NaCl is suf­fi­cient) is suitab­le for fish tran­s­port. In stress, fish lose ions, which can be more stress­ful for them. The ener­gy requ­ired for ion tran­s­port through cell mem­bra­nes can repre­sent a sig­ni­fi­cant loss of ener­gy, requ­iring even more oxy­gen. Tran­s­por­ting fish in con­tai­ners con­tai­ning a mist of mic­ros­co­pic bubb­les can be dan­ge­rous for tran­s­por­ted fish, inc­re­a­sing the like­li­ho­od of dela­y­ed mor­ta­li­ty after rele­a­se. Fish tran­s­por­ted in water that appe­ars mil­ky and con­tains mic­ro­bubb­les are stres­sed, expe­rien­ce phy­si­cal dama­ge, and have inc­re­a­sed sus­cep­ti­bi­li­ty to infec­ti­ons, ill­nes­ses, and post-​transport mortality.

After the rele­a­se of fish that sur­vi­ved the ini­tial toxic effects of oxy­gen during tran­s­port, they may be more sen­si­ti­ve to vari­ous pat­ho­gens. As a result, inc­re­a­sed mor­ta­li­ty may occur in the days to weeks fol­lo­wing tran­s­port. Very aera­ted water does not mean oxy­ge­na­ted water. High­ly aera­ted water is often over­sa­tu­ra­ted with gase­ous nit­ro­gen, which can cau­se ill­ness. Mic­ros­co­pic bubb­les con­tai­ning main­ly nit­ro­gen can cau­se tis­sue emp­hy­se­ma during tran­s­port, simi­lar to what hap­pens to divers.


Lite­ra­tú­ra

Cech, J.J. Jr., Cast­le­ber­ry, D.T., Hop­kins, T.E. 1994. Tem­pe­ra­tu­re and CO2 effects on blo­od O2 equ­ilib­ria in squ­awfish, Pty­cho­che­i­lus ore­go­nen­sis. In: Can. J. Fish. Aqu­at. Sci., 51, 1994, 13 – 19.
Cech, J.J. Jr., Cast­le­ber­ry, D.T., Hop­kins, T.E., Peter­sen, J.H. 1994. Nort­hern squ­awfish, Pty­cho­che­i­lus ore­go­nen­sis, O2 con­sump­ti­on and res­pi­ra­ti­on model: effects of tem­pe­ra­tu­re and body size. In: Can. J. Fish. Aqu­at. Sci., 51, 1994, 8 – 12.
Croc­ker, C.E., Cech, J.J. Jr. 1998. Effects of hyper­cap­nia on blood-​gas and acid-​base sta­tus in the whi­te stur­ge­on, Aci­pen­ser trans­mon­ta­nus. In: J. Comp. Phy­si­ol., B168, 1998, 50 – 60.
Croc­ker, C.E., Cech, J.J. Jr. 1997. Effects of envi­ron­men­tal hypo­xia on oxy­gen con­sump­ti­on rate and swim­ming acti­vi­ty in juve­ni­le whi­te stur­ge­on, Aci­pen­ser trans­mon­ta­nus, in rela­ti­on to tem­pe­ra­tu­re and life inter­vals. In: Env. Biol. Fish., 50, 1997, 383 – 389.
Croc­ker, C.E., Far­rell, A.P., Gam­perl, A.K., Cech, J.J. Jr. 2000. Car­di­ores­pi­ra­to­ry res­pon­ses of whi­te stur­ge­on to envi­ron­men­tal hyper­cap­nia. In: Amer. J. Phy­si­ol. Regul. Integr. Comp. Phy­si­ol., 279, 2000, 617 – 628.
Fer­gu­son, R.A, Kief­fer, J.D., Tufts, B.L. 1993. The effects of body size on the acid-​base and meta­bo­lic sta­tus in the whi­te musc­le of rain­bow trout befo­re and after exhaus­ti­ve exer­ci­se. In: J. Exp. Biol., 180, 1993, 195 – 207.
Hyl­land, P., Nils­son, G.E., Johans­son, D. 1995. Ano­xic brain fai­lu­re in an ectot­her­mic ver­teb­ra­te: rele­a­se of ami­no acids and K+ in rain­bow trout tha­la­mus. In: Am. J. Phy­si­ol., 269, 1995, 1077 – 1084.
Kief­fer, J.D., Cur­rie, S., Tufts, B.L. 1994. Effects of envi­ron­men­tal tem­pe­ra­tu­re on the meta­bo­lic and acid-​base res­pon­ses on rain­bow trout to exhaus­ti­ve exer­ci­se. In: J. Exp. Biol., 194, 1994, 299 – 317.
Krum­schna­bel, G., Sch­warz­baum, P.J., Lisch, J., Bia­si, C., Wei­ser, W. 2000. Oxygen-​dependent ener­ge­tics of anoxia-​intolerant hepa­to­cy­tes. In: J. Mol. Biol., 203, 2000, 951 – 959.
Laiz-​Carrion, R., Sangiao-​Alvarellos, S., Guz­man, J.M., Mar­tin, M.P., Migu­ez, J.M., Soen­gas, J.L., Man­ce­ra, J.M. 2002. Ener­gy meta­bo­lism in fish tis­su­es rela­ed to osmo­re­gu­la­ti­on and cor­ti­sol acti­on: Fish gro­wth and meta­bo­lism. Envi­ron­men­tal, nut­ri­ti­onal and hor­mo­nal regu­la­ti­on. In: Fish Phy­si­ol. Bio­chem., 27, 2002, 179 – 188.
Mac­Cor­mack, T.J., Drie­dzic, W.R. 2002. Mito­chon­drial ATP-​sensitive K+ chan­nels influ­en­ce for­ce deve­lop­ment and ano­xic con­trac­ti­li­ty in a flat­fish, yel­lo­wtail floun­der Liman­da fer­ru­gi­nea, but not Atlan­tic cod Gadus mor­hua heart. In: J. Exp. Biol., 205, 2002, 1411 – 1418.
Man­zon, L.A. 2002. The role of pro­lac­tin in fish osmo­re­gu­la­ti­on: a review. In: : Gen. Com­par. Endoc­rin., 125, 2002, 291 – 310.
Mil­li­gan, C.L. 1996. Meta­bo­lic reco­ve­ry from exhaus­ti­ve exer­ci­se in rain­bow trout: Review. In: Comp. Bio­chem. Physiol.,113A, 1996, 51 – 60.
Mor­gan, J.D., Iwa­ma, G.K. 1999. Ener­gy cost of NaCl tran­s­port in iso­la­ted gills of cutth­ro­at trout. In: Am. J. Phy­si­ol., 277, 1999, 631 – 639.
Nils­son, G.E., Perez-​Pinzon, M., Dim­berg, K., Win­berg, S. 1993. Brain sen­si­ti­vi­ty to ano­xia in fish as ref­lec­ted by chan­ges in extra­cel­lu­lar potassium-​ion acti­vi­ty. In: Am. J. Phy­si­ol., 264, 1993, 250 – 253.

Use Facebook to Comment on this Post

Akvaristika, Biológia, Organizmy, Príroda, Rastliny, Ryby, Živočíchy

Rozmnožovanie rýb a vodných rastlín

Hits: 47663

Ryby sa roz­mno­žu­jú iba pohlav­ne. Pod­ľa spô­so­bu roz­mno­žo­va­nie roz­li­šu­je­me na iker­nač­ky a živo­rod­ky. Iker­nač­ky kla­dú ikry – vajíč­ka podob­ne ako pla­zy, kto­ré sa po akte roz­mno­žo­va­nia vyví­ja­jú mimo tela mat­ky – ovi­pa­ria – vaj­co­ro­dosť. Ich prie­mer je od 0.8 mm do 6 mm, v závis­los­ti na kon­krét­nom dru­hu. Ikry, napo­kon v men­šej mie­re aj plô­dik veľ­mi čas­to nezná­ša­jú svet­lo, pre­to sa ikry čas­to zakrý­va­jú – roz­umej celé akvá­ri­um. Je to logic­ké – tre­ba si uve­do­miť, že v prí­ro­de je oby­čaj­ne väč­šia tma” a ikry oby­čaj­ne kla­dú pod list, do rast­lín, na dno, do jas­ky­niek pod skal­ný strop apod. Ikry, kto­ré nie sú oplod­ne­né, časom zbe­le­jú, a je ich tre­ba z akvá­ria vybrať, pre­to­že by sa zby­toč­ne roz­kla­da­li a tým ohro­zo­va­li zvyš­né. Naopak dru­hom živo­ro­dým sa ikry vyví­ja­jú v telo­vej duti­ne mat­ky podob­ne ako u cicav­cov – vivi­pa­ria – živo­ro­dosť. V prí­pa­de málo čas­té­ho vylu­čo­va­nia oplod­ne­ných ikier hovo­rí­me o ovo­vi­vi­pa­rii – vaj­co­ži­vo­ro­dos­ti. Plô­dik totiž čas­to opúš­ťa telo mat­ky tes­ne po zba­ve­ní sa posled­ných záro­doč­ných oba­lov. Prá­ve vylia­hnu­té mlá­ďa sa nazý­va ele­ute­rem­bryo. Živo­ro­dým dru­hov sa vlast­ne ikry vyví­ja­jú v tele, sú rov­na­ké­ho tva­ru, veľ­kos­ti ako u iker­na­čiek, len vývin pre­bie­ha dlh­šie 2040 dní. Živo­rod­ky majú vyvi­nu­tý špe­ci­fic­ký orgán – gono­pó­dium, u rodu Hemir­hap­ho­don andro­gó­nium, pomo­cou kto­ré­ho sa roz­mno­žu­jú. Tvar gono­pó­dia je určo­va­cím dru­ho­vým zna­kom. Plod­nosť rýb viac-​menej ras­tie s ich dĺž­kou, váhou. Vplyv naň však má aj okrem iné­ho aj vek, obsah solí, kys­lí­ka, tep­lo­ta vody. Živo­ro­dým dru­hom, okrem gude­ovi­tých sper­mie v tele samič­ky pre­ží­va­jú aj mesia­ce – sam­ček oplod­ní samič­ku a ten­to pre­nos gene­tic­kej infor­má­cie je živo­ta­schop­ný dlhé časo­vé obdo­bie, oby­čaj­ne 34 vrhy, bol však zazna­me­na­ný aj prí­pad 11 vrhov. Je zau­jí­ma­vé, že aj medzi ryba­mi sa náj­du dru­hy, kto­ré sú oboj­po­hlav­né – her­maf­ro­di­tiz­mom, no drvi­vá väč­ši­na rýb sú gono­cho­ris­ti – funkč­ne samič­ky tvo­ria sami­čie pohlav­né bun­ky, sam­ce sam­čie pohlav­né bun­ky. Pri roz­mno­žo­va­ní by sme sa mali vyhnúť prí­bu­zen­skej ple­me­nit­be. Ak už sme núte­ní ku nej, množ­me rad­šej rodi­ča s potom­kom, ako ses­tra s bra­tom. Dlho­do­bá prí­bu­zen­ská ple­me­nit­ba vedie ku dege­ne­ra­tív­nym poru­chám, napr. ku zakri­ve­niu chrb­ti­ce, ku iným mor­fo­lo­gic­kým odchýl­kam, ku zní­že­nej životaschopnosti.

V prí­ro­de dochá­dza aj ku krí­že­niu medzi prí­buz­ný­mi, no ide o izo­lo­va­né oblas­ti, kde je zame­dze­ný prí­stup ku mig­rá­cii a tým ku pre­mie­ša­va­niu gene­tic­kej infor­má­cie. Nie je vylú­če­né, že dochá­dza pria­mo ku krí­že­niu medzi potom­ka­mi jed­né­ho rodi­ča, ale vzhľa­dom na veľ­kosť are­álu a počet­nosť popu­lá­cie ide o roz­mno­žo­va­nie medzi brat­ran­ca­mi a ses­ter­ni­ca­mi. Keď­že dochá­dza v ove­ľa vyš­šej mie­re aj ku prí­rod­né­mu výbe­ru, neraz sa sta­ne, že taká­to izo­lo­va­ná prí­bu­zen­sky sa mno­žia­ca popu­lá­cia je živo­ta­schop­nej­šia ako popu­lá­cia, kto­rej are­ál nedo­vo­ľu­je prak­tic­ky prí­bu­zen­ské krí­že­nie vďa­ka dostat­ku pries­to­ru. Ten­to stav však pla­tí, ak sú pod­mien­ky ide­ál­ne, len čo sa rapíd­ne zme­nia fak­to­ry pro­stre­dia nega­tív­ne, neizo­lo­va­ná popu­lá­cia je razom vo výho­de. Akti­vi­ty vedú­ce k repro­duk­cii sú jed­ny z najk­raj­ších, kto­ré nám vedia ryby pri ich cho­va­ní poskyt­núť. Sna­ha sam­cov, pred­vá­dza­nie sa pred samič­ka­mi je veľ­mi zau­jí­ma­vá. Nie­kto­ré sú schop­né pre­na­sle­do­vať samič­ky väč­ši­nu dňa, iné sa tej­to čin­nos­ti venu­jú len v urči­tom obdo­bí a za urči­tých pod­mie­nok. Prá­ve pre­to je vhod­né prá­ve počas sna­hy o roz­mno­žo­va­nie viac dbať o tes­nosť kry­cie­ho skla, pre­to­že naj­mä samič­ky majú neraz sna­hu ujsť pred dobie­dza­jú­ci­mi sam­ca­mi aj skok­mi nad hladinu.

