Akvaristika, Biológia, Organizmy, Príroda, Rastliny

Riasy a sinice

Hits: 24212

Ria­sy

Chcel by som zdô­raz­niť, že ria­sy sú rast­li­ny. Nepat­ria medzi vyš­šie rast­li­ny – Mag­no­li­op­hy­ta ako väč­ši­na dostup­ných vod­ných rast­lín, ale medzi niž­šie rast­li­ny Algae – ria­sy. Ria­sy pat­ria do akvá­ria, sna­žiť sa zabrá­niť, aby sme ich v akvá­riu vôbec nema­li je nerov­ný boj a v koneč­nom dôsled­ku aj zby­toč­ný. Akvá­ri­um abso­lút­ne bez rias pôso­bí nepri­ro­dze­ne až sterilne.

Ria­sy úzko súvi­sia s množ­stvom svet­la. Opti­mál­ne sve­tel­né pod­mien­ky nie je vôbec ľah­ké pre náš kon­krét­ny prí­pad zabez­pe­čiť. Za naj­dô­le­ži­tej­šie pova­žu­jem dosiah­nuť opti­mál­ny rast vyš­ších rast­lín. V takom prí­pa­de si vyš­šie rast­li­ny pora­dia s kon­ku­renč­ne slab­ším pro­tiv­ní­kom. Ria­sy však doká­žu rea­go­vať na zme­ny ove­ľa rých­lej­šie ako vyš­šie rast­li­ny. Ak máte rast­lin­né akvá­ri­um, odpo­rú­čam pokryť voľ­né dno rast­li­na­mi na viac ako 75 %. V takom prí­pa­de doká­žu vod­né rast­li­ny účin­ne spra­co­vať aj väč­šie množ­stvo svet­la a živín. Doká­žu do istej mie­ry kom­pen­zo­vať aj vyš­šie prí­su­ny energie.

Ria­sy sa naj­čas­tej­šie lik­vi­du­jú mecha­nic­ky. Odpo­rú­čam drs­nú hub­ku na riad, ale­bo mäk­kú drô­ten­ku. Žilet­ku, mag­ne­tic­kú škrab­ku neod­po­rú­čam, avšak aj v prí­pa­de hub­ky, či drô­ten­ky, daj­me pozor na to, aby sa nám pri čis­te­ní nedos­ta­li pod ruky kús­ky štr­ku, kto­ré účin­né vedia sklo poškria­bať. Naj­mä na čel­nom skle je to nepríjemne.

Bio­lo­gic­kým pros­tried­kom pro­ti ria­sam, sú napr. sli­má­ky. Ale aj nie­kto­ré ryby kon­zu­mu­jú ria­sy. Naj­mä Poeci­lia sphe­nops, Xip­hop­ho­rus hel­le­ri, Gyri­no­che­i­lus aymo­nie­ri, Cros­so­che­i­lus sia­men­sis, Oto­cinc­lus, Epal­ze­or­hyn­chus, Labeo, Helos­to­ma tem­minc­ki, Ancis­trus atď. Z kre­viet naj­mä Cari­di­na japo­ni­ca, Neoca­ri­ti­da den­ti­cu­la­ta. Tre­ba pri­hlia­dať na to, že pre nie­kto­ré tie­to orga­niz­my je ria­sa pri­ro­dze­nou potra­vou, ale často­krát ak majú dosta­tok inej potra­vy, dáva­jú pred­nosť prá­ve jej. Čier­nu ria­su žerie spo­ľah­li­vo len prí­sav­ka thaj­ská – Gyri­no­che­i­lus aymo­nieri a kre­vet­ka Cari­di­na japo­ni­ca. V prí­ro­de mik­ro­sko­pic­ké ria­sy kon­zu­mu­jú malé kôrov­ce – cyk­lopy, vír­ni­ky, daf­nie. Spo­lie­hať sa na bio­lo­gic­ké pros­tried­ky v prí­pa­de vyš­šie­ho výsky­tu rias je naiv­né. Vte­dy si tre­ba vyhr­núť rad­šej ruká­vy a pus­tiť sa do práce. 

Ria­sy mož­no účin­ne odstrá­niť pôso­be­ním ultra­fia­lo­vé­ho žia­re­nia. V akva­ris­tic­kých obcho­doch je mož­né zakú­piť UV-​lampu, prí­pad­ne si ju vie­te vyro­biť. Fun­gu­je na prin­cí­pe pôso­be­nie UV žia­re­nia na vodu, kto­rá pre­chá­dza trub­kou, v kto­rej je voda pohá­ňa­ná fil­trom, teore­tic­ky neja­kým čer­pad­lom. Voda pri pre­cho­de je vysta­vo­va­ná žia­re­niu, kto­ré svo­ji­mi účin­ka­mi zabí­ja zárod­ky rias, samoz­rej­me aj cho­ro­bo­plod­ných zárod­ky. Lam­pa pôso­bí na vodu pre­chá­dza­jú­cu do akvá­ria a tým chrá­ni vodu od rias. V prí­pa­de záka­lu je mož­né pou­žiť aj pria­me pôso­be­nie pria­me­ho svet­la lam­py na vodu – avšak v takom prí­pa­de je nut­né chrá­niť si oči a nemať v nádr­ži ryby ani rastliny.

Rias sa dá zba­viť aj che­mic­kou ces­tou, pros­tried­ka­mi, kto­ré zakú­pi­te v akva­ris­tic­kých obcho­doch, prí­pad­ne na akva­ris­tic­kých bur­zách. Nie­kto­ré sú zalo­že­né na medi kto­rá nie je prá­ve vhod­ná pre nie­kto­ré dru­hy, napr. sum­če­ky. Odpo­rú­čam pou­žiť pro­duk­ty od Easy­Li­fe, prí­pad­ne Sea­chem. Napr. AlgE­xit. Čias­toč­ne sa dá pou­žiť aj účin­né hno­ji­vo Car­bo, kto­ré ak apli­ku­je­me pár­krát pria­mo na prob­le­ma­tic­ký chu­máč ria­sy, tak doká­že časom zlik­vi­do­vať aj odol­né riasy.

Prú­de­nie vody vplý­va aj na ria­sy. Zná­mej čier­nej šte­tin­ko­vej ria­se, kto­rá pat­rí medzi čer­ve­né rias, sa darí pri sil­nom prú­de­ní, čas­to ju náj­de­me v naj­mä na fil­tri, pri jeho výpus­te. Pri nad­byt­ku svet­la a živín vzni­ka­jú zele­né a čer­ve­né ria­sy. Hne­dé ria­sy sa vysky­tu­jú v akvá­riach výni­moč­ne pri nedos­tat­ku svet­la. Napr. v pôrod­nič­kách, prí­pad­ne v prí­pa­de ak akva­ris­ta nesvie­ti dosta­toč­ne, pre­dov­šet­kým dosta­toč­ne dlhú dobu.