Tet­rám sa čas­to pre ich záu­jem o ikry, kla­die ako pre­káž­ka, z náš­ho cho­va­teľ­ské­ho pohľa­du rošt – fil­ter, kto­rý odde­ľu­je ikry od ostat­ných rýb. Netý­ka sa to však iba tetier, pre tet­ry je však pou­ži­tie tre­cie­ho roš­tu príz­nač­né. Rošt môže byť polo­že­ný na holom dne po celom obsa­hu. Počas tre­nia pada­jú ikry na dno, kde sa nachá­dza rošt, kto­rý je tro­chu nadvi­hnu­tý nad dno, aby na ikry rodi­čia nedo­siah­li. Samoz­rej­me rošt môže byť polo­že­ný aj inak, pod­stat­né je aby sa dospe­lé ryby ku ikrám nedos­ta­li, ale­bo mali túto úlo­hu sťa­že­nú. Mate­riál, z kto­ré­ho je vyro­be­ný, je takis­to rôz­ny, závi­sí od veľ­kos­ti rýb, ikier pre kto­rý má byť pou­ži­tý. Pou­ží­va­jú sa rôz­ne naj­čas­tej­šie ple­ti­vá pre záh­rad­ká­rov apod. Exis­tu­je aj for­ma skle­ne­né­ho per­fo­ro­va­né­ho roštu.

Pôrod­nič­ka je nádo­ba, uzav­re­tý pries­tor, prí­pad­ne akvá­ri­um, v kto­rom sa rodí poter. Opo­me­niem teraz nádrž, ako mate­riál sa komerč­ne pou­ží­va ume­lá hmo­ta. Tie­to sú vhod­né pre živo­rod­ky. Sú kon­štru­ova­né tak, aby napr. gra­vid­ná gup­ka moh­la v nej poro­diť svo­je mla­dé. Exis­tu­jú prin­ci­piál­ne dva typy: pri prvom naro­de­né ryb­ky opúš­ťa­jú telo mat­ky a pre­pa­dá­va­jú cez liš­ty do spod­nej čas­ti pôrod­nič­ky, kam sa samič­ka nemá šan­cu dostať, ale­bo pri dru­hom ryb­ky opúš­ťa­jú mat­ku do voľ­nej vody – v tom­to prí­pa­de musí byť samoz­rej­me toto akvá­ri­um bez rýb, inak čerstvo naro­de­né ryb­ky čosko­ro pože­rie. Oba typy pôrod­ni­čiek na vode plá­vu – pohy­bu­jú sa na hla­di­ne Ako lep­šia alter­na­tí­va pou­ži­té­ho mate­riá­lu ku takým­to pôrod­nič­kám je pou­ži­tie sie­ťo­vi­ny, podob­ne ako pri tre­com roš­te. Ple­ti­vo sta­čí zošiť napr. satur­nou to žela­né­ho tva­ru a zabez­pe­čiť napr. polys­ty­ré­nom, aby ple­ti­vo nepad­lo na dno. Výho­da také­ho­to rie­še­nia je zjav­ná – ple­ti­vo môže byť ove­ľa väč­šie ako v obcho­de zakú­pe­nej pôrod­nič­ke, a cel­ko­vo je šité tak­po­ve­diac na mie­ru. Zakú­pe­né pôrod­nič­ky z obcho­du som však malý­mi vrták­mi pre­vŕ­tal, aby medze­ry pre únik plô­di­ka boli ešte šir­šie. O svoj­po­moc­ne vytvo­re­ných pôrod­nič­kách píše Ivan Vyslú­žil v tom­to člán­ku.

Ako sub­strát pre nie­kto­ré dru­hy poslú­žia jem­no­lis­té rast­li­ny, ste­ny nádr­že, lis­ty rast­lín, kame­ne na plo­chu, ale­bo strop kamen­ných jas­ky­niek”, atď. Pre nie­kto­ré dru­hy rýb sa pri­pra­vu­jú rôz­ne výlu­hy. Néon­ka čier­na – Hypes­sob­ry­con her­ber­ta­xel­ro­di je toho názor­ným prí­kla­dom – pre ten­to druh sa čas­to výlu­hy pri­pra­vu­jú ako napo­kon aj pre ostat­né tetrovité.

Roz­mno­žo­va­nie cich­líd je zrej­me jed­no z naj­zau­jí­ma­vej­ších medzi ryba­mi. Napr. samič­ka ostrie­ži­ka pur­pu­ro­vé­ho si vyhliad­ne vhod­nú jas­kyn­ku, napr. koko­so­vý orech, kde doká­že držať v papu­li svo­je mla­dé celé hodi­ny. Samoz­rej­me pred­tým pre­beh­lo tre­nie. Naj­mä u ame­ric­kých dru­hov sa páry musia nájsť samé, čas­to vydr­žia spo­lu aj celý život. Nie­kto­ré dru­hy kla­dú ikry na sub­strát, napr. na plo­chý kameň, na pod­ne­bie kame­ňa apod. Zospo­du kla­die ikry napr. prin­cez­ná – Neolam­pro­lo­gus bri­char­di. Ten­to druh je pomer­ne nezná­šan­li­vý voči sebe, tak­že domi­nant­né páry eli­mi­nu­jú svo­ju kon­ku­ren­ciu, a potom sa plnou silou pus­tia do roz­mno­žo­va­nia. Keď začnú, čas­to v pomer­ne pra­vi­del­ných inter­va­loch pri­ná­ša­jú nové gene­rá­cie. Ich ikry sú sla­bo ružo­vé, pomer­ne veľ­ké, počet ikier je 20100. Veľa dru­hov cich­líd pat­ria medzi tzv. papu­ľov­ce (čes­ky tla­mov­ce). Čiže sú to také dru­hy, kto­ré svo­je potom­stvo ucho­vá­va­jú vo svo­jej papuľ­ke, avšak papu­ľov­ce náj­de­me aj medzi iný­mi taxón­mi, napr. aj medzi druh­mi rodu Bet­ta. Ich rodi­čov­ský inštinkt je však čas­to dosť sla­bý, je to samoz­rej­me dru­ho­vo špe­ci­fic­ké, napr. Neolam­pro­lo­gus bri­char­di, väč­ši­na ame­ric­kých cich­líd svo­je potom­stvo urput­ne brá­ni, na roz­diel od napr. mala­wij­ských rodov Pse­udot­rop­he­us, May­lan­dia, Mela­noc­hro­mis, Labi­doc­hro­mis. Ikry držia poc­ti­vo v papu­li, necha­jú ich strá­viť žĺt­ko­vý vak, pri­pra­via ich na opus­te­nie úst­nej duti­ny mat­ky, vypus­tia ich. Nie­ke­dy sa sta­ne, že ich ešte neja­ký čas opäť pozbie­ra­jú a ten­to jav sa môže opa­ko­vať, no keď už tak nespra­via, ich rodi­čov­ský inštinkt ide veľ­mi rých­lo bokom. Samec, v pod­sta­te po oplod­ne­ní iba chrá­nil samič­ku, ale teraz svo­je mla­dé väč­ši­nou pokla­dá za votrel­cov, prí­pad­ne za spes­tre­nie menu. Samič­ka je na tom podob­ne, ona sa ale skôr pomý­li”. Najprv si mla­dé nevší­ma, ako­by sa diš­tan­co­va­la, no časom sa môže stať, že svo­je potom­stvo začne prenasledovať.

Typic­ké kap­ro­zúb­ky (halan­čí­ky) nakla­dú ikry, kto­ré v prí­ro­de jed­no­du­cho neskôr vyschnú. Impulz na vývoj zárod­ku done­sie so sebou až opä­tov­ný dážď na začiat­ku obdo­bia daž­ďov. Simu­lá­cia toh­to pro­ce­su je aj zákla­dom úspe­chu pri ich roz­mno­žo­va­ní v zaja­tí, v našich nádr­žiach. Čiže po tre­ní v akvá­riu je nut­né ikry vybrať a umiest­niť na suchom mies­te. Po dru­ho­vo špe­ci­fic­kom čase ikry vybe­rie­me, umiest­ni­me do vhod­nej nádr­že a zale­je­me vodou. Vte­dy začne pokra­čo­vať repro­duk­cia až po vylia­hnu­tie mla­dých rýb. Tie­to ryby ras­tú veľ­mi rých­lo, pre­to­že jed­no­roč­né dru­hy musia počas krát­kej dobe dospieť a sami sa rozmnožovať.

Samič­ky pan­cier­ni­ka Cory­do­ras aene­us zbie­ra oplod­ne­né ikry a dočas­ne ich nesie pod prs­ný­mi plut­va­mi, kto­ré má zlo­že­né do tzv. taš­tič­ky. Neskôr ich lepí na sklo a na rast­li­ny. Pan­cier­ni­ky sa roz­mno­žu­jú v hej­nách, pat­ria sem dru­hy obľu­bu­jú­ce niž­šiu tep­lo­tu. Zná­ma je pomôc­ka ku sti­mu­lá­cii – niten­ky a kaž­do­den­né zni­žo­va­nie hla­di­ny vody a výme­na vody za čerstvú stu­de­nú vodu, čo simu­lu­je nad­chá­dza­jú­ce obdo­bie daž­ďov – obdo­bie hoj­nos­ti. Pan­cier­ni­ky si zväč­ša vlast­né ikry veľ­mi nevší­ma­jú, odpo­rú­ča sa však, ich pre­miest­ňo­vať. Samoz­rej­me veľa dru­hov nie je tak ľah­ko roz­mno­ži­teľ­ných: Cory­do­ras ster­bai, C. pan­da atď.

Naj­čas­tej­šie sa v akvá­riách vysky­tu­jú­ci prí­sav­ník Ancis­trus cf. cirr­ho­sus sa roz­mno­žu­je v duti­nách, ale­bo pod kame­ne. Cho­va­te­lia si pomá­ha­jú napr. skle­ne­nou fľa­šou, novo­du­ro­vou trub­kou apod. Sam­ček si svo­ju samič­ku zvy­čaj­ne vybe­rie. Svo­je ikry samec do isté­ho času strá­ži, avšak nemá toľ­ko pros­tried­kov ako veľ­ké dra­vé dru­hy, ani nie je tak húžev­na­tý. Avšak v bež­nom spo­lo­čen­skom akvá­riu má prí­sav­ník šan­cu sa roz­mno­žiť a poskyt­núť aj potomstvo.

O ska­lá­roch – Pte­rop­hyl­lum sca­la­re sa vra­ví, že vyža­du­jú tlak vody – vyso­ký vod­ný stĺpec. Avšak mal som mož­nosť vidieť ich odcho­vá­vať aj vo veľ­mi malých nádr­žiach nie vyš­ších ako 25 cm. Keď­že v domo­vi­ne sa vytie­ra­jú zvy­čaj­ne na lis­ty vyso­ko ras­tú­cich rast­lín, môže­me im poskyt­núť ako tre­cí sub­strát napr. otvo­re­ný kus z PET fľa­še. Ska­lár, pokiaľ naklá­dol ikry, tak ich chrá­ni, aj sa o ne sta­rá, hneď ako sa roz­pla­vá­va­jú mla­dé, začne ich zvy­čaj­ne nemi­lo­sr­d­ne požie­rať. V prí­ro­de by sa tak­to nesprá­val a stá­va sa, že aj v akvá­riu mla­dé nepožiera.

Živo­rod­ky sú z hľa­dis­ka roz­mno­žo­va­nia vhod­né pre začia­toč­ní­ka. Dá sa pre ne pri roz­mno­žo­va­ní uplat­niť vyš­šie spo­mí­na­ná pôrod­nič­ka, ale aj vlast­ný­mi pros­tried­ka­mi zoši­té sito. Roz­mno­žu­jú sa pri tro­che sna­hy veľ­mi ochot­ne. Mečov­ka mexic­ká je tak­mer vždy voči svo­jim mla­dým kani­bal, pla­ty sú na tom obdob­ne, len pávie očká zväč­ša vlast­né potom­stvo ušet­ria. Keď dospe­jú a začnú sa roz­mno­žo­vať, cyk­lus pôro­dov sa opa­ku­je zhru­ba po 45 týžd­ňoch ako u väč­ši­ny živo­ro­diek. Gup­kypla­ty môžu mať až 100 mla­dých, dospe­lá mečún­ka aj 200. Ide o živo­ro­dé dru­hy, tak­že rodia živé mlá­ďa­tá, v bruš­nej čas­ti sa nachá­dza škvr­na plod­nos­ti, kto­rá sved­čí o pohlav­nej zre­los­ti sami­čiek. Jed­no oplod­ne­nie sam­com môže vysta­čiť aj na 34 vrhy. Počas dní pred pôro­dom sa škvr­na zväč­šu­je a tmav­ne. Black­mol­ly – tma­vá vypes­to­va­ná for­ma Poeci­lia she­nops je tro­chu ťaž­šie odcho­va­teľ­ná ryb­ka, pre­to­že vyža­du­je o nie­čo tep­lej­šiu vodu a nevid­no na nej škvr­nu plod­nos­ti. U blac­moll pri ich potom­stve máme mož­nosť vidieť pre­sa­dzo­va­nie sa génov prí­rod­nej pova­hy, pre­to­že nie všet­ky mla­dé budú celé čier­ne ako prav­de­po­dob­ne sú rodi­čia. Ide o to, že blac­mol­la je vyšľach­te­ná for­ma, kto­rá nie je cel­kom bio­lo­gic­ky ustá­le­ná. Dokon­ca sa môže stať, že nie­kto­ré jedin­ce sú v mlad­šom veku stra­ka­té a neskôr im čier­ny pig­ment pri­bú­da natoľ­ko, že cel­kom zčer­ne­jú. Aj pre black­mol­ly je vhod­né sito na ich roz­mno­žo­va­nie, resp. na ochra­nu vylia­hnu­té­ho potom­stva pred paž­ra­vos­ťou dospelcov.