Ako osved­če­ný nástroj aj pro­ti šte­tin­ko­vej ria­se mož­no ozna­čiť aj pou­ži­tie Sava. Savo samoz­rej­me ničí všet­ky ria­sy. Savo zrie­di­me v pome­re 1:20. Jem­no­lis­té rast­li­ny zne­sú 2 – 3 minú­ty, väč­ši­na rast­lín 3 minú­ty, rast­li­ny s tuh­ší­mi lis­ta­mi ako Anu­bias, Echi­no­do­rus, Cry­po­to­co­ry­ne 3 – 4 minú­ty. Sta­čí ich pono­riť do pri­pra­ve­né­ho roz­to­ku a násled­ne poriad­ne pre­plách­nuť vo vode. Samoz­rej­me apli­kuj­te ten­to postup mimo akvá­ria, napr. v kýb­li. Tak­to môže­me zba­viť rias aj štrk, kame­ne apod., osta­ne doslo­va vybielený.


Algae

I would like to emp­ha­si­ze that algae are plants. They do not belo­ng to hig­her plants – Mag­no­li­op­hy­ta like most avai­lab­le aqu­atic plants, but rat­her to lower plants Algae – algae. Algae are part of the aqu­arium, try­ing to pre­vent them from being in the aqu­arium at all is an une­ven batt­le and ulti­ma­te­ly unne­ces­sa­ry. An aqu­arium wit­hout algae looks unna­tu­ral­ly sterile.

Algae are clo­se­ly rela­ted to the amount of light. It is not easy at all to ensu­re opti­mal ligh­ting con­di­ti­ons for our spe­ci­fic case. I con­si­der it most impor­tant to achie­ve opti­mal gro­wth of hig­her plants. In this case, hig­her plants can cope with a com­pe­ti­ti­ve­ly wea­ker oppo­nent. Howe­ver, algae can react to chan­ges much fas­ter than hig­her plants. If you have a plan­ted aqu­arium, I recom­mend cove­ring the open bot­tom with plants by more than 75%. In that case, aqu­atic plants can effec­ti­ve­ly pro­cess even lar­ger amounts of light and nut­rients. They can to some extent com­pen­sa­te for hig­her ener­gy inputs as well.

Algae are most com­mon­ly eli­mi­na­ted mecha­ni­cal­ly. I recom­mend a rough spon­ge for dis­hes or a soft wire. I do not recom­mend a razor bla­de, mag­ne­tic scra­per, but even with a spon­ge or wire, be care­ful not to acci­den­tal­ly scratch the glass with gra­vel pie­ces during cle­a­ning, espe­cial­ly on the front glass, it is unpleasant.

Bio­lo­gi­cal means against algae inc­lu­de, for exam­ple, snails. But some fish also con­su­me algae. Espe­cial­ly Poeci­lia sphe­nops, Xip­hop­ho­rus hel­le­ri, Gyri­no­che­i­lus aymo­nie­ri, Cros­so­che­i­lus sia­men­sis, Oto­cinc­lus, Epal­ze­or­hyn­chus, Labeo, Helos­to­ma tem­minc­ki, Ancis­trus, etc. Of shrimp, espe­cial­ly Cari­di­na japo­ni­ca, Neoca­ri­ti­da den­ti­cu­la­ta. It is impor­tant to note that for some of the­se orga­nisms, algae are a natu­ral food, but often, if they have enough other food, they pre­fer it. Black algae are reliab­ly eaten only by the Chi­ne­se algae eater – Gyri­no­che­i­lus aymo­nie­ri and shrimp Cari­di­na japo­ni­ca. In natu­re, mic­ros­co­pic algae are con­su­med by small crus­ta­ce­ans – cyc­lops, roti­fers, daph­nia. Rely­ing on bio­lo­gi­cal means in case of hig­her algae occur­ren­ce is naive. In that case, it’s bet­ter to roll up your sle­e­ves and get to work.

Algae can be effec­ti­ve­ly remo­ved by the acti­on of ultra­vi­olet radia­ti­on. UV lamps can be pur­cha­sed in pet sto­res, or you can make them your­self. It works on the prin­cip­le of UV radia­ti­on acting on water pas­sing through a tube, in which water is pro­pel­led by a fil­ter, the­ore­ti­cal­ly by some pump. The water pas­sing through is expo­sed to radia­ti­on, which kills algae spo­res, of cour­se, as well as pat­ho­ge­nic spo­res. The lamp acts on the water pas­sing into the aqu­arium, thus pro­tec­ting the water from algae. In the case of tur­bi­di­ty, direct expo­su­re of the lam­p’s light to the water can be used – but in that case, it is neces­sa­ry to pro­tect the eyes and not have fish or plants in the tank.

Algae can also be remo­ved che­mi­cal­ly, using pro­ducts avai­lab­le in pet sto­res or at pet fairs. Some are based on cop­per, which is not suitab­le for some spe­cies, e.g., cat­fish. I recom­mend using pro­ducts from Easy­Li­fe or Sea­chem. For exam­ple, AlgE­xit. Par­tial­ly, effec­ti­ve fer­ti­li­zer Car­bo can be used, which if app­lied a few times direct­ly to the prob­le­ma­tic bunch of algae, can even­tu­al­ly kill even resis­tant algae.

Water flow also affects algae. The well-​known black brist­le algae, which belo­ngs to red algae, thri­ves in strong flow, often found main­ly on the fil­ter, at its out­let. With an excess of light and nut­rients, gre­en and red algae are cre­a­ted. Bro­wn algae occur in aqu­ariums excep­ti­onal­ly in case of insuf­fi­cient light. For exam­ple, in bre­e­ding tanks, or in case the aqu­arist does not shi­ne enough, espe­cial­ly for a long time.