Laby­rint­ky žijú oby­čaj­ne v pre­tep­le­ných oblas­tiach, kde sa nachá­dza veľ­mi veľa súčas­tí vo vode: rýb, rast­lín, orga­nic­kých zvyš­kov, driev apod. Dospe­lé jedin­ce dýcha­jú atmo­sfé­ric­ký kys­lík. Veľa dru­hov laby­rin­tiek tvo­rí peno­vé hniez­do – pri ochra­ne ikier využi­jú svo­ju schop­nosť nabe­rať atmo­sfé­ric­ký vzduch. Peno­vé hniez­do je tvo­re­né čias­toč­ka­mi vzdu­chu, kto­ré ryby pre­me­lú v úst­nej duti­ne. Na vode plá­va. To zna­me­ná, že hniez­do pre ikry plá­va na hla­di­ne, nie je vhod­né aby v akvá­riu bolo sil­né prú­de­nie vody – to by moh­lo poško­diť stav­bu peno­vé­ho hniez­da. Ako pod­po­ra preň slú­žia napr. plá­va­jú­ce rast­li­ny Ric­cia, Sal­vi­nia, Myri­op­hyl­lum, Lem­na apod. Hniez­do oby­čaj­ne sta­via samec, nie­kto­ré dru­hy ale­bo jedin­ce je tre­ba po tre­ní z nádr­že odlo­viť, iné nie. Tým­to spô­so­bom sa roz­mno­žu­jú gura­my, bojov­ni­ce, koli­zy. O koli­zách – Coli­sa je zná­me, že ich poter je jeden z naj­men­ších, pre­to sa odpo­rú­ča udr­žia­vať hla­di­nu vody počas jeho vývo­ja pod 10 cm. Sú veľ­mi náchyl­né na zme­nu tep­lo­ty a na chlad, pre­to je vhod­né zabez­pe­čiť výbor­né utes­ne­nie kry­cím sklom ale­bo nie­čím iným, a udr­žia­va­nie rov­na­kej tep­lo­ty vody, a vzdu­chu nad hla­di­nou ak medzi kry­cím sklom a hla­di­nou je neja­ký pries­tor. Fil­tro­va­nie by malo byť veľ­mi sla­bé ale­bo žiad­ne a prú­de­nie vody mini­mál­ne, ale­bo žiad­ne. Kri­tic­ké obdo­bie je doba tvor­by laby­rin­tu. Dochá­dza k tomu po 50 dni a toto obdo­bie je kri­tic­ké, vte­dy je vhod­né ešte viac zvý­šiť obo­zret­nosť, aby sme prí­pad­né stra­ty mini­ma­li­zo­va­li. Pred roz­mno­žo­va­ním bojov­níc Bet­ta splen­dens môže v ich sprá­va­ní dôjsť ku pre­ja­vu džen­tl­men­stva. Vte­dy sok pri fyzi­olo­gic­kej potre­be soka nadých­nuť sa, čaká na to aby mohol pokra­čo­vať v súbo­ji. Spo­lo­čen­ské boje sam­cov sú u bojov­ní dosť drsné.

Vod­né rast­li­ny sa roz­mno­žu­jú v akvá­riách, ale čas­to aj v prí­ro­de, hlav­ne nepo­hlav­ne. Vege­ta­tív­ne roz­mno­žo­va­nie nastá­va rôz­ny­mi spô­sob­mi, napr. odrez­ka­mi, pop­laz­mi, odno­ža­mi atď. Pohlav­ný spô­sob nie je taký čas­tý ako u ich sucho­zem­ských prí­buz­ných. Rast­li­ny čas­to v akvá­riu nek­vit­nú a k ope­le­niu – k začiat­ku úspeš­né­ho roz­mno­že­nia dochá­dza ešte menej čas­to, čo je pocho­pi­teľ­né aj vzhľa­dom na pries­to­ro­vé bariéry.


Fish repro­du­ce exc­lu­si­ve­ly through sexu­al means. Accor­ding to the met­hod of repro­duc­ti­on, we dis­tin­gu­ish bet­we­en egg-​layers and live­be­a­rers. Egg-​layers depo­sit eggs (roe) simi­lar to repti­les, which deve­lop out­si­de the mot­he­r’s body after the act of repro­duc­ti­on – ovi­pa­rous repro­duc­ti­on. The­ir dia­me­ter ran­ges from 0.8 mm to 6 mm, depen­ding on the spe­cies. Eggs, and to a les­ser extent, fry, often dis­li­ke light, so the eggs are fre­qu­en­tly cove­red – mea­ning the enti­re aqu­arium. This is logi­cal – one must rea­li­ze that in natu­re, the­re is usu­al­ly more dark­ness,” and eggs are typi­cal­ly laid under lea­ves, among plants, on the bot­tom, in cre­vi­ces under roc­ky cei­lings, etc. Unfer­ti­li­zed eggs turn whi­te over time, and they should be remo­ved from the aqu­arium becau­se they would other­wi­se decom­po­se unne­ces­sa­ri­ly, posing a thre­at to the others.

On the con­tra­ry, in live­be­a­ring spe­cies, eggs deve­lop in the body cavi­ty of the mot­her, simi­lar to mam­mals – vivi­pa­rous repro­duc­ti­on. In cases of rare expul­si­on of fer­ti­li­zed eggs, we refer to it as ovo­vi­vi­pa­ri­ty – egg live­be­a­ring. The fry often lea­ves the mot­he­r’s body short­ly after shed­ding the last embry­o­nic mem­bra­nes. The just-​hatched offs­pring is cal­led an ele­ut­he­rem­bryo. In live­be­a­ring spe­cies, eggs essen­tial­ly deve­lop insi­de the body, having the same sha­pe and size as tho­se of egg-​laying spe­cies, but the deve­lop­ment takes lon­ger, around 20 – 40 days. Live­be­a­rers have a spe­cia­li­zed organ cal­led a gono­po­dium, in the case of the genus Hemir­hap­ho­don andro­gy­nous, which they use for repro­duc­ti­on. The sha­pe of the gono­po­dium is a species-​specific characteristic.

The fer­ti­li­ty of fish more or less inc­re­a­ses with the­ir length and weight. Besi­des, fac­tors like age, salt con­tent, oxy­gen, and water tem­pe­ra­tu­re also influ­en­ce it. In live­be­a­ring spe­cies, male sperm can sur­vi­ve in the fema­le­’s body for months – the male fer­ti­li­zes the fema­le, and this trans­fer of gene­tic infor­ma­ti­on remains viab­le for a long peri­od, usu­al­ly span­ning 3 – 4 bro­ods, but cases of 11 bro­ods have been recor­ded. Inte­res­tin­gly, among fish, the­re are also her­maph­ro­di­tic spe­cies – capab­le of both male and fema­le repro­duc­ti­on. Howe­ver, the vast majo­ri­ty of fish are gono­cho­ris­tic – func­ti­onal­ly fema­les pro­du­ce fema­le game­tes, and males pro­du­ce male game­tes. When bre­e­ding, one should avo­id inb­re­e­ding. If for­ced into it, it is bet­ter to mate a parent with offs­pring rat­her than sis­ter with brot­her. Long-​term inb­re­e­ding leads to dege­ne­ra­ti­ve disor­ders, such as spi­nal cur­va­tu­re, other morp­ho­lo­gi­cal devia­ti­ons, and redu­ced viability.

In natu­re, the­re is also mating bet­we­en rela­ti­ves, but it occurs in iso­la­ted are­as whe­re access to mig­ra­ti­on and thus the mixing of gene­tic infor­ma­ti­on is res­tric­ted. It is not exc­lu­ded that direct mating occurs bet­we­en the offs­pring of a sin­gle parent, but due to the size of the area and the popu­la­ti­on’s size, it invol­ves mating bet­we­en cou­sins. Sin­ce the­re is much hig­her natu­ral selec­ti­on in such cases, it often hap­pens that a popu­la­ti­on repro­du­cing in such a rela­ted man­ner is more viab­le than a popu­la­ti­on who­se area prac­ti­cal­ly pro­hi­bits inb­re­e­ding due to suf­fi­cient spa­ce. Howe­ver, this con­di­ti­on holds true only when the con­di­ti­ons are ide­al; once envi­ron­men­tal fac­tors chan­ge rapid­ly and nega­ti­ve­ly, the non-​isolated popu­la­ti­on sud­den­ly gains an advan­ta­ge. Acti­vi­ties lea­ding to repro­duc­ti­on are among the most beau­ti­ful aspects that fish can pro­vi­de when kept. The efforts of males, sho­wca­sing them­sel­ves to fema­les, are very intri­gu­ing. Some are capab­le of pur­su­ing fema­les for most of the day, whi­le others enga­ge in this acti­vi­ty only during spe­ci­fic peri­ods and under cer­tain con­di­ti­ons. Tha­t’s why it’s advi­sab­le to ensu­re tight cover glas­ses, espe­cial­ly during repro­duc­ti­on attempts, as fema­les, in par­ti­cu­lar, often try to esca­pe from pur­su­ing males, even jum­ping abo­ve the water surface.**

Tetras often lay the­ir eggs, a beha­vi­or we view as a chal­len­ge from a bre­e­ding per­spec­ti­ve. For tetras, the use of a spa­wning grid or fil­ter is typi­cal. The grid can be pla­ced on the bare bot­tom throug­hout the tank. During spa­wning, the eggs fall to the bot­tom, whe­re the grid is posi­ti­oned slight­ly abo­ve to pre­vent the parents from rea­ching the eggs. Of cour­se, the grid can be pla­ced dif­fe­ren­tly, but the key is to pre­vent adult fish from rea­ching the eggs or to make it more dif­fi­cult for them. The mate­rial used for the grid varies, depen­ding on the size of the fish and the eggs it is inten­ded for. Com­mon­ly used mate­rials inc­lu­de vari­ous types of mesh used in gar­de­ning and simi­lar acti­vi­ties. The­re is also a form of per­fo­ra­ted glass grid available.

A bre­e­ding box is a con­tai­ner, enc­lo­sed spa­ce, or aqu­arium whe­re fry are born. I’ll skip the tank, as com­mer­cial­ly, synt­he­tic mate­rials are used. The­se are suitab­le for live­be­a­rers. They are desig­ned so that, for exam­ple, a gra­vid gup­py can give birth to its young insi­de. The­re are fun­da­men­tal­ly two types: in the first, the newborn fish lea­ve the mot­he­r’s body and fall through slots to the bot­tom of the bre­e­ding box, whe­re the fema­le can­not reach them. In the second, the fish lea­ve the mot­her into free water – in this case, of cour­se, this aqu­arium must be wit­hout other fish, as newly born fish would soon be eaten. Both types of bre­e­ding boxes flo­at on the water – they move on the sur­fa­ce. A bet­ter alter­na­ti­ve to the mate­rial used for such bre­e­ding boxes is the use of a net, simi­lar to a spa­wning grid. The net can be stit­ched, for exam­ple, into the desi­red sha­pe using a nylon thre­ad, and secu­red, for exam­ple, with polys­ty­re­ne to pre­vent it from sin­king to the bot­tom. The advan­ta­ge of this solu­ti­on is evi­dent – the net can be much lar­ger than that of a store-​bought bre­e­ding box, and ove­rall, it can be tailor-​made. Howe­ver, I have dril­led small holes in store-​bought bre­e­ding boxes to widen the gaps for fry esca­pe. Ivan Vyslú­žil dis­cus­ses self-​made bre­e­ding boxes in this article.

Fine-​leaved plants, tank walls, plant lea­ves, sto­nes on the sur­fa­ce, or the cei­lings of sto­ne caves,” etc., can ser­ve as sub­stra­te for cer­tain spe­cies. Vari­ous infu­si­ons are pre­pa­red for some fish spe­cies. The Black Neon Tet­ra (Hypes­sob­ry­con her­ber­ta­xel­ro­di) is a notab­le exam­ple – infu­si­ons are often pre­pa­red for this spe­cies, as well as for other tetras.

The repro­duc­ti­on of cich­lids is argu­ab­ly one of the most intri­gu­ing aspects among fish. For ins­tan­ce, a fema­le Purp­le Spot­ted Gud­ge­on selects a suitab­le cave, such as a coco­nut shell, whe­re she can hold her offs­pring (fry) for seve­ral hours. Of cour­se, spa­wning has occur­red befo­re. Espe­cial­ly among Ame­ri­can cich­lid spe­cies, pairs must find each other and often remain toget­her for the­ir enti­re lives. Some spe­cies lay eggs on a sub­stra­te, such as a flat sto­ne or the roof of a sto­ne, etc. Prin­cess cich­lids, like Neolam­pro­lo­gus bri­char­di, lay eggs under­ne­ath a sto­ne. This spe­cies is quite into­le­rant of each other, so domi­nant pairs eli­mi­na­te the­ir com­pe­ti­ti­on and then ful­ly enga­ge in repro­duc­ti­on. Once they start, they often bring new gene­ra­ti­ons at fair­ly regu­lar inter­vals. The­ir eggs are weak­ly pink, rela­ti­ve­ly lar­ge, with a quan­ti­ty ran­ging from 20 to 100. Many cich­lid spe­cies belo­ng to the so-​called mouthb­ro­oders. The­se are spe­cies that keep the­ir offs­pring in the­ir buc­cal cavi­ty (mouth), and mouthb­ro­oders can also be found among other taxa, such as spe­cies of the Bet­ta genus. Howe­ver, the­ir paren­tal ins­tinct is often quite weak; it is, of cour­se, species-​specific. For exam­ple, Neolam­pro­lo­gus bri­char­di and most Ame­ri­can cich­lids fier­ce­ly defend the­ir offs­pring, unli­ke Mala­wian gene­ra like Pse­udot­rop­he­us, May­lan­dia, Mela­noc­hro­mis, Labi­doc­hro­mis. They dili­gen­tly keep the eggs in the buc­cal cavi­ty, let them absorb the yolk sac, pre­pa­re them for lea­ving the mater­nal oral cavi­ty, and rele­a­se them. Some­ti­mes it hap­pens that they col­lect them again for some time, and this phe­no­me­non can be repe­a­ted, but when they stop doing so, the­ir paren­tal ins­tinct quick­ly dimi­nis­hes. The male, essen­tial­ly pro­tec­ting the fema­le after fer­ti­li­za­ti­on, now often con­si­ders the offs­pring as intru­ders or a dis­tur­ban­ce to the menu. The fema­le is simi­lar, but she might make a mis­ta­ke” at first. Ini­tial­ly, she igno­res the fry, as if kee­ping her dis­tan­ce, but over time, she may start cha­sing her offspring.

Typi­cal cat­fish, such as Cory­do­ras, lay eggs that sim­ply dry up in natu­re, awai­ting the impul­se for embryo deve­lop­ment brought by rain during the rai­ny sea­son. Simu­la­ting this pro­cess is the foun­da­ti­on for suc­cess­ful repro­duc­ti­on in cap­ti­vi­ty, in our tanks. After spa­wning in the aqu­arium, it is neces­sa­ry to col­lect the eggs and pla­ce them in a dry loca­ti­on. After a species-​specific peri­od, the eggs are pic­ked up, pla­ced in a suitab­le tank, and cove­red with water. Repro­duc­ti­on con­ti­nu­es until the young fish hatch. The­se fish grow rapid­ly becau­se one-​year spe­cies must matu­re quick­ly to repro­du­ce on the­ir own.

Fema­le Cory­do­ras cat­fish, like Cory­do­ras aene­us, gat­her fer­ti­li­zed eggs and tem­po­ra­ri­ly car­ry them under the­ir pec­to­ral fins, which are fol­ded into a so-​called poc­ket. Later, they stick them to the glass and plants. Cory­do­ras cat­fish repro­du­ce in scho­ols and pre­fer lower tem­pe­ra­tu­res. A kno­wn met­hod for sti­mu­la­ti­on invol­ves using thre­ads and dai­ly lowe­ring the water level whi­le exchan­ging it for fresh, cold water, simu­la­ting an upco­ming peri­od of abun­dan­ce and rain. Cory­do­ras cat­fish usu­al­ly pay litt­le atten­ti­on to the­ir own eggs, but it is recom­men­ded to move them. Howe­ver, many spe­cies are not as easi­ly repro­du­cib­le, such as Cory­do­ras ster­bai, C. pan­da, etc.

The most com­mon­ly occur­ring suc­ker fish in aqu­ariums, Ancis­trus cf. cirr­ho­sus, repro­du­ces in cavi­ties or under sto­nes. Bre­e­ders use aids such as glass bott­les, PVC pipes, etc. The male typi­cal­ly cho­oses his fema­le. The male guards the eggs for a cer­tain peri­od, but he does­n’t have as many defen­ses as lar­ger pre­da­to­ry spe­cies, nor is he as tena­ci­ous. Howe­ver, in a typi­cal com­mu­ni­ty tank, the suc­ker fish has a chan­ce to repro­du­ce and pro­vi­de offspring.

About Angel­fish – Pte­rop­hyl­lum sca­la­re, it is often said that they requ­ire water pre­ssu­re – a high water column. Howe­ver, I have had the oppor­tu­ni­ty to see them bre­e­ding in very small tanks, no hig­her than 25 cm. Sin­ce in the­ir nati­ve habi­tat they usu­al­ly spa­wn on the lea­ves of tall plants, we can pro­vi­de them with an open pie­ce of a PET bott­le as a spa­wning sub­stra­te. When the angel­fish lay eggs, the guar­ding and care for them is usu­al­ly done by the parent, but as soon as the fry start swim­ming fre­e­ly, the adult angel­fish often mer­ci­less­ly devours them. This beha­vi­or is not typi­cal of the­ir natu­ral habi­tat, and some­ti­mes, in an aqu­arium, the adults may not con­su­me the fry.

Live­be­a­rers are suitab­le for begin­ners in terms of repro­duc­ti­on. A pre­vi­ous­ly men­ti­oned bre­e­ding box can be used for them, or a home­ma­de sie­ve can also be effec­ti­ve. They repro­du­ce very wil­lin­gly with a bit of effort. The Mexi­can sword­tail is almost alwa­ys a can­ni­bal toward its young, and pla­ties exhi­bit simi­lar beha­vi­or, alt­hough sail­fin mol­lies usu­al­ly spa­re the­ir own offs­pring. When they matu­re and begin repro­du­cing, the birt­hing cyc­le repe­ats rough­ly eve­ry 4 – 5 weeks, as is typi­cal for most live­be­a­rers. Gup­pies and pla­ties can have up to 100 offs­pring, whi­le an adult sword­tail can have up to 200. Sin­ce they are live­be­a­ring spe­cies, giving birth to live young, the­re is a fer­ti­li­ty spot in the abdo­mi­nal regi­on indi­ca­ting the sexu­al matu­ri­ty of the fema­les. One mating by the male may be suf­fi­cient for 3 – 4 bro­ods. In the days lea­ding up to birth, the spot enlar­ges and dar­kens. Black Mol­ly – a dark cul­ti­va­ted form of Poeci­lia she­nops, is a bit more chal­len­ging to bre­ed becau­se it requ­ires slight­ly war­mer water and the fer­ti­li­ty spot is not visib­le. With Black Mol­ly­’s offs­pring, we have the oppor­tu­ni­ty to obser­ve the mani­fe­sta­ti­on of genes in the­ir natu­ral sta­te, as not all young fish will be enti­re­ly black, unli­ke the­ir pre­su­mab­ly all-​black parents. This is becau­se Black Mol­ly is a cul­ti­va­ted form that is not enti­re­ly bio­lo­gi­cal­ly stab­le. It may even hap­pen that some indi­vi­du­als have spec­kles when young, and later the black pig­ment inc­re­a­ses to the point that they beco­me enti­re­ly black. A bre­e­ding box or a sie­ve is also suitab­le for Black Mol­ly­’s repro­duc­ti­on, pro­vi­ding pro­tec­ti­on for the hat­ched fry against the adults’ voraciousness.

Laby­rinth fish usu­al­ly inha­bit warm are­as whe­re the­re is a lot of varie­ty in the water, inc­lu­ding fish, plants, orga­nic deb­ris, wood, etc. Adult indi­vi­du­als bre­at­he atmo­sp­he­ric oxy­gen. Many laby­rinth fish spe­cies build bubb­le nests – they uti­li­ze the­ir abi­li­ty to take in atmo­sp­he­ric air for pro­tec­ting the­ir eggs. The bubb­le nest is for­med by air par­tic­les that the fish mas­hes in its mouth. It flo­ats on the water sur­fa­ce, mea­ning that it’s not suitab­le to have strong water flow in the aqu­arium, as it could dama­ge the struc­tu­re of the bubb­le nest. Flo­ating plants like Ric­cia, Sal­vi­nia, Myri­op­hyl­lum, Lem­na, etc., ser­ve as sup­port for the nest. Typi­cal­ly, the male builds the nest, but in some spe­cies or indi­vi­du­als, it may not be neces­sa­ry to remo­ve them from the tank after spa­wning. This bre­e­ding met­hod is com­mon among gou­ra­mis, bet­tas, and Coli­sa spe­cies. Regar­ding Coli­sa – Coli­sa is kno­wn for having one of the smal­lest fry, so it is recom­men­ded to keep the water level during the­ir deve­lop­ment below 10 cm. They are very sen­si­ti­ve to tem­pe­ra­tu­re chan­ges and cold, so it is advi­sab­le to ensu­re a well-​sealed lid or somet­hing simi­lar, main­tai­ning a cons­tant water tem­pe­ra­tu­re and air spa­ce abo­ve the water sur­fa­ce. Fil­tra­ti­on should be very weak or none, and water flow mini­mal or none. The cri­ti­cal peri­od is during laby­rinth for­ma­ti­on, which occurs around 50 days, and extra cau­ti­on is recom­men­ded during this time to mini­mi­ze poten­tial los­ses. Befo­re Bet­ta splen­dens bre­e­ding, males may exhi­bit gen­tle­man­ly beha­vi­or, whe­re they pau­se in phy­si­olo­gi­cal need to bre­at­he air, wai­ting to resu­me the fight. Male-​male con­fron­ta­ti­ons in Bet­ta can be quite intense.

Aqu­atic plants repro­du­ce in aqu­ariums and often in natu­re, main­ly ase­xu­al­ly. Vege­ta­ti­ve repro­duc­ti­on occurs through vari­ous met­hods, such as cut­tings, run­ners, off­sets, etc. Sexu­al repro­duc­ti­on is not as com­mon as in the­ir ter­res­trial rela­ti­ves. In aqu­ariums, plants often do not blo­om, and pol­li­na­ti­on, the begin­ning of suc­cess­ful repro­duc­ti­on, occurs even less fre­qu­en­tly due to spa­tial barriers.


Fis­che ver­meh­ren sich aussch­lie­ßlich sexu­ell. Je nach Fortpf­lan­zungs­met­ho­de unters­che­i­den wir zwis­chen Eiab­le­gern und Lebend­ge­bä­ren­den. Eiab­le­ger legen Eier ähn­lich wie Repti­lien, die sich nach der Fortpf­lan­zung außer­halb des Mut­ter­kör­pers ent­wic­keln – Ovi­pa­ria – Eiab­la­ge. Ihr Durch­mes­ser vari­iert je nach Art von 0,8 mm bis 6 mm. Eier und auch Jung­fis­che ver­tra­gen oft kein Licht, daher wer­den die Eier oft vers­tec­kt, beis­piel­swe­i­se das gesam­te Aqu­arium abge­dec­kt. Das ist logisch – es muss beach­tet wer­den, dass in der Natur oft mehr Dun­kel­he­it” herrscht, und die Eier wer­den nor­ma­ler­we­i­se unter Blät­tern, in Pflan­zen, auf dem Boden, in Höh­len unter Fel­sen­dec­ken usw. abge­legt. Nicht bef­ruch­te­te Eier ble­i­chen im Lau­fe der Zeit aus und soll­ten aus dem Aqu­arium ent­fernt wer­den, da sie sich unnötig zer­set­zen und die ande­ren gefä­hr­den wür­den. Bei Lebend­ge­bä­ren­den ent­wic­keln sich die Eier in der Kör­per­höh­le der Mut­ter ähn­lich wie bei Säu­ge­tie­ren – Vivi­pa­ria – Lebend­ge­bä­rend. Bei sel­te­nem Legen von bef­ruch­te­ten Eiern spre­chen wir von Ovo­vi­vi­pa­rie – Ei-​lebendgebärend. Der Nach­wuchs ver­lässt das Mut­ter­tier oft kurz nach dem Ver­lust der letz­ten embry­o­na­len Hül­len. Das gera­de gesch­lüpf­te Jung­tier wird Ele­ute­rem­bryo genannt. Bei Lebend­ge­bä­ren­den ent­wic­keln sich die Eier tat­säch­lich im Kör­per und haben die gle­i­che Form und Größe wie bei Eiab­le­gern, nur der Ent­wick­lungs­pro­zess dau­ert län­ger, etwa 2040 Tage. Lebend­ge­bä­ren­de haben ein spe­zia­li­sier­tes Organ – das Gono­po­dium, bei der Gat­tung Hemir­hap­ho­don andro­gy­num, mit dem sie sich ver­meh­ren. Die Form des Gono­po­diums ist ein arts­pe­zi­fis­ches Merk­mal. Die Frucht­bar­ke­it von Fis­chen ste­igt mehr oder weni­ger mit ihrer Län­ge und ihrem Gewicht. Der Ein­fluss von Fak­to­ren wie Alter, Salz­ge­halt, Sau­ers­toff und Was­ser­tem­pe­ra­tur auf die Frucht­bar­ke­it ist jedoch eben­falls vor­han­den. Bei Lebend­ge­bä­ren­den über­le­ben die Sper­mien im Kör­per des Weib­chens oft Mona­te – das Männ­chen bef­ruch­tet das Weib­chen, und die­ser Trans­fer gene­tis­cher Infor­ma­ti­onen ble­ibt lan­ge lebens­fä­hig, nor­ma­ler­we­i­se für 34 Wür­fe, es wur­de jedoch auch ein Fall von 11 Wür­fen doku­men­tiert. Es ist inte­res­sant fest­zus­tel­len, dass es auch unter Fis­chen her­maph­ro­di­tis­che Arten gibt, aber die über­wäl­ti­gen­de Mehr­he­it der Fis­che ist gono­cho­ris­tisch – funk­ti­onell bil­den Weib­chen weib­li­che Gesch­lechts­zel­len, Männ­chen männ­li­che Gesch­lechts­zel­len. Bei der Fortpf­lan­zung soll­ten wir Inzest ver­me­i­den. Wenn wir dazu gezwun­gen sind, soll­ten wir eher Eltern mit Nach­kom­men als Gesch­wis­ter mite­i­nan­der paa­ren. Län­gerf­ris­ti­ge Inzucht führt zu dege­ne­ra­ti­ven Störun­gen, z. B. zur Krüm­mung der Wir­bel­sä­u­le, zu ande­ren morp­ho­lo­gis­chen Abwe­i­chun­gen, zur ver­rin­ger­ten Lebensfähigkeit.