As a pro­ven tool against brist­le algae, the use of ble­ach can also be men­ti­oned. Ble­ach natu­ral­ly des­tro­ys all algae. Dilu­te the ble­ach at a ratio of 1:20. Fine-​leaved plants tole­ra­te 2 – 3 minu­tes, most plants 3 minu­tes, plants with toug­her lea­ves like Anu­bias, Echi­no­do­rus, Cryp­to­co­ry­ne 3 – 4 minu­tes. Just immer­se them in the pre­pa­red solu­ti­on and then rin­se tho­rough­ly in water. Of cour­se, app­ly this pro­ce­du­re out­si­de the aqu­arium, e.g., in a buc­ket. This way, we can also get rid of algae, gra­vel, sto­nes, etc., which will lite­ral­ly be bleached.


Algen

Ich möch­te beto­nen, dass Algen Pflan­zen sind. Sie gehören nicht zu den höhe­ren Pflan­zen – Mag­no­li­op­hy­ta wie die meis­ten ver­füg­ba­ren Was­serpf­lan­zen, son­dern zu den nie­de­ren Pflan­zen Algen – Algen. Algen gehören zum Aqu­arium, zu ver­su­chen, sie über­haupt nicht im Aqu­arium zu haben, ist ein ungle­i­cher Kampf und letz­tend­lich unnötig. Ein Aqu­arium ohne Algen sieht unna­tür­lich ste­ril aus.

Algen hän­gen eng mit der Licht­men­ge zusam­men. Es ist über­haupt nicht ein­fach, für unse­ren spe­zi­fis­chen Fall opti­ma­le Licht­ver­hält­nis­se sicher­zus­tel­len. Ich hal­te es für am wich­tigs­ten, ein opti­ma­les Wachs­tum höhe­rer Pflan­zen zu erre­i­chen. In die­sem Fall kön­nen sich höhe­re Pflan­zen mit einem kon­kur­renzsch­wä­che­ren Geg­ner behaup­ten. Algen kön­nen jedoch auf Verän­de­run­gen viel schnel­ler rea­gie­ren als höhe­re Pflan­zen. Wenn Sie ein bepf­lanz­tes Aqu­arium haben, emp­feh­le ich, den offe­nen Boden mit Pflan­zen zu mehr als 75% zu bedec­ken. In die­sem Fall kön­nen Was­serpf­lan­zen auch größe­re Licht- und Nährs­toff­men­gen effek­tiv verar­be­i­ten. Sie kön­nen auch höhe­re Ener­gie­zu­fuh­ren tei­lwe­i­se kompensieren.

Algen wer­den am häu­figs­ten mecha­nisch bese­i­tigt. Ich emp­feh­le einen gro­ben Sch­wamm für Ges­chirr oder einen wei­chen Draht. Ich emp­feh­le kei­ne Rasierk­lin­ge, kei­nen mag­ne­tis­chen Scha­ber, aber auch bei einem Sch­wamm oder Draht soll­ten Sie darauf ach­ten, dass Sie beim Rei­ni­gen kei­ne Glass­cher­ben ver­se­hen­tlich mit Kiess­tüc­ken zerk­rat­zen, ins­be­son­de­re am Vor­derg­las, das ist unangenehm.

Bio­lo­gis­che Mit­tel gegen Algen umfas­sen zum Beis­piel Schnec­ken. Aber auch eini­ge Fis­che fres­sen Algen. Beson­ders Poeci­lia sphe­nops, Xip­hop­ho­rus hel­le­ri, Gyri­no­che­i­lus aymo­nie­ri, Cros­so­che­i­lus sia­men­sis, Oto­cinc­lus, Epal­ze­or­hyn­chus, Labeo, Helos­to­ma tem­minc­ki, Ancis­trus usw. Von Gar­ne­len, ins­be­son­de­re Cari­di­na japo­ni­ca, Neoca­ri­ti­da den­ti­cu­la­ta. Es ist wich­tig zu beach­ten, dass Algen für eini­ge die­ser Orga­nis­men eine natür­li­che Nahrung sind, aber oft, wenn sie genug ande­re Nahrung haben, bevor­zu­gen sie es. Sch­war­ze Algen wer­den nur von der chi­ne­sis­chen Algen­fres­ser – Gyri­no­che­i­lus aymo­nie­ri und der Gar­ne­le Cari­di­na japo­ni­ca zuver­läs­sig gef­res­sen. In der Natur wer­den mik­ro­sko­pis­che Algen von kle­i­nen Kreb­stie­ren – Cyc­lops, Räder­tier­chen, Daph­nien – kon­su­miert. Sich auf bio­lo­gis­che Mit­tel im Fal­le eines höhe­ren Alge­nauft­re­tens zu ver­las­sen, ist naiv. In die­sem Fall ist es bes­ser, die Ärmel hoch­zuk­rem­peln und anzu­fan­gen zu arbeiten.

Algen kön­nen durch die Wir­kung ultra­vi­olet­ter Strah­lung wirk­sam ent­fernt wer­den. UV-​Lampen kön­nen in Zoohand­lun­gen gekauft oder selbst her­ges­tellt wer­den. Es funk­ti­oniert nach dem Prin­zip, dass UV-​Strahlung auf Was­ser wir­kt, das durch einen Sch­lauch flie­ßt, in dem Was­ser von einem Fil­ter anget­rie­ben wird, the­ore­tisch von einer Pum­pe. Das Was­ser, das durchf­lie­ßt, ist der Strah­lung aus­ge­setzt, die Algen­spo­ren abtötet, natür­lich auch pat­ho­ge­ne Spo­ren. Die Lam­pe wir­kt auf das in das Aqu­arium ein­lau­fen­de Was­ser und schützt so das Was­ser vor Algen. Im Fal­le von Trübun­gen kann die direk­te Ein­wir­kung des Lam­pen­lichts auf das Was­ser ver­wen­det wer­den – aber in die­sem Fall ist es not­wen­dig, die Augen zu schüt­zen und kei­ne Fis­che oder Pflan­zen im Tank zu haben.

Algen kön­nen auch che­misch ent­fernt wer­den, indem Pro­duk­te ver­wen­det wer­den, die in Zoohand­lun­gen oder auf Tier­mes­sen erhält­lich sind. Eini­ge basie­ren auf Kup­fer, das für eini­ge Arten nicht gee­ig­net ist, z. B. Wel­se. Ich emp­feh­le die Ver­wen­dung von Pro­duk­ten von Easy­Li­fe oder Sea­chem. Zum Beis­piel AlgE­xit. Tei­lwe­i­se kann das wirk­sa­me Dün­ge­mit­tel Car­bo ver­wen­det wer­den, das, wenn es eini­ge Male direkt auf den prob­le­ma­tis­chen Algen­büs­chel auf­get­ra­gen wird, sch­lie­ßlich auch widers­tands­fä­hi­ge Algen abtöten kann.

Die Was­sers­trömung bee­in­flusst auch Algen. Die bekann­ten sch­war­zen Bors­te­nal­gen, die zu den roten Algen gehören, gede­i­hen bei star­kem Strömung, oft fin­den sie sich haupt­säch­lich am Fil­ter, an des­sen Aus­lass. Bei einem Übers­chuss an Licht und Nährs­tof­fen ents­te­hen grüne und rote Algen. Brau­ne Algen tre­ten im Aqu­arium nur in Aus­nah­me­fäl­len bei unzu­re­i­chen­dem Licht auf. Zum Beis­piel in Zucht­tanks oder wenn der Aqu­aria­ner nicht genug leuch­tet, ins­be­son­de­re nicht lan­ge genug.

Als bewä­hr­tes Mit­tel gegen Bors­te­nal­gen kann auch die Ver­wen­dung von Ble­ich­mit­tel erwähnt wer­den. Ble­ich­mit­tel zers­tört natür­lich alle Algen. Ver­dün­nen Sie das Ble­ich­mit­tel im Ver­hält­nis 1:20. Feinb­lätt­ri­ge Pflan­zen ver­tra­gen 2 – 3 Minu­ten, die meis­ten Pflan­zen 3 Minu­ten, Pflan­zen mit här­te­ren Blät­tern wie Anu­bias, Echi­no­do­rus, Cryp­to­co­ry­ne 3 – 4 Minu­ten. Tau­chen Sie sie ein­fach in die vor­be­re­i­te­te Lösung ein und spülen Sie sie dann gründ­lich in Was­ser ab. Wen­den Sie die­ses Ver­fah­ren natür­lich außer­halb des Aqu­ariums an, z. B. in einem Eimer. Auf die­se Wei­se kön­nen wir auch Algen, Kies, Ste­i­ne usw. loswer­den, die buchs­täb­lich geb­le­icht werden.


Zele­né riasy

Naj­zná­mej­šie sú zele­né ria­syChlo­rop­hy­ta a čer­ve­né ria­sy Rho­dop­hy­ta. Sú však napr.aj hne­dé ria­syPha­ep­hy­ce­ae, roz­siev­kyBacil­la­ri­op­hy­ce­ae. Medzi zná­me dru­hy pat­rí Chlo­rel­la – jed­no­bun­ko­vá ria­sa schop­ná do zele­na totál­ne ” zafar­biť” celú nádrž. V akva­ris­ti­ke sa pre­to pou­ží­va ter­mín zele­ný zákal, vše­obec­ne sa pou­ží­va ter­mín vod­ný kvet. Medzi čer­ve­né ria­sy pat­rí napr. Audou­inel­la. Ria­sy sú rov­na­ko ako vyš­šie rast­li­ny asi­mi­lá­to­ry hmo­ty, obdob­ným spô­so­bom via­žu svet­lo, a tvo­ria orga­nic­kú hmo­tu a ako ved­ľaj­ší pro­dukt kys­lík.

Tzv. vod­ný kvet naj­mä v eut­ro­fi­zo­va­ných jaze­rách a nádr­žiach tvo­ria čas­to mik­ro­sko­pic­ké dru­hy Chlo­rel­la pyre­no­ido­sa, Vol­vox aure­us. V prí­pa­de zele­né­ho záka­lu pomô­žu bež­né pros­tried­ky ako výme­na vody, odka­le­nie, ale pre­dov­šet­kým totál­ne zatem­ne­nie nádr­že na neja­ký čas. Po tom­to nees­te­tic­kom čine je vhod­né opäť vyme­niť väč­šie množ­stvo vody. Iným čas­tým typom je dlhá vlák­ni­tá zele­ná ria­sa napr. Pit­hop­ho­ra, Oedo­go­nium, Cla­dop­ho­ra, kto­rá sa pomer­ne ťaž­ko odstra­ňu­je. Azda najú­čin­nej­šou metó­dou je mecha­nic­ké namo­ta­nie na špajd­lu, ale­bo podob­ný nástroj. Žerú ju však živo­rod­ky, Ancis­trus, Cros­so­che­i­lus sia­men­sis, Gyri­no­che­i­lus aymo­nie­ri apod. Na roz­diel od šte­tin­ko­vej ria­sy nie je tak pev­ne ukot­ve­ná v rast­li­nách, pre­to pri odtŕha­ní dochá­dza ku poško­de­niu rast­lín len zried­ka­vo. Na vla­so­vú ria­su je mož­né apli­ko­vať aj kúpeľ Sava. Ria­sy, tvo­ria­ce malé koló­nie, podob­ne ako hne­dé ria­sy na lis­toch sú napr. Dra­par­nal­dia, Tetra­spo­ra gela­ti­no­sa, Hyd­ro­dic­ty­on reti­cu­la­tum, Eug­le­na. Dajú sa pomer­ne ťaž­ko zo skla.


Gre­en Algae

The most well-​known are gre­en algae – Chlo­rop­hy­ta and red algae – Rho­dop­hy­ta. Howe­ver, the­re are also bro­wn algae – Pha­e­op­hy­ce­ae, dia­toms – Bacil­la­ri­op­hy­ce­ae, for exam­ple. Among the well-​known spe­cies is Chlo­rel­la – a single-​celled algae capab­le of com­ple­te­ly colo­ring” the enti­re tank gre­en. In aqu­arium kee­ping, the term gre­en water” is used, whi­le the gene­ral term water blo­om” is also com­mon­ly used. Among the red algae is, for exam­ple, Audou­inel­la. Algae, like hig­her plants, are assi­mi­la­tors of mat­ter, bind light in a simi­lar way, and pro­du­ce orga­nic mat­ter and oxy­gen as a by-product.

The so-​called water blo­om, espe­cial­ly in eut­rop­hic lakes and reser­vo­irs, is often for­med by mic­ros­co­pic spe­cies such as Chlo­rel­la pyre­no­ido­sa, Vol­vox aure­us. In the case of gre­en water, com­mon met­hods such as water chan­ges, sedi­men­ta­ti­on, but espe­cial­ly total tank blac­kout for some time, can help. After this una­est­he­tic pro­ce­du­re, it is advi­sab­le to again repla­ce a lar­ge amount of water. Anot­her com­mon type is the long fila­men­tous gre­en algae such as Pit­hop­ho­ra, Oedo­go­nium, Cla­dop­ho­ra, which are rela­ti­ve­ly dif­fi­cult to remo­ve. Per­haps the most effec­ti­ve met­hod is mecha­ni­cal win­ding on a spind­le or simi­lar tool. Howe­ver, they are eaten by live­be­a­rers, Ancis­trus, Cros­so­che­i­lus sia­men­sis, Gyri­no­che­i­lus aymo­nie­ri, etc. Unli­ke brush algae, it is not so firm­ly ancho­red in the plants, so dama­ge to the plants rare­ly occurs when remo­ved. Savo bath can also be app­lied to hair algae. Algae for­ming small colo­nies, simi­lar to bro­wn algae on lea­ves, inc­lu­de Dra­par­nal­dia, Tetra­spo­ra gela­ti­no­sa, Hyd­ro­dic­ty­on reti­cu­la­tum, Eug­le­na. They can be quite dif­fi­cult to remo­ve from glass.