In der Natur kommt es auch zu Kre­uzun­gen zwis­chen Ver­wand­ten, aber dies ges­chieht in iso­lier­ten Gebie­ten, in denen der Zugang zur Mig­ra­ti­on und damit zum Aus­tausch gene­tis­cher Infor­ma­ti­onen ein­gesch­ränkt ist. Es ist nicht aus­gesch­los­sen, dass es direkt zu Kre­uzun­gen zwis­chen den Nach­kom­men eines Eltern­te­ils kommt, aber aufg­rund der Größe des Gebiets und der Bevöl­ke­rung kann es zu Paa­run­gen zwis­chen Cou­sins kom­men. Da in sol­chen Fäl­len eine höhe­re natür­li­che Aus­le­se statt­fin­det, kommt es oft vor, dass eine Bevöl­ke­rung, die auf ver­wand­te Wei­se repro­du­ziert, lebens­fä­hi­ger ist als eine Popu­la­ti­on, bei der Inzucht aufg­rund aus­re­i­chen­den Raums prak­tisch ver­hin­dert wird. Die­se Bedin­gung gilt jedoch nur, wenn die Bedin­gun­gen ide­al sind; sobald sich Umwelt­fak­to­ren schnell und nega­tiv ändern, hat die nicht iso­lier­te Bevöl­ke­rung plötz­lich einen Vor­te­il. Akti­vi­tä­ten, die zur Fortpf­lan­zung füh­ren, gehören zu den schöns­ten Aspek­ten, die Fis­che bie­ten kön­nen, wenn sie gehal­ten wer­den. Die Bemühun­gen der Männ­chen, sich den Weib­chen zu prä­sen­tie­ren, sind sehr fas­zi­nie­rend. Eini­ge sind in der Lage, die Weib­chen den größten Teil des Tages zu ver­fol­gen, wäh­rend ande­re die­se Akti­vi­tät nur zu bes­timm­ten Zei­ten und unter bes­timm­ten Bedin­gun­gen ausüben. Daher ist es rat­sam, ins­be­son­de­re wäh­rend der Fortpf­lan­zungs­ver­su­che, für dich­te Abdeckg­lä­ser zu sor­gen, da ins­be­son­de­re die Weib­chen oft ver­su­chen, den ver­fol­gen­den Männ­chen zu ent­kom­men, sogar über die Was­se­ro­berf­lä­che springend.

Tetras legen oft Wert auf Lai­chen und stel­len dies aus unse­rer züch­te­ris­chen Sicht als Hin­der­nis dar, das ist das Netz – der Fil­ter, der die Eier von ande­ren Fis­chen trennt. Dies bet­rifft jedoch nicht nur Tetras, son­dern die Ver­wen­dung eines Laich­git­ters ist für Tetras cha­rak­te­ris­tisch. Das Git­ter kann über dem blan­ken Boden im gesam­ten Tank plat­ziert wer­den. Wäh­rend des Lai­chens fal­len die Eier auf den Boden, wo sich das Git­ter befin­det, das leicht über dem Boden ange­ho­ben ist, damit die Eltern die Eier nicht erre­i­chen kön­nen. Natür­lich kann das Git­ter auch anders plat­ziert wer­den, es ist wich­tig, dass die erwach­se­nen Fis­che die Eier nicht erre­i­chen kön­nen oder dass ihnen die­se Auf­ga­be ersch­wert wird. Das Mate­rial, aus dem es her­ges­tellt ist, ist eben­falls unters­chied­lich und hängt von der Größe der Fis­che und den für die Eier ver­wen­de­ten ab. Vers­chie­de­ne Arten von Draht­gef­lecht, die häu­fig für Gär­tner usw. ver­wen­det wer­den, wer­den ver­wen­det. Es gibt auch eine Form eines per­fo­rier­ten glä­ser­nen Gitters.

Eine Kin­ders­tu­be ist ein Gefäß, ein gesch­los­se­ner Raum oder ein Aqu­arium, in dem der Nach­wuchs gebo­ren wird. Ich las­se jetzt das Bec­ken als Mate­rial aus, es wird kom­mer­ziell ver­wen­de­tes Kunsts­toff­ma­te­rial ver­wen­det. Die­se sind für Lebend­ge­bä­ren­de gee­ig­net. Sie sind so kon­zi­piert, dass beis­piel­swe­i­se ein tra­gen­des Gup­py in der Lage ist, darin sei­ne Jun­gen zu gebä­ren. Es gibt grund­sätz­lich zwei Arten: Bei der ers­ten Art ver­las­sen die gebo­re­nen Fis­che den Kör­per der Mut­ter und fal­len über Leis­ten in den unte­ren Teil der Kin­ders­tu­be, wohin die Mut­ter nicht gelan­gen kann. Bei der zwe­i­ten Art ver­las­sen die Fis­che die Mut­ter in fre­ies Was­ser – in die­sem Fall muss das Aqu­arium natür­lich fischf­rei sein, sonst wer­den die frisch gebo­re­nen Fis­che bald gef­res­sen. Bei­de Arten von Kin­ders­tu­ben sch­wim­men auf dem Was­ser – sie bewe­gen sich auf der Oberf­lä­che. Als bes­se­re Alter­na­ti­ve zum ver­wen­de­ten Mate­rial für sol­che Kin­ders­tu­ben wird ein Netz ver­wen­det, ähn­lich wie bei einem Laich­git­ter. Das Netz kann beis­piel­swe­i­se mit einem Satins­tich in die gewün­sch­te Form genäht und mit Polys­ty­rol befes­tigt wer­den, damit das Netz nicht auf den Boden fällt. Der Vor­te­il die­ser Lösung ist offen­sicht­lich – das Netz kann viel größer sein als bei einem im Laden gekauf­ten Laich­git­ter, und ins­ge­samt ist es sozu­sa­gen maßge­schne­i­dert. Gekauf­te Kin­ders­tu­ben aus dem Laden habe ich jedoch mit kle­i­nen Boh­rern durch­bo­hrt, um die Lüc­ken für den Aus­tritt der Jun­gen bre­i­ter zu machen. Über selb­st­ge­mach­te Kin­ders­tu­ben sch­re­ibt Ivan Vyslú­žil in die­sem Artikel.

Als Sub­strat für eini­ge Arten die­nen feinb­lätt­ri­ge Pflan­zen, Wän­de des Tanks, Blät­ter von Pflan­zen, Ste­i­ne auf der Oberf­lä­che oder Dach von ste­i­ner­nen Höh­len” usw. Für eini­ge Fis­char­ten wer­den vers­chie­de­ne Aus­züge vor­be­re­i­tet. Der Sch­war­ze Neon – Hypes­sob­ry­con her­ber­ta­xel­ro­di ist ein anschau­li­ches Beis­piel dafür – für die­se Art wer­den oft Extrak­te vor­be­re­i­tet, wie sch­lie­ßlich auch für ande­re Tetras.

Ger­man: Die Fortpf­lan­zung von Bunt­bars­chen ist wahrs­che­in­lich eine der inte­res­san­tes­ten unter den Fis­chen. Zum Beis­piel sucht sich das Weib­chen des Pur­pur­pracht­barschs eine gee­ig­ne­te Höh­le aus, z. B. eine Kokos­nuss, in der es sei­ne Jun­gen stun­den­lang hal­ten kann. Natür­lich hat zuvor die Paa­rung statt­ge­fun­den. Ins­be­son­de­re bei ame­ri­ka­nis­chen Arten müs­sen sich die Paa­re selbst fin­den und ble­i­ben oft ein gan­zes Leben lang zusam­men. Eini­ge Arten legen ihre Eier auf den Unter­grund, zum Beis­piel auf einen fla­chen Ste­in oder auf die Oberf­lä­che eines Ste­ins usw. Eine ande­re Art, die ihre Eier von unten legt, ist die Prin­zes­sin – Neolam­pro­lo­gus bri­char­di. Die­se Art ist ziem­lich unver­träg­lich, so dass domi­nan­te Paa­re ihre Kon­kur­renz auss­chal­ten und dann mit vol­ler Kraft mit der Fortpf­lan­zung begin­nen. Wenn sie anfan­gen, brin­gen sie oft in ziem­lich regel­mä­ßi­gen Abstän­den neue Gene­ra­ti­onen her­vor. Ihre Eier sind sch­wach rosa, ziem­lich groß, die Anzahl der Eier bet­rägt 20100. Vie­le Arten von Bunt­bars­chen gehören zu den soge­nann­ten Maulb­rütern. Das bede­utet, dass es Arten sind, die ihren Nach­wuchs in ihrem Maul auf­be­wah­ren, aber Maulb­rüter fin­den sich auch zwis­chen ande­ren Taxa, zum Beis­piel auch bei Arten der Gat­tung Bet­ta. Ihr elter­li­cher Ins­tinkt ist jedoch oft ziem­lich sch­wach, das ist natür­lich artens­pe­zi­fisch, zum Beis­piel Neolam­pro­lo­gus bri­char­di, die meis­ten ame­ri­ka­nis­chen Bunt­bars­che ver­te­i­di­gen ihren Nach­wuchs har­tnäc­kig, im Gegen­satz zu zum Beis­piel mala­wis­chen Gat­tun­gen wie Pse­udot­rop­he­us, May­lan­dia, Mela­noc­hro­mis, Labi­doc­hro­mis. Sie hal­ten ihre Eier sorg­fäl­tig in ihrem Maul, las­sen sie den Dot­ter­be­utel ver­dau­en, bere­i­ten sie darauf vor, die Mund­höh­le der Mut­ter zu ver­las­sen, und set­zen sie frei. Manch­mal pas­siert es, dass sie die Jun­gen für eine Wei­le wie­der auf­neh­men, und die­ses Phä­no­men kann sich wie­der­ho­len, aber wenn sie es ein­mal nicht tun, geht ihr elter­li­cher Ins­tinkt sehr schnell ver­lo­ren. Das Männ­chen schütz­te im Grun­de genom­men nach der Bef­ruch­tung nur das Weib­chen, aber jetzt bet­rach­tet es sei­ne Jun­gen meis­tens als Ein­drin­glin­ge oder als Bere­i­che­rung des Menüs. Das Weib­chen ist ähn­lich, sie irrt” sich jedoch eher. Zuerst beach­tet sie die Jun­gen nicht, als wür­de sie sich dis­tan­zie­ren, aber im Lau­fe der Zeit kann es pas­sie­ren, dass sie ihren Nach­wuchs zu ver­fol­gen beginnt.

Typis­che Saug­mau­lwel­se legen Eier, die in der Natur ein­fach aus­trock­nen. Der Impuls zur Embry­o­na­lent­wick­lung wird durch erne­uten Regen zu Beginn der Regen­ze­it geb­racht. Die Simu­la­ti­on die­ses Pro­zes­ses ist auch die Grund­la­ge für den Erfolg bei ihrer Zucht in Gefan­gen­schaft, in unse­ren Tanks. Nach der Paa­rung im Aqu­arium müs­sen die Eier aus­ge­wä­hlt und an einem troc­ke­nen Ort plat­ziert wer­den. Nach einer artens­pe­zi­fis­chen Zeit neh­men wir die Eier heraus, set­zen sie in ein gee­ig­ne­tes Bec­ken und gie­ßen Was­ser darüber. Dann beginnt die Fortpf­lan­zung erst nach dem Sch­lüp­fen der jun­gen Fis­che. Die­se Fis­che wach­sen sehr schnell, da ein­jäh­ri­ge Arten wäh­rend einer kur­zen Zeit erwach­sen wer­den müs­sen und selb­stän­dig Nach­wuchs zeugen müssen.

Weib­li­che Pan­zer­wel­se Cory­do­ras aene­us sam­meln bef­ruch­te­te Eier und tra­gen sie vorüber­ge­hend unter den Brustf­los­sen, die zu einer soge­nann­ten Tas­che zusam­men­ge­setzt sind. Spä­ter klebt sie sie an die Glass­che­i­be und die Pflan­zen. Pan­zer­wel­se ver­meh­ren sich in Sch­wär­men, zu die­sen Arten gehören Arten, die nied­ri­ge­re Tem­pe­ra­tu­ren bevor­zu­gen. Ein bekann­ter Sti­mu­la­ti­ons­hilfs­mit­tel sind Faden­schne­i­der und täg­li­ches Absen­ken des Was­sers­tan­des und Aus­tausch des Was­sers gegen fris­ches kal­tes Was­ser, was die bevors­te­hen­de Regen­ze­it simu­liert – die Zeit der Fül­le. Pan­zer­wel­se neh­men ihre eige­nen Eier meis­tens nicht viel wahr, es wird jedoch emp­foh­len, sie umzu­plat­zie­ren. Natür­lich sind vie­le Arten nicht so leicht zu züch­ten: Cory­do­ras ster­bai, C. pan­da usw.

Der am häu­figs­ten in Aqu­arien vor­kom­men­de Sau­gwels Ancis­trus cf. cirr­ho­sus züch­tet in Höh­len oder unter Ste­i­nen. Züch­ter ver­wen­den zum Beis­piel eine Glasf­las­che, ein Acryl­rohr usw. Das Männ­chen wählt nor­ma­ler­we­i­se sein Weib­chen aus. Das Männ­chen bewacht sei­ne Eier für eine bes­timm­te Zeit, hat aber nicht so vie­le Mit­tel wie gro­ße räu­be­ris­che Arten und ist auch nicht so zäh. Aber in einem nor­ma­len Gesells­chaft­sa­qu­arium hat der Sau­gwels die Chan­ce, sich zu ver­meh­ren und auch Nach­wuchs zu liefern.