Grüne Algen

Die bekann­tes­ten sind grüne Algen – Chlo­rop­hy­ta und rote Algen – Rho­dop­hy­ta. Es gibt jedoch auch brau­ne Algen – Pha­e­op­hy­ce­ae, Kie­se­lal­gen – Bacil­la­ri­op­hy­ce­ae, zum Beis­piel. Zu den bekann­ten Arten gehört Chlo­rel­la – eine ein­zel­li­ge Alge, die in der Lage ist, das gesam­te Aqu­arium grün zu fär­ben. In der Aqu­aris­tik wird der Beg­riff grünes Was­ser” ver­wen­det, wäh­rend auch der all­ge­me­i­ne Beg­riff Was­serb­lüte” üblich ist. Zu den roten Algen gehört zum Beis­piel Audou­inel­la. Algen sind wie höhe­re Pflan­zen Assi­mi­la­to­ren von Mate­rie, bin­den Licht auf ähn­li­che Wei­se und pro­du­zie­ren orga­nis­che Mate­rie und Sau­ers­toff als Nebenprodukt.

Die soge­nann­te Was­serb­lüte, ins­be­son­de­re in eut­rop­hen Seen und Stau­se­en, wird oft von mik­ro­sko­pis­chen Arten wie Chlo­rel­la pyre­no­ido­sa, Vol­vox aure­us gebil­det. Im Fal­le von grünem Was­ser kön­nen übli­che Met­ho­den wie Was­ser­wech­sel, Sedi­men­ta­ti­on, aber vor allem eine tota­le Ver­dun­ke­lung des Tanks für eini­ge Zeit hel­fen. Nach die­sem wenig äst­he­tis­chen Ver­fah­ren ist es rat­sam, wie­der eine gro­ße Men­ge Was­ser zu wech­seln. Ein wei­te­rer häu­fi­ger Typ sind die lan­gen faden­för­mi­gen grünen Algen wie Pit­hop­ho­ra, Oedo­go­nium, Cla­dop­ho­ra, die rela­tiv sch­wer zu ent­fer­nen sind. Viel­le­icht ist die effek­tivs­te Met­ho­de das mecha­nis­che Aufwic­keln auf einer Spin­del oder einem ähn­li­chen Werk­ze­ug. Sie wer­den jedoch von Lebend­ge­bä­ren­den, Ancis­trus, Cros­so­che­i­lus sia­men­sis, Gyri­no­che­i­lus aymo­nie­ri usw. gef­res­sen. Im Gegen­satz zu Bürs­te­nal­gen ist es nicht so fest in den Pflan­zen veran­kert, sodass Schä­den an den Pflan­zen sel­ten auft­re­ten, wenn es ent­fernt wird. Ein Savo-​Bad kann auch auf Haa­ral­gen auf­get­ra­gen wer­den. Algen, die kle­i­ne Kolo­nien bil­den, ähn­lich den brau­nen Algen auf Blät­tern, sind Dra­par­nal­dia, Tetra­spo­ra gela­ti­no­sa, Hyd­ro­dic­ty­on reti­cu­la­tum, Eug­le­na. Sie kön­nen ziem­lich sch­wie­rig von Glas zu ent­fer­nen sein.


Čer­ve­né riasy

Medzi čer­ve­né ria­sy – Rho­dop­hy­ta pat­rí už spo­mí­na­ná šte­tin­ko­vá ria­sa, kto­rá vie byť neví­ta­ným hos­ťom. Čas­to je nazý­va­ná aj ako čier­na ria­sa. Vyzna­ču­je sa chro­ma­tic­kou adap­tá­ci­ou – svo­je foto­syn­te­tic­ké pig­men­ty (sfar­be­nie) mení vzhľa­dom na momen­tál­ne sve­tel­né pod­mien­ky. Do nádr­že oby­čaj­ne infil­tru­je pri­ne­se­ný­mi rast­li­na­mi, vodou z inej nádr­že, sli­mák­mi, ale­bo aj ryba­mi. K pre­no­su ria­sy vodou z inej nádr­že môže dôjsť veľ­mi nevin­ne – ria­su pre­ne­sie náho­dou. Na úspeš­nú” intro­duk­ciu posta­čia zárod­ky ria­sy. Živ­nou pôdou sú pre ria­sy naj­mä star­šie lis­ty vyš­ších rast­lín.

Taxo­no­mic­ky ide o via­ce­ré dru­hy napr. Audou­inel­la, Com­pso­po­gon, Bat­ra­chos­per­mum moni­li­for­me, Lema­nea. Skú­se­nos­ti akva­ris­tov s ňou sú rôz­ne. Vše­obec­ne sa aj čer­ve­ným ria­sam a rov­na­ko čier­nej ria­se”, darí pri pre­byt­ku živín. Napr. v let­nom obdo­bí sa čas­to vysky­tu­je veľ­mi hoj­ne, od sep­tem­bra začne postup­ne miz­núť v akvá­riu. Jej rast ovplyv­ňu­je množ­stvo den­né­ho svet­la. Darí sa jej na prí­liš boha­tom dne. Táto ria­sa je oby­čaj­ne čier­na, jej far­ba môže byť však aj tma­vo­mod­rá, tma­vo­ze­le­ná. Pri­chy­tá­va sa prak­tic­ky na všet­ko, na rast­li­ny, na sub­strát, na schrán­ky sli­má­kov, na sklo akvá­ria, narú­ša lep na okra­joch stien apod. Drží veľ­mi pev­ne, mecha­nic­ky je veľ­mi prob­le­ma­tic­ké ju lik­vi­do­vať z povr­chu rast­lín. Oby­čaj­ne pri takom­to poku­se odtrh­ne­me aj kus z rast­li­ny. Z vlast­nej skú­se­nos­ti viem, že je ťaž­ké odstrá­niť ju aj ciro­ko­vou kefou z tvr­dé­ho kame­ňa.