Über Ska­la­re – Pte­rop­hyl­lum sca­la­re wird gesagt, dass sie Druck im Was­ser benöti­gen – einen hohen Was­ser­sä­u­len. Ich hat­te jedoch die Gele­gen­he­it, sie auch in sehr kle­i­nen Tanks von nicht mehr als 25 cm auf­zu­zie­hen. Da sie sich in ihrer Hei­mat nor­ma­ler­we­i­se auf die Blät­ter hoch­wach­sen­der Pflan­zen legen, kön­nen wir ihnen als Laich­sub­strat zum Beis­piel einen offe­nen Schnitt aus einer PET-​Flasche bie­ten. Der Ska­lar schützt und küm­mert sich nor­ma­ler­we­i­se um sei­nen Laich, aber sobald die Jun­gen sch­wim­men kön­nen, neigt er dazu, sie gna­den­los zu versch­lin­gen. In der Natur wür­de er sich nicht so ver­hal­ten, und es kommt vor, dass er die Jun­gen auch im Aqu­arium nicht frisst.

Lebend­ge­bä­ren­de Fis­che sind in Bez­ug auf die Zucht für Anfän­ger gee­ig­net. Sie kön­nen für sie die oben genann­te Zucht­kam­mer ver­wen­den oder selb­st­ge­mach­te Sie­be ver­wen­den. Sie ver­meh­ren sich mit etwas Ans­tren­gung sehr wil­lig. Das Schwertträger-​Männchen ist fast immer kan­ni­ba­lisch gege­nüber sei­nem Nach­wuchs, Pla­tys sind ähn­lich, nur Para­dies­fis­che scho­nen in der Regel ihre eige­nen Nach­kom­men. Wenn sie aus­ge­wach­sen sind und zu züch­ten begin­nen, wie­der­holt sich der Fortpf­lan­zungs­zyk­lus unge­fähr alle 4 – 5 Wochen wie bei den meis­ten Lebend­ge­bä­ren­den. Gup­pys und Pla­tys kön­nen bis zu 100 Nach­kom­men haben, ein erwach­se­ner Sch­wertt­rä­ger bis zu 200. Es han­delt sich um lebend­ge­bä­ren­de Arten, dh sie gebä­ren leben­de Nach­kom­men, in der Bauch­re­gi­on befin­det sich ein Fleck der Frucht­bar­ke­it, der auf die gesch­lecht­li­che Rei­fe der Weib­chen hin­we­ist. Eine Bef­ruch­tung durch das Männ­chen kann für 3 – 4 Wür­fe aus­re­i­chen. In den Tagen vor der Geburt ver­größert sich und ver­dun­kelt sich der Fleck. Der Sch­war­ze Mol­ly – die dunk­le gezüch­te­te Form Poeci­lia she­nops – ist etwas sch­wie­ri­ger zu züch­ten, da er etwas wär­me­res Was­ser benötigt und der Frucht­bar­ke­itsf­leck darauf nicht sicht­bar ist. Bei der Zucht von Black Mol­lies haben wir die Mög­lich­ke­it, eine Durch­set­zung der Gene der natür­li­chen Ver­hal­ten­swe­i­se zu sehen, da nicht alle Jun­gen volls­tän­dig sch­warz sind, wie wahrs­che­in­lich die Eltern sind. Es han­delt sich um eine gezüch­te­te Form, die nicht volls­tän­dig bio­lo­gisch sta­bi­li­siert ist. Es kann sogar pas­sie­ren, dass eini­ge Indi­vi­du­en in jun­gen Jah­ren gef­lec­kt sind und spä­ter so viel sch­war­zen Pig­ment hin­zu­kommt, dass sie volls­tän­dig sch­warz wer­den. Auch für Black Mol­lies ist ein Sieb zur Zucht oder zum Schutz der gesch­lüpf­ten Nach­kom­men vor der Gier der Erwach­se­nen geeignet.

Laby­rint­his­che Fis­che leben nor­ma­ler­we­i­se in über­hitz­ten Gebie­ten, in denen es sehr vie­le Kom­po­nen­ten im Was­ser gibt: Fis­che, Pflan­zen, orga­nis­che Rücks­tän­de, Holz usw. Erwach­se­ne Indi­vi­du­en atmen atmo­sp­hä­ris­chen Sau­ers­toff. Vie­le Arten von Laby­rint­his­chen Fis­chen bil­den ein Schaum­nest – sie nut­zen ihre Fähig­ke­it, atmo­sp­hä­ris­che Luft auf­zu­neh­men, zum Schutz ihrer Eier. Das Schaum­nest bes­teht aus Luft­par­ti­keln, die die Fis­che in ihrem Maul mah­len. Es sch­wimmt auf dem Was­ser. Das bede­utet, dass das Nest für die Eier an der Oberf­lä­che sch­wimmt, und es ist nicht rat­sam, dass im Aqu­arium eine star­ke Was­sers­trömung vor­han­den ist – dies könn­te die Struk­tur des Schaum­nes­tes bes­chä­di­gen. Als Unters­tüt­zung kön­nen zum Beis­piel sch­we­ben­de Pflan­zen wie Ric­cia, Sal­vi­nia, Myri­op­hyl­lum, Lem­na usw. die­nen. Das Nest wird nor­ma­ler­we­i­se vom Männ­chen gebaut, aber bei eini­gen Arten oder Indi­vi­du­en muss es nach der Paa­rung aus dem Tank genom­men wer­den, bei ande­ren nicht. Auf die­se Wei­se ver­meh­ren sich Gura­mis, Kampf­fis­che, Coli­sa. Über Coli­sas – Coli­sa ist dafür bekannt, dass ihr Nach­wuchs einer der kle­ins­ten ist, daher wird emp­foh­len, die Was­ser­höhe wäh­rend ihrer Ent­wick­lung unter 10 cm zu hal­ten. Sie sind sehr anfäl­lig für Tem­pe­ra­tursch­wan­kun­gen und Käl­te, daher ist es rat­sam, eine aus­ge­ze­ich­ne­te Abdich­tung mit einer Abdec­kung oder etwas ande­rem sicher­zus­tel­len und die Was­ser­tem­pe­ra­tur und die Luft über der Oberf­lä­che bei­zu­be­hal­ten, wenn zwis­chen der Abdec­kung und der Oberf­lä­che Platz ist. Das Fil­tern soll­te sehr sch­wach oder nicht vor­han­den sein und die Was­sers­trömung mini­mal oder nicht vor­han­den. Die kri­tis­che Peri­ode ist die Zeit der Laby­rinth­bil­dung. Dies ges­chieht nach 50 Tagen, und die­se Zeit ist kri­tisch, es ist rat­sam, in die­ser Zeit noch auf­merk­sa­mer zu sein, um mög­li­che Ver­lus­te zu mini­mie­ren. Vor der Fortpf­lan­zung von Kampf­fis­chen Bet­ta splen­dens kann es zu einer Mani­fe­sta­ti­on von Gentleman-​Verhalten kom­men. In die­sem Fall atmet der Kon­kur­rent, um phy­si­olo­gis­che Bedürf­nis­se zu bef­rie­di­gen, tief ein und war­tet darauf, dass er den Kampf fort­set­zen kann. Kämp­fe zwis­chen Männ­chen sind bei Kampf­fis­chen ziem­lich rau.

Was­ser Pflan­zen ver­meh­ren sich in Aqu­arien, aber oft auch in der Natur, haupt­säch­lich ungesch­lecht­lich. Die vege­ta­ti­ve Ver­meh­rung erfolgt auf vers­chie­de­ne Arten, z. B. durch Steck­lin­ge, Aus­lä­u­fer, Able­ger usw. Sexu­el­le Fortpf­lan­zung ist bei ihnen nicht so häu­fig wie bei ihren ter­res­tris­chen Ver­wand­ten. Pflan­zen blühen oft nicht im Aqu­arium, und die erfolg­re­i­che Bes­tä­u­bung – der Beginn der erfolg­re­i­chen Fortpf­lan­zung – erfolgt noch sel­te­ner, was ange­sichts der räum­li­chen Bar­rie­ren vers­tänd­lich ist.



Use Facebook to Comment on this Post

Akvaristika, Biológia

Fyziológia rýb a rastlín

Hits: 14968

Ryby

Krv­ný obeh rýb je jed­no­du­chý, ner­vo­vá sústa­va obdob­ne – tvo­rí ju jed­no­du­chý mozog mie­cha. Ryby dýcha­jú žiab­ra­mi, no nie­kto­rým dru­hom sa vyvi­nu­lo aj iný prí­jem vzdu­chu. Napr. pan­cier­ni­ky dýcha­jú črev­nou sliz­ni­cou atmo­sfé­ric­ký kys­lík. Laby­rint­kám na rov­na­ký účel slú­ži tzv. laby­rint. Laby­rint je pomer­ne zlo­ži­tý ústroj, kto­rý sa vyví­ja napr. bojov­ni­ciam, gura­mám po 50 dni ich živo­ta. Akva­rij­né ryby sa doží­va­jú 0.520 rokov. Pre veľ­mi hru­bé porov­na­nie sa dá uva­žo­vať, že men­šie dru­hy sa doží­va­jú niž­šie­ho veku a väč­šie dru­hy vyš­šie­ho. Napr. neón­ky sa doží­va­jú 23 roky, dánia, tet­ry, gup­ky 45 rokov, kap­ro­zúb­ky 14 roky, prí­sav­ní­ky Ancis­trus - 810 rokov, no väč­šie cich­li­dy aj 1020 rokov. Sum­če­ky Cory­do­ras sa neraz doži­jú 18 rokov. Akva­ri­ové ryby ras­tú postup­ne. Dá sa pove­dať, že ras­tú celý svoj život. Vše­obec­ne mož­no pri porov­na­ní s prí­ro­dou kon­šta­to­vať, že ned­ra­vé dru­hy oby­čaj­ne nedo­sa­hu­jú veľ­kos­ti v prí­ro­de, naopak dru­hy dra­vé čas­to pre­kra­ču­jú veľ­kos­ti v prí­ro­de. Je to spô­so­be­né kon­ku­ren­ci­ou a našou sta­rost­li­vos­ťoukŕme­ním. Ak však nepos­ky­tu­je­me našim rybám dosta­tok pries­to­ru, ryby jed­no­du­cho tak veľ­mi naras­tú – ak bude­me cho­vať napr. aka­ru mod­rú v akvá­riu o obje­me 20 lit­rov, nepo­ras­tie ani zďa­le­ka do plnej veľ­kos­ti. Ak jej ale­bo v podob­nej situ­ácii poskyt­ne­me rybám časom väč­šiu nádrž, vedia náh­le narásť. Prí­pad­ne ryby nám ras­tú, ale vo väč­šej nádr­ži ras­tú ove­ľa rých­lej­šie. Nie­kto­ré ryby napr. nedos­ta­nú správ­nu stra­vu a akva­ris­ti vra­via, že sú tzv. sek­nu­té. Môže to byť spô­so­be­né napr. tým, že sú kŕme­né inak ako boli u iné­ho akva­ris­tu. Dôvo­dov na poma­lý rast, resp. jeho zasta­ve­nie je však neúre­kom. Sú nie­kto­ré taxó­ny, kto­ré ras­tú rých­lej­šie gene­tic­ky. Ide napr. o kap­ro­zúb­ky, kto­ré sa musia za jedi­nú sezó­nu – pol­ro­ka, naro­diť, dospieť, roz­mno­žo­vať sa a čosko­ro aj zomrieť.

Ryby sa vyzna­ču­jú pre­men­li­vou tep­lo­tou tela – pat­ria medzi poiki­lo­term­né živo­čí­chy – to zna­me­ná, že si nedo­ká­žu zabez­pe­čiť vlast­né tep­lo, sú v tom­to sme­re závis­lé od tep­lo­ty oko­li­té­ho pro­stre­dia. V pra­xi – ryba nachá­dza­jú­ca sa vo vode s tep­lo­tou 25°C má tep­lo­tu tela rov­na­ko 25°C. Je dob­re si uve­do­miť, že voda ma inú tepel­né vlast­nos­ti ako napr. vzduch, prí­pad­ne kov. Na jej zahria­tie je tre­ba väč­šie množ­stvo ener­gie ako pri vzdu­chu. To zna­me­ná, že aj na ochla­de­nie je tre­ba vyvi­núť viac úsi­lia. Pod­rob­nej­šie sa tými­to ener­ge­tic­ký­mi náklad­mi zaobe­rá iný člá­nok.

Mož­no ste si všim­li, že veľ­ká vod­ná nádrž doká­že ovplyv­niť oko­li­tú klí­mu. Voda drží tep­lo, kto­ré v lete ochla­dzu­je a v zime otep­ľu­je. Podob­ne sa sprá­va aj more. Vo vode sa ove­ľa rých­lej­šie strá­ca aj tep­lo náš­ho tela – vte­dy keď vstú­pi­me vo vody, asi 200 krát rých­lej­šie pri rov­na­kej tep­lo­te ako na vzdu­chu. Tepel­né vlast­nos­ti vody je vhod­né poznať. Vo vyš­šej tep­lo­te vody sa ryby čas­to cítia lep­šie, no táto tep­lo­ta zni­žu­je ich vek – keď­že pat­ria medzi orga­niz­my, kto­ré si neve­dia udr­žať stá­lu tep­lo­tu tela, ich meta­bo­liz­mus je pri vyš­šej tep­lo­te na akú sú gene­tic­ky adap­to­va­né, una­vo­va­ný viac. Vyš­šia tep­lo­ta doká­že život­ný cyk­lus rýb zní­žiť aj na polo­vi­cu. Vyš­šia tep­lo­ta zni­žu­je časom kon­dí­ciu, obra­ny­schop­nosť. Krát­ko­do­bo ryby vydr­žia aj vyso­ké a veľ­mi níz­ke tep­lo­ty. Tep­lo­ta kto­rú sú schop­né zniesť je 43°C. Po pre­kro­če­ní tej­to hra­ni­ce sa ryby dusia, strá­ca­jú koor­di­ná­ciu a kapú. Podob­ne sa sprá­va­jú aj po zní­že­ní tep­lo­ty pod 5°C. Je samoz­rej­mé, že nie­kto­ré dru­hy sú odol­nej­šie viac, iné menej. Samoz­rej­me mám na mys­li bež­né dru­hy tro­pic­ké­ho a subt­ro­pic­ké­ho pásma.