Čier­nej ria­sy sa dá zba­viť aj pri­ro­dze­nej­šou ces­tou. V prvom rade tre­ba zní­žiť prí­jem živín. Jes­tvu­je na to nie­koľ­ko mož­nos­tí – napr. odka­liť čas­tej­šie dno, čas­tej­šie meniť vodu, prí­pad­ne zvý­šiť jej množ­stvo pri výme­ne, menej kŕmiť, menej svie­tiť, pre­miest­niť akvá­ri­um na tmav­šie miesto.


Red Algae

Among the red algae – Rho­dop­hy­ta, the pre­vi­ous­ly men­ti­oned brush algae can be an unwel­co­me guest. It is often also refer­red to as black algae. It is cha­rac­te­ri­zed by chro­ma­tic adap­ta­ti­on – it chan­ges its pho­to­synt­he­tic pig­ments (color) depen­ding on the cur­rent light con­di­ti­ons. It usu­al­ly infil­tra­tes through impor­ted plants, water from anot­her tank, snails, or even fish. The trans­fer of algae with water from anot­her tank can occur very inno­cen­tly – the algae is acci­den­tal­ly trans­fer­red. Spo­res of algae are suf­fi­cient for a suc­cess­ful” intro­duc­ti­on. The main sour­ce of nut­ri­ti­on for algae is pri­ma­ri­ly older lea­ves of hig­her plants.

Taxo­no­mi­cal­ly, it is seve­ral spe­cies such as Audou­inel­la, Com­pso­po­gon, Bat­ra­chos­per­mum moni­li­for­me, Lema­nea. Aqu­arists’ expe­rien­ces with it vary. Gene­ral­ly, red algae and also black algae” thri­ve in nut­rient excess. For exam­ple, they often occur very fre­qu­en­tly in the sum­mer and gra­du­al­ly begin to disap­pe­ar from the aqu­arium from Sep­tem­ber. The­ir gro­wth is influ­en­ced by day­light. They thri­ve in too much light. This algae is usu­al­ly black, but its color can also be dark blue or dark gre­en. It adhe­res prac­ti­cal­ly eve­ry­whe­re, to plants, to the sub­stra­te, to the shells of snails, to the aqu­arium glass, it dis­rupts the film on the walls, etc. It holds very firm­ly, and it is mecha­ni­cal­ly very prob­le­ma­tic to remo­ve it from the sur­fa­ce of the plants. Usu­al­ly, when try­ing to remo­ve it, we also tear off a part of the plant. From per­so­nal expe­rien­ce, I know that it is dif­fi­cult to remo­ve it even with a wire brush from hard stone.

Black algae can also be fought in a more natu­ral way. First and fore­most, the nut­rient inta­ke should be redu­ced. The­re are seve­ral opti­ons for this – for exam­ple, remo­ving sedi­ment more fre­qu­en­tly, chan­ging the water more often, possib­ly inc­re­a­sing the amount during a chan­ge, fee­ding less, pro­vi­ding less light, moving the aqu­arium to a dar­ker place.


Rote Algen

Zu den roten Algen – Rho­dop­hy­ta gehört die bere­its erwähn­te Pin­se­lal­ge, die ein uner­wün­sch­ter Gast sein kann. Sie wird oft auch als Sch­war­ze Alge bez­e­ich­net. Sie zeich­net sich durch chro­ma­tis­che Anpas­sung aus – sie ändert ihre foto­synt­he­tis­chen Pig­men­te (Far­be) je nach den aktu­el­len Licht­ver­hält­nis­sen. Sie dringt nor­ma­ler­we­i­se durch impor­tier­te Pflan­zen, Was­ser aus einem ande­ren Tank, Schnec­ken oder auch Fis­che in den Tank ein. Die Über­tra­gung der Alge mit Was­ser aus einem ande­ren Tank kann sehr unschul­dig erfol­gen – die Alge wird ver­se­hen­tlich über­tra­gen. Zur erfolg­re­i­chen” Ein­füh­rung rei­chen die Algen­spo­ren aus. Die Haupt­nah­rung­squ­el­le für Algen sind vor allem älte­re Blät­ter höhe­rer Pflanzen.

Taxo­no­misch han­delt es sich um meh­re­re Arten wie Audou­inel­la, Com­pso­po­gon, Bat­ra­chos­per­mum moni­li­for­me, Lema­nea. Die Erfah­run­gen der Aqu­aria­ner damit sind unters­chied­lich. Im All­ge­me­i­nen gede­i­hen rote Algen und auch sch­war­ze Algen” bei Nährs­tof­fübers­chuss. Zum Beis­piel tre­ten sie im Som­mer oft sehr häu­fig auf und begin­nen ab Sep­tem­ber all­mäh­lich im Aqu­arium zu versch­win­den. Ihr Wachs­tum wird vom Tages­licht bee­in­flusst. Sie gede­iht bei zu viel Licht. Die­se Alge ist nor­ma­ler­we­i­se sch­warz, ihre Far­be kann jedoch auch dun­kelb­lau oder dun­kelg­rün sein. Sie haf­tet prak­tisch übe­rall, an Pflan­zen, am Sub­strat, an den Gehä­u­sen von Schnec­ken, am Aqu­ariumg­las, sie stört den Film an den Wän­den usw. Sie hält sehr fest, es ist mecha­nisch sehr prob­le­ma­tisch, sie von der Oberf­lä­che der Pflan­zen zu ent­fer­nen. In der Regel rei­ßen wir beim Ver­such, sie zu ent­fer­nen, auch einen Teil der Pflan­ze ab. Aus eige­ner Erfah­rung weiß ich, dass es sch­wie­rig ist, sie selbst mit einer Draht­bürs­te vom har­ten Ste­in zu entfernen.

Sch­war­ze Algen kön­nen auch auf natür­li­che­re Wei­se bekämpft wer­den. Zunächst soll­te die Nährs­toff­zu­fuhr redu­ziert wer­den. Es gibt meh­re­re Mög­lich­ke­i­ten dafür – zum Beis­piel das Sedi­ment häu­fi­ger ent­fer­nen, das Was­ser häu­fi­ger wech­seln, gege­be­nen­falls die Men­ge bei einem Wech­sel erhöhen, weni­ger füt­tern, weni­ger Licht geben, das Aqu­arium an einen dunk­le­ren Ort verschieben.