Svet­lo ryby vní­ma­jú pomer­ne sla­bo. V porov­na­ní tre­bárs z cicav­ca­mi, hmy­zom, hla­vo­nož­ca­mi je to pomer­ne sla­bé. Ich krát­ko­zra­ké oči nepat­ria medzi ich dob­re vyvi­nu­té zmys­ly. Ryby nema­jú vieč­ka, ani slz­né žľa­zy. Ryby poču­jú infra­zvuk. O ich príj­me a spra­co­va­ní zvu­ku toho veľa nevie­me. V kaž­dom prí­pa­de, naše bež­né zvu­ky nepo­ču­jú – ak sa vám to zdá – tak potom rea­gu­jú na vlne­nie, ale náš roz­ho­vor urči­te nepo­ču­jú. Ich slu­cho­vé ústro­je sú skôr orgá­nom rov­no­vá­hy. Boč­ná čia­ra je orgán, kto­rý doká­že veľ­mi veľa. Pomo­cou neho sa vedia napr. osle­pe­né jedin­ce orien­to­vať. Dokon­ca veľ­mi bez­peč­ne. Prav­de­po­dob­ne ním veľ­mi pres­ne vní­ma­jú vlne­nie, tlak, smer, prú­de­nie, elek­tro­mag­ne­tic­ké vzru­chy, potra­vu, pre­káž­ky, kto­ré doká­žu naj­lep­šie spra­co­vať a násled­ne sa pod­ľa nich riadiť.

Ryby majú aj hma­to­vé a čucho­vé bun­ky. Chu­ťo­vé bun­ky sa nachá­dza­jú aj v ústach ako by sme moh­li pred­po­kla­dať, no veľ­ká časť sa nachá­dza na plut­vách. Je to zau­jí­ma­vé, ale ryba sa dot­kne potra­vy plut­vou a vie, či je sústo môže chu­tiť, ale­bo nie. Ryby sa vyzna­ču­jú pohlav­ným dimor­fiz­mom. Zau­jí­ma­vý je však fakt, že nie­kto­ré dru­hy živo­ro­diek doká­žu za urči­tých okol­nos­tí zme­niť pohla­vie. Ten­to jav sa vysky­tu­je naj­mä u mečú­ňa mexic­ké­hoXip­hop­ho­rus hel­le­ri. V prí­pa­de, že sa v akvá­riu nachá­dza vyso­ká pre­va­ha sami­čiek – je teda nedos­ta­tok sam­cov, môžu sa nie­kto­ré samič­ky zme­niť na sam­ca – naras­tie im mečík, gono­pó­dium atď. Mno­ho však z takých­to sam­cov je neplod­ných. Mne samé­mu sa to v mojej pra­xi sta­lo, keď som cho­val dlh­ší čas mečú­ne. Zme­na pohla­via sa vysky­tu­je aj u iných dru­hov živo­ro­diek, nie však tak čas­to ako u X. hel­le­ri. Z hľa­dis­ka plod­nos­ti Xip­hop­ho­rus hel­le­ri je zau­jí­ma­vé, že čím neskôr dôj­de ku začiat­ku ras­tu mečí­ka sam­cov – vlast­ne ku dospie­va­niu, tým je sam­ček spra­vid­la plod­nej­ší. Ako však naz­na­ču­jem v pred­chá­dza­jú­com odstav­ci, ak k tomu dôj­de zme­nou pohla­via, čas­to sú sam­ci úpl­ne neplod­ní. Takz­va­ný sko­rí sam­ci, kto­rým sa mečík a gono­pó­dium tvo­rí v sko­rom veku majú vyš­šiu dis­po­zí­ciu k neplodnosti.


Rast­li­ny

Rast­li­ny žijú­ce pod vodou, resp. vod­né rast­li­ny vysky­tu­jú­ce sa v akva­ris­ti­ke sú veľ­mi blíz­ke prí­buz­né svo­jim sucho­zem­ským ekvi­va­len­tom. Rov­na­ko obsa­hu­jú ciev­ne zväz­ky, kto­ré sa nazý­va­jú žil­na­ti­na. Tie­to cie­vy a cie­vi­ce sú oby­čaj­ne dob­re vidi­teľ­né. Rast­li­ny dýcha­jú počas celé­ho 24 hodi­no­vé­ho cyk­lu, cez deň – resp. za dostat­ku svet­la pri­jí­ma­jú oxid uhli­či­tý a vodu a tvo­ria z tej­to neús­troj­nej hmo­ty sacha­ri­dy (sta­veb­né lát­ky) naj­mä pre kon­zu­men­tov a živo­to­dar­ný kys­lík. Na roz­diel od sucho­zem­ských rast­lín sú vod­né­mu pro­stre­diu pris­pô­so­be­né tak, že prí­jem živín, dýcha­nie pre­bie­ha celým povr­chom rast­li­ny (čas­to aj kore­ňom). Vod­né rast­li­ny nema­jú prie­du­chy – sucho­zem­ské rast­li­ny majú prie­du­chy na spod­nej stra­ne lis­tov. Rast­li­ny pro­du­ku­jú pro­stred­níc­tvom foto­syn­té­zy kys­lík. V prí­pa­de, že vidí­me pro­duk­ciu kys­lí­ka rast­li­na­mi – bub­lin­ky, kon­cen­trá­cia kys­lí­ka v bun­ke stúp­la nad 40 mg/​l. Avšak vzhľa­dom na dosť roz­diel­ne fyzi­kál­ne a che­mic­ké pod­mien­ky a cel­ko­vý cha­rak­ter vod­ných rast­lín, foto­syn­té­za vod­ných rast­lín pre­bie­ha ove­ľa pomal­šie ako u rast­lín sucho­zem­ských – teda aj ras­to­vé prí­ras­t­ky sú pre­to menšie.


Fish

The cir­cu­la­to­ry sys­tem of fish is sim­ple, and the ner­vous sys­tem is simi­lar­ly cons­truc­ted with a sim­ple brain and spi­nal cord. Fish bre­at­he through gills, but some spe­cies have evol­ved alter­na­ti­ve met­hods of air inta­ke. For exam­ple, armo­red cat­fish bre­at­he atmo­sp­he­ric oxy­gen through the intes­ti­nal muco­sa. Laby­rinth fish, like Bet­ta fish, use a struc­tu­re cal­led the laby­rinth for the same pur­po­se. The laby­rinth is a rela­ti­ve­ly com­plex organ that deve­lops, for exam­ple, in Bet­ta fish and gou­ra­mis around 50 days after the­ir birth. Aqu­arium fish can live any­whe­re from 0.5 to 20 years. For a very rough com­pa­ri­son, smal­ler spe­cies tend to have shor­ter lifes­pans, whi­le lar­ger spe­cies can live lon­ger. For ins­tan­ce, neon tetras live for 2 – 3 years, dani­os, tetras, and gup­pies for 4 – 5 years, kil­li­fish for 1 – 4 years, Ancis­trus ple­cos for 8 – 10 years, and lar­ger cich­lids can live bet­we­en 10 and 20 years. Cory­do­ras cat­fish often live up to 18 years. Aqu­arium fish grow gra­du­al­ly, and it can be said that they grow throug­hout the­ir enti­re lives. Gene­ral­ly, when com­pa­red to natu­re, non-​predatory spe­cies usu­al­ly do not reach the sizes they do in the wild, whe­re­as pre­da­to­ry spe­cies often exce­ed the­ir natu­ral sizes. This is due to com­pe­ti­ti­on and our care and fee­ding. Howe­ver, if we do not pro­vi­de enough spa­ce for our fish, they sim­ply won’t grow much. For exam­ple, kee­ping a blue aca­ra in a 20-​liter tank won’t allow it to reach its full size. But if we pro­vi­de a lar­ger tank over time, the fish can grow sig­ni­fi­can­tly. Alter­na­ti­ve­ly, fish grow, but in a lar­ger tank, they grow much fas­ter. Some fish may not rece­i­ve pro­per nut­ri­ti­on, and hob­by­ists say they are stun­ted.” This can be cau­sed, for exam­ple, by fee­ding them dif­fe­ren­tly than they were at anot­her hob­by­is­t’s pla­ce. The­re are nume­rous rea­sons for slow gro­wth or its ces­sa­ti­on. Some taxa gene­ti­cal­ly grow fas­ter. For exam­ple, kil­li­fish must be born, matu­re, repro­du­ce, and soon die wit­hin a sin­gle sea­son — about six months.

Fish exhi­bit variab­le body tem­pe­ra­tu­res; they are poiki­lot­her­mic orga­nisms, mea­ning they can­not regu­la­te the­ir own body heat and depend on the tem­pe­ra­tu­re of the sur­roun­ding envi­ron­ment. In prac­ti­ce, a fish in water at 25°C will have a body tem­pe­ra­tu­re of 25°C. It’s essen­tial to rea­li­ze that water has dif­fe­rent ther­mal pro­per­ties than, for exam­ple, air or metal. More ener­gy is requ­ired to heat water than air, and simi­lar­ly, more effort is needed to cool it down. Anot­her artic­le del­ves into the­se ener­gy costs in more detail.

You may have noti­ced that a lar­ge body of water can influ­en­ce the sur­roun­ding cli­ma­te. Water retains heat, cooling the area in sum­mer and war­ming it in win­ter. The same prin­cip­le app­lies to the sea. Heat from our bodies dis­si­pa­tes much fas­ter in water, about 200 times fas­ter in the same tem­pe­ra­tu­re as in the air. It’s use­ful to know the ther­mal pro­per­ties of water. Hig­her water tem­pe­ra­tu­res often make fish feel bet­ter, but this tem­pe­ra­tu­re also shor­tens the­ir lifes­pan. Sin­ce they can­not main­tain a stab­le body tem­pe­ra­tu­re, the­ir meta­bo­lism is more strai­ned at hig­her tem­pe­ra­tu­res than they are gene­ti­cal­ly adap­ted to, lea­ding to inc­re­a­sed fati­gue. Hig­her tem­pe­ra­tu­res can redu­ce the fis­h’s lifes­pan by half. Hig­her tem­pe­ra­tu­res also dec­re­a­se the­ir ove­rall con­di­ti­on and defen­si­ve capa­bi­li­ties over time. Fish can endu­re both high and very low tem­pe­ra­tu­res in the short term. The tem­pe­ra­tu­re they can tole­ra­te is 43°C. Bey­ond this limit, fish suf­fo­ca­te, lose coor­di­na­ti­on, and perish. Simi­lar beha­vi­or occurs after the tem­pe­ra­tu­re drops below 5°C. It’s evi­dent that some spe­cies are more resi­lient than others. I refer, of cour­se, to com­mon spe­cies from tro­pi­cal and subt­ro­pi­cal regions.

Fish per­ce­i­ve light rela­ti­ve­ly weak­ly. Com­pa­red to mam­mals, insects, and cep­ha­lo­pods, the­ir visi­on is rela­ti­ve­ly poor. The­ir short­sigh­ted eyes are not well-​developed sen­ses. Fish don’t have eyelids or tear glands. Fish can hear infra­sound, alt­hough we know litt­le about how they rece­i­ve and pro­cess sound. In any case, they don’t hear our regu­lar sounds. The­ir hea­ring organs are more organs of balan­ce. The late­ral line is an organ that can do a lot. It helps, for exam­ple, blind indi­vi­du­als orient them­sel­ves very effec­ti­ve­ly. They like­ly per­ce­i­ve waves, pre­ssu­re, direc­ti­on, flow, elect­ro­mag­ne­tic sti­mu­li, food, and obstac­les with gre­at pre­ci­si­on and adjust the­ir beha­vi­or accordingly.

Fish also have touch and smell cells. Tas­te cells are found in the­ir mouths, as expec­ted, but a sig­ni­fi­cant num­ber is loca­ted on the fins. It’s inte­res­ting that a fish can touch its food with its fin and deter­mi­ne whet­her it is pala­tab­le or not. Fish are cha­rac­te­ri­zed by sexu­al dimorp­hism. Howe­ver, some spe­cies of live­be­a­rers can, under cer­tain cir­cum­stan­ces, chan­ge the­ir gen­der. This phe­no­me­non is most com­mon in the Mexi­can sword­tail (Xip­hop­ho­rus hel­le­ri). If the­re is a high pre­va­len­ce of fema­les in an aqu­arium, mea­ning a shor­ta­ge of males, some fema­les can chan­ge into males — deve­lo­ping a sword, gono­po­dium, etc. Many such males are, howe­ver, infer­ti­le. I have expe­rien­ced this in my own prac­ti­ce when bre­e­ding sword­tails for an exten­ded peri­od. Gen­der chan­ge also occurs in other live­be­a­rer spe­cies but not as fre­qu­en­tly as in X. hel­le­ri. Con­cer­ning fer­ti­li­ty, it’s inte­res­ting that the later the gro­wth of the male­’s sword begins — essen­tial­ly matu­ring — the more fer­ti­le the male tends to be. Howe­ver, as men­ti­oned in the pre­vi­ous parag­raph, males that chan­ge gen­der are often enti­re­ly infer­ti­le. Ear­ly males, whe­re the sword and gono­po­dium deve­lop at an ear­ly age, have a hig­her pre­d­is­po­si­ti­on to infertility.