Hne­dé riasy

Hne­dé ria­sy – vyža­du­jú iné pod­mien­ky ako zele­né a čer­ve­né ria­sy. Medzi ten­to typ rias akva­ris­ti zara­ďu­jú aj roz­siev­ky Bacil­la­ri­op­hy­ce­ae (Dia­to­mae). Hne­dá ria­sa vzni­ká pomer­ne čas­to po zalo­že­ní nádr­že. Jej stav sa oby­čaj­ne rých­lo zre­du­ku­je a oby­čaj­ne pozvoľ­ne zmiz­ne. Ak je však stav trva­lý, zrej­me sme náš­mu akvá­riu nepos­kyt­li dosta­tok svet­la. Hne­dé ria­sy sa uchy­cu­jú naj­mä na ste­nách nádr­že, môže­me ich však regis­tro­vať aj na povr­chu rast­lín. Rie­še­nie tej­to situ­ácie je pre­to veľ­mi pros­té. Zvý­še­ním množ­stva svet­la. Nie­kto­ré dru­hy: Step­ha­no­dis­cus bel­lus, Gomp­ho­ne­ma gemi­na­tum, Hyd­ru­rus foeti­dus, Tabel­la­ria ven­tri­co­sa, Cym­bel­la cistula.


Bro­wn Algae

Bro­wn algae – requ­ire dif­fe­rent con­di­ti­ons than gre­en and red algae. Among this type of algae, aqu­arists also inc­lu­de dia­toms – Bacil­la­ri­op­hy­ce­ae (Dia­to­mae). Bro­wn algae often appe­ar short­ly after the tank is set up. The­ir pre­sen­ce usu­al­ly dimi­nis­hes quick­ly and gra­du­al­ly disap­pe­ars. Howe­ver, if the pre­sen­ce is per­sis­tent, it is like­ly that our aqu­arium has not been pro­vi­ded with enough light. Bro­wn algae main­ly attach to the walls of the tank, but they can also be found on the sur­fa­ce of plants. The­re­fo­re, the solu­ti­on to this situ­ati­on is very sim­ple: inc­re­a­sing the amount of light. Some spe­cies inc­lu­de: Step­ha­no­dis­cus bel­lus, Gomp­ho­ne­ma gemi­na­tum, Hyd­ru­rus foeti­dus, Tabel­la­ria ven­tri­co­sa, Cym­bel­la cistula.


Brau­ne Algen

Brau­ne Algen – erfor­dern ande­re Bedin­gun­gen als grüne und rote Algen. Zu die­sem Algen­typ gehören auch Kie­se­lal­gen – Bacil­la­ri­op­hy­ce­ae (Dia­to­mae). Brau­ne Algen tre­ten oft kurz nach der Ein­rich­tung des Aqu­ariums auf. Ihre Prä­senz nimmt in der Regel schnell ab und versch­win­det all­mäh­lich. Wenn ihr Auft­re­ten jedoch anhält, liegt es wahrs­che­in­lich daran, dass unser Aqu­arium nicht genügend Licht erhält. Brau­ne Algen haf­ten haupt­säch­lich an den Wän­den des Tanks, kön­nen aber auch auf der Oberf­lä­che von Pflan­zen vor­kom­men. Daher ist die Lösung für die­se Situ­ati­on sehr ein­fach: Erhöhung der Licht­men­ge. Eini­ge Arten sind: Step­ha­no­dis­cus bel­lus, Gomp­ho­ne­ma gemi­na­tum, Hyd­ru­rus foeti­dus, Tabel­la­ria ven­tri­co­sa, Cym­bel­la cistula.


Sini­ce

Sini­ce nepat­ria medzi rast­li­ny (ria­sy), ale čas­to sa medzi ne zara­ďu­jú. Čas­to sú ozna­čo­va­né za mod­ro­ze­le­né ria­sy. Sú oby­čaj­ne naozaj mod­ro­ze­le­né, čo spô­so­bu­je far­bi­vo fyko­cy­anín, ale môžu byť aj hne­do­čier­ne. Ria­sy a vyš­šie rast­li­ny pat­ria medzi euka­ry­o­tic­ké orga­niz­my. Sini­ce sú pro­ka­ry­o­tic­ké orga­niz­my na roz­diel od rias, rast­lín a živo­čí­chov. Sú prí­buz­né bak­té­riám. Ich pro­duk­ty meta­bo­liz­mu sú škod­li­vé pre ryby, pri vyso­kej kon­cen­trá­cii aj pre člo­ve­ka – spo­meň­me si napr. na zákaz kúpa­nia na Kuchaj­de v Bra­ti­sla­ve, ale aj na iných vod­ných plo­chách. Sú čas­to maz­ľa­vej kon­zis­ten­cie, vysky­tu­jú sa pri vyso­kej kon­cen­trá­cii dusí­ka a fos­fo­ru. Sini­ce sú veľ­mi odol­ný pro­tiv­ník, pla­tia pre ne rov­na­ké postu­py, ak ich chce­me eli­mi­no­vať, ako v prí­pa­de rias. Nie­kto­ré dru­hy: Apha­ni­zo­me­non gra­ci­le, Rivu­la­ria hae­ma­ti­tes, Ana­ba­e­na flos-​aquae, Myc­ro­cys­tis auru­gi­no­sa, Oscil­la­to­ria limo­sa. Nie je jed­no­du­ché sa ich zba­viť, odpo­rú­čam pou­žiť pro­duk­ty od Easy­Li­fe, Sea­chem apod. Zau­jí­ma­vos­ťou je, že Mala­wi cich­li­dy sú jed­ny z mála sku­pín rýb, kto­ré požie­ra­jú aj sinice.


Algae

Algae do not belo­ng to plants (sea­we­ed), but they are often clas­si­fied among them. They are often refer­red to as blue-​green algae. They are usu­al­ly tru­ly blue-​green, which is cau­sed by the pig­ment phy­co­cy­anin, but they can also be brown-​black. Algae and hig­her plants belo­ng to euka­ry­o­tic orga­nisms. Algae are pro­ka­ry­o­tic orga­nisms unli­ke sea­we­ed, plants, and ani­mals. They are rela­ted to bac­te­ria. The­ir meta­bo­lic pro­ducts are harm­ful to fish, and at high con­cen­tra­ti­ons, also to humans – let’s remem­ber, for exam­ple, the ban on swim­ming in Kuchaj­da in Bra­ti­sla­va, but also in other bodies of water. They are often sli­my in con­sis­ten­cy and occur at high con­cen­tra­ti­ons of nit­ro­gen and phosp­ho­rus. Algae are very resi­lient oppo­nents, the same pro­ce­du­res app­ly to eli­mi­na­te them as in the case of sea­we­ed. Some spe­cies: Apha­ni­zo­me­non gra­ci­le, Rivu­la­ria hae­ma­ti­tes, Ana­ba­e­na flos-​aquae, Myc­ro­cys­tis auru­gi­no­sa, Oscil­la­to­ria limo­sa. It is not easy to get rid of them; I recom­mend using pro­ducts from Easy­Li­fe, Sea­chem, etc. Inte­res­tin­gly, Mala­wi cich­lids are one of the few groups of fish that con­su­me algae.