Plants

Aqu­atic plants, or rat­her water plants found in aqu­ariums, are very clo­se­ly rela­ted to the­ir ter­res­trial coun­ter­parts. They con­tain vas­cu­lar bund­les cal­led veins, which are usu­al­ly visib­le. Plants res­pi­re throug­hout the enti­re 24-​hour cyc­le, absor­bing car­bon dioxi­de and water during the day, with suf­fi­cient light, to pro­du­ce car­bo­hyd­ra­tes (buil­ding mate­rials), pri­ma­ri­ly for con­su­mers, and life-​giving oxy­gen. Unli­ke ter­res­trial plants, aqu­atic plants are adap­ted to the aqu­atic envi­ron­ment so that nut­rient inta­ke and res­pi­ra­ti­on occur through the enti­re sur­fa­ce of the plant, often through the roots. Water plants do not have sto­ma­ta — ter­res­trial plants have sto­ma­ta on the lower side of the­ir lea­ves. Plants pro­du­ce oxy­gen through pho­to­synt­he­sis. When we obser­ve oxy­gen pro­duc­ti­on by plants — bubb­les, the oxy­gen con­cen­tra­ti­on in the cell has risen abo­ve 40 mg/​l. Howe­ver, due to the sig­ni­fi­can­tly dif­fe­rent phy­si­cal and che­mi­cal con­di­ti­ons and the ove­rall cha­rac­ter of aqu­atic plants, pho­to­synt­he­sis in aqu­atic plants occurs much slo­wer than in ter­res­trial plants — thus, gro­wth inc­re­ments are smaller.


Fis­che

Das Kre­is­lauf­sys­tem der Fis­che ist ein­fach, und das Ner­ven­sys­tem ist ähn­lich auf­ge­baut mit einem ein­fa­chen Gehirn und Rüc­ken­mark. Fis­che atmen durch Kie­men, aber eini­ge Arten haben alter­na­ti­ve Met­ho­den der Luf­tauf­nah­me ent­wic­kelt. Zum Beis­piel atmen Pan­zer­wel­se atmo­sp­hä­ris­chen Sau­ers­toff durch die Darmsch­le­im­haut ein. Laby­rinth­fis­che, wie Betta-​Fische, ver­wen­den für den gle­i­chen Zweck eine Struk­tur namens Laby­rinth. Das Laby­rinth ist ein rela­tiv kom­ple­xes Organ, das sich beis­piel­swe­i­se bei Betta-​Fischen und Gura­mis etwa 50 Tage nach ihrer Geburt ent­wic­kelt. Aqu­arium­fis­che kön­nen zwis­chen 0,5 und 20 Jah­ren leben. Für einen sehr gro­ben Verg­le­ich neigen kle­i­ne­re Arten dazu, eine kür­ze­re Lebens­dau­er zu haben, wäh­rend größe­re Arten län­ger leben kön­nen. Zum Beis­piel leben Neon-​Tetras 2 – 3 Jah­re, Dani­os, Tetras und Gup­pys 4 – 5 Jah­re, Prachtsch­mer­len 1 – 4 Jah­re, Ancistrus-​Fishe 8 – 10 Jah­re und größe­re Bunt­bars­che kön­nen zwis­chen 10 und 20 Jah­ren leben. Pan­zer­wel­se erre­i­chen oft ein Alter von 18 Jah­ren. Aqu­arium­fis­che wach­sen all­mäh­lich, und man kann sagen, dass sie ihr gan­zes Leben lang wach­sen. Im All­ge­me­i­nen erre­i­chen nicht räu­be­ris­che Arten in der Regel nicht die Größen, die sie in fre­ier Wild­bahn erre­i­chen, wäh­rend räu­be­ris­che Arten oft ihre natür­li­chen Größen über­tref­fen. Dies liegt an Kon­kur­renz und unse­rer Pfle­ge und Füt­te­rung. Wenn wir unse­ren Fis­chen jedoch nicht genügend Platz bie­ten, wer­den sie ein­fach nicht viel wach­sen. Zum Beis­piel wird eine blaue Aca­ra in einem 20-​Liter-​Tank ihre vol­le Größe nicht erre­i­chen kön­nen. Aber wenn wir im Lau­fe der Zeit einen größe­ren Tank bere­its­tel­len, kön­nen die Fis­che erheb­lich wach­sen. Alter­na­tiv wach­sen die Fis­che, aber in einem größe­ren Tank wach­sen sie viel schnel­ler. Eini­ge Fis­che erhal­ten mög­li­cher­we­i­se kei­ne ord­nungs­ge­mä­ße Ernäh­rung, und Aqu­aria­ner sagen, dass sie ges­toppt” sind. Dies kann beis­piel­swe­i­se durch eine ande­re Füt­te­rung als bei einem ande­ren Aqu­aria­ner verur­sacht wer­den. Es gibt zahl­re­i­che Grün­de für lang­sa­mes Wachs­tum oder des­sen Stills­tand. Eini­ge Taxa wach­sen gene­tisch schnel­ler. Zum Beis­piel müs­sen Prachtsch­mer­len in einer ein­zi­gen Sai­son – etwa sechs Mona­ten – gebo­ren, heran­wach­sen, sich ver­meh­ren und bald darauf sterben.

Fis­che zeich­nen sich durch variab­le Kör­per­tem­pe­ra­tu­ren aus; sie sind poiki­lot­her­me Orga­nis­men, was bede­utet, dass sie ihre eige­ne Kör­per­wär­me nicht regu­lie­ren kön­nen und von der Tem­pe­ra­tur der umge­ben­den Umge­bung abhän­gig sind. In der Pra­xis wird ein Fisch in Was­ser bei 25°C eine Kör­per­tem­pe­ra­tur von 25°C haben. Es ist wich­tig zu erken­nen, dass Was­ser ande­re ther­mis­che Eigen­schaf­ten hat als Luft oder Metall. Mehr Ener­gie ist erfor­der­lich, um Was­ser zu erwär­men als Luft, und ähn­lich ist mehr Aufwand erfor­der­lich, um es abzu­küh­len. Ein ande­rer Arti­kel geht detail­lier­ter auf die­se Ener­gie­kos­ten ein.

Sie haben viel­le­icht bemer­kt, dass ein gro­ßes Gewäs­ser das umlie­gen­de Kli­ma bee­in­flus­sen kann. Was­ser spe­i­chert Wär­me und kühlt die Umge­bung im Som­mer und wärmt sie im Win­ter auf. Das Gle­i­che gilt für das Meer. Die Wär­me von unse­ren Kör­pern verf­liegt im Was­ser viel schnel­ler, etwa 200 Mal schnel­ler bei der­sel­ben Tem­pe­ra­tur wie in der Luft. Es ist nütz­lich, die ther­mis­chen Eigen­schaf­ten von Was­ser zu ken­nen. Höhe­re Was­ser­tem­pe­ra­tu­ren las­sen Fis­che oft bes­ser füh­len, ver­kür­zen jedoch auch ihre Lebens­dau­er. Da sie kei­ne sta­bi­le Kör­per­tem­pe­ra­tur auf­rech­ter­hal­ten kön­nen, ist ihr Stof­fwech­sel bei höhe­ren Tem­pe­ra­tu­ren stär­ker belas­tet als sie gene­tisch ange­passt sind, was zu erhöh­ter Ermüdung führt. Höhe­re Tem­pe­ra­tu­ren kön­nen die Lebens­dau­er der Fis­che um die Hälf­te redu­zie­ren. Höhe­re Tem­pe­ra­tu­ren ver­rin­gern auch ins­ge­samt ihre Kon­di­ti­on und Abwehr­fä­hig­ke­i­ten im Lau­fe der Zeit. Fis­che kön­nen sowohl hohe als auch sehr nied­ri­ge Tem­pe­ra­tu­ren kurzf­ris­tig übers­te­hen. Die Tem­pe­ra­tur, die sie tole­rie­ren kön­nen, bet­rägt 43°C. Über die­se Gren­ze ers­tic­ken die Fis­che, ver­lie­ren die Koor­di­na­ti­on und ster­ben. Ein ähn­li­ches Ver­hal­ten tritt nach einer Tem­pe­ra­tur unter 5°C auf. Es ist offen­sicht­lich, dass eini­ge Arten widers­tands­fä­hi­ger sind als ande­re. Ich bez­ie­he mich selb­stvers­tänd­lich auf gän­gi­ge Arten aus tro­pis­chen und subt­ro­pis­chen Regionen.

Fis­che neh­men Licht rela­tiv sch­wach wahr. Im Verg­le­ich zu Säu­ge­tie­ren, Insek­ten und Kopf­füßern ist ihre Sicht rela­tiv sch­lecht. Ihre kurz­sich­ti­gen Augen sind kei­ne gut ent­wic­kel­ten Sin­ne. Fis­che haben kei­ne Augen­li­der oder Trä­nen­drüsen. Fis­che kön­nen Infras­chall hören, obwohl wir wenig darüber wis­sen, wie sie Schall emp­fan­gen und verar­be­i­ten. Jeden­falls hören sie nicht unse­re nor­ma­len Gerä­us­che. Ihre Gehöran­la­gen sind eher Orga­ne des Gle­ich­ge­wichts. Die Sei­ten­li­nie ist ein Organ, das viel kann. Es hilft beis­piel­swe­i­se blin­den Indi­vi­du­en, sich sehr effek­tiv zu orien­tie­ren. Wahrs­che­in­lich neh­men sie damit sehr prä­zi­se Wel­len, Druck, Rich­tung, Strömung, elek­tro­mag­ne­tis­che Rei­ze, Nahrung und Hin­der­nis­se wahr und pas­sen ihr Ver­hal­ten ents­pre­chend an.

Fis­che haben auch Tast- und Geruchs­zel­len. Gesch­macks­zel­len fin­den sich in ihren Mün­dern, wie zu erwar­ten ist, aber eine erheb­li­che Anzahl befin­det sich auf den Flos­sen. Es ist inte­res­sant, dass ein Fisch sein Fut­ter mit sei­ner Flos­se berüh­ren kann und fests­tel­len kann, ob es sch­mack­haft ist oder nicht. Fis­che zeich­nen sich durch Gesch­lechts­di­morp­his­mus aus. Eini­ge lebend­ge­bä­ren­de Arten kön­nen jedoch unter bes­timm­ten Umstän­den ihr Gesch­lecht ändern. Dies tritt am häu­figs­ten beim Sch­wertt­rä­ger (Xip­hop­ho­rus hel­le­ri) auf. Wenn es einen hohen Ante­il an Weib­chen in einem Aqu­arium gibt, also ein Man­gel an Männ­chen, können

eini­ge Weib­chen zu Männ­chen wer­den — einen Sch­wert aus­bil­dend, Gono­po­dium usw. Vie­le sol­cher Männ­chen sind jedoch unfrucht­bar. Ich habe dies in mei­ner eige­nen Pra­xis erlebt, als ich Sch­wertt­rä­ger über einen län­ge­ren Zeit­raum gezüch­tet habe. Die Gesch­lecht­sän­de­rung tritt auch bei ande­ren lebend­ge­bä­ren­den Arten auf, jedoch nicht so häu­fig wie bei X. hel­le­ri. Hin­sicht­lich der Frucht­bar­ke­it ist inte­res­sant, dass je spä­ter das Wachs­tum des Sch­werts des Männ­chens beginnt — im Wesen­tli­chen die Rei­fe — des­to frucht­ba­rer ten­diert das Männ­chen zu sein. Wie jedoch im vor­he­ri­gen Absatz erwähnt, sind Männ­chen, die das Gesch­lecht ändern, oft volls­tän­dig unfrucht­bar. Frühe Männ­chen, bei denen das Sch­wert und das Gono­po­dium früh im Alter gebil­det wer­den, neigen zu einer höhe­ren Neigung zur Unfruchtbarkeit.

Pflan­zen

Was­serpf­lan­zen oder bes­ser gesagt Was­serpf­lan­zen, die in Aqu­arien vor­kom­men, sind ihren ter­res­tris­chen Gegens­tüc­ken sehr ähn­lich. Sie ent­hal­ten Gefä­ßbün­del, die Venen genannt wer­den und in der Regel sicht­bar sind. Pflan­zen atmen wäh­rend des gesam­ten 24-​Stunden-​Zyklus, neh­men wäh­rend des Tages bei aus­re­i­chend Licht Koh­len­di­oxid und Was­ser auf, um daraus Koh­len­hyd­ra­te (Bau­ma­te­ria­lien) haupt­säch­lich für Verb­rau­cher und lebenss­pen­den­den Sau­ers­toff her­zus­tel­len. Im Gegen­satz zu ter­res­tris­chen Pflan­zen sind Was­serpf­lan­zen an die aqu­atis­che Umge­bung ange­passt, so dass die Auf­nah­me von Nährs­tof­fen und die Atmung über die gesam­te Oberf­lä­che der Pflan­ze erfol­gen, oft auch über die Wur­zeln. Was­serpf­lan­zen haben kei­ne Sto­ma­ta — ter­res­tris­che Pflan­zen haben Sto­ma­ta auf der Unter­se­i­te ihrer Blät­ter. Pflan­zen pro­du­zie­ren Sau­ers­toff durch Foto­synt­he­se. Wenn wir die Sau­ers­toff­pro­duk­ti­on durch Pflan­zen beobach­ten — Bla­sen — ist die Sau­ers­toff­kon­zen­tra­ti­on in der Zel­le über 40 mg/​l ges­tie­gen. Aufg­rund der deut­lich unters­chied­li­chen phy­si­ka­lis­chen und che­mis­chen Bedin­gun­gen und des Gesamt­cha­rak­ters von Was­serpf­lan­zen erfolgt die Foto­synt­he­se bei Was­serpf­lan­zen jedoch viel lang­sa­mer als bei ter­res­tris­chen Pflan­zen — somit sind die Wachs­tums­zu­wäch­se kleiner.


Odka­zy

Use Facebook to Comment on this Post