Algen

Algen gehören nicht zu den Pflan­zen (Algen), wer­den aber oft zu ihnen gezä­hlt. Sie wer­den oft als Blau­al­gen bez­e­ich­net. Sie sind nor­ma­ler­we­i­se wirk­lich blau-​grün, was durch das Pig­ment Phy­co­cy­anin verur­sacht wird, kön­nen aber auch braun-​schwarz sein. Algen und höhe­re Pflan­zen gehören zu den euka­ry­o­tis­chen Orga­nis­men. Algen sind pro­ka­ry­o­tis­che Orga­nis­men im Gegen­satz zu Algen, Pflan­zen und Tie­ren. Sie sind mit Bak­te­rien ver­wandt. Ihre Stof­fwech­sel­pro­duk­te sind für Fis­che schäd­lich und bei hoher Kon­zen­tra­ti­on auch für Men­schen – erin­nern wir uns beis­piel­swe­i­se an das Bade­ver­bot in Kuchaj­da in Bra­ti­sla­va, aber auch in ande­ren Gewäs­sern. Sie sind oft sch­le­i­mig in der Kon­sis­tenz und tre­ten bei hoher Kon­zen­tra­ti­on von Sticks­toff und Phosp­hor auf. Algen sind sehr widers­tands­fä­hi­ge Geg­ner, die gle­i­chen Ver­fah­ren gel­ten für ihre Bese­i­ti­gung wie im Fall von Algen. Eini­ge Arten: Apha­ni­zo­me­non gra­ci­le, Rivu­la­ria hae­ma­ti­tes, Ana­ba­e­na flos-​aquae, Myc­ro­cys­tis auru­gi­no­sa, Oscil­la­to­ria limo­sa. Es ist nicht ein­fach, sie los­zu­wer­den; Ich emp­feh­le die Ver­wen­dung von Pro­duk­ten von Easy­Li­fe, Sea­chem usw. Inte­res­san­ter­we­i­se sind Mala­wi­se­e­bunt­bars­che eine der weni­gen Fischg­rup­pen, die Algen konsumieren.

Use Facebook to Comment on this Post

Akvaristika, Biológia, Biológia, Organizmy, Príroda, Rastliny

Vodné rastliny

Hits: 51460

Vod­né rast­li­ny sa líšia od sucho­zem­ských rast­lín, sú adap­to­va­né na pro­stre­die pod vodou. Lis­ty vod­ných rast­lín majú prie­du­chy aj na vrch­nej, aj na spod­nej stra­ne – tak­po­ve­diac dýcha­jú obo­ma stra­na­mi” na roz­diel od sucho­zem­ských rast­lín. Povrch sucho­zem­ských rast­lín tvo­rí kuti­ku­la, u rast­lín vod­ných tak­mer u všet­kých dru­hov chý­ba. Prav­de­po­dob­ne by naj­mä brá­ni­la difú­zii ply­nov. Plá­va­jú­ce rast­li­ny oby­čaj­ne neza­ko­re­ňu­jú, ani tie, kto­ré žijú na hla­di­ne. Kore­ne sú čo do tva­ru obdob­né ako pri sucho­zem­ských dru­hoch. Do dôsled­kov nemož­no brať za kaž­dých okol­nos­tí vodu ako bari­é­ru, pre­to­že sú vod­né rast­li­ny, kto­ré aj v pri­ro­dze­ných pod­mien­kach vyras­ta­jú nad hla­di­nu, resp. ras­tú v moča­ri­nách s níz­kou hla­di­nou vody vo veľ­kom vlh­ku. Aj v akva­ris­ti­ke sa zau­ží­val pojem sub­merz­ná for­ma a emerz­ná for­ma rast­li­ny. Sub­merz­ná for­ma ras­tie pod hla­di­nou vody, emerz­ná for­ma nad hla­di­nou. Jed­not­li­vé for­my sa čas­to líšia, okrem iné­ho tva­rom, aj far­bou. V pra­xi je v drvi­vej väč­ši­ne pou­ží­va­né nepo­hlav­né roz­mno­žo­va­nie rast­lín – odrez­ka­mi, pop­laz­mi, výhon­ka­mi apod. Sub­merz­ná for­ma môže aj v akvá­riu vyrásť do emerz­nej for­my – čas­to napr. Echi­no­do­rus. Ak je nádrž pre rast­li­nu prí­liš níz­ka, čas­to si náj­de ces­tu von. Avšak aj vod­ná rast­li­na kvit­ne a čas­to veľ­mi podob­ne ako sucho­zem­ské dru­hy. Kvet tvo­rí nie­ke­dy pod hla­di­nou, čas­tej­šie nad jej povr­chom. Pohlav­né mno­že­nie rast­lín nie je vylú­če­né, ale je prob­le­ma­tic­ké a je skôr prá­cou pre špe­cia­lis­tu. Vod­né rast­li­ny sú väč­ši­nou zele­né, nie­ke­dy čer­ve­né, fia­lo­vé, hne­do­čer­ve­né. Exis­tu­je množ­stvo dru­hov vod­ných rastlín.


Aqu­atic plants dif­fer from ter­res­trial plants; they are adap­ted to the under­wa­ter envi­ron­ment. The lea­ves of aqu­atic plants have sto­ma­ta on both the upper and lower sur­fa­ces – they bre­at­he through both sides,” unli­ke ter­res­trial plants. The sur­fa­ce of ter­res­trial plants is cove­red with a cutic­le, which is almost absent in almost all spe­cies of aqu­atic plants. It would like­ly hin­der gas dif­fu­si­on. Flo­ating plants usu­al­ly do not root, even tho­se that live on the water sur­fa­ce. The roots are simi­lar in sha­pe to tho­se of ter­res­trial spe­cies. The con­se­qu­en­ces can­not alwa­ys be taken as a bar­rier, as the­re are aqu­atic plants that grow abo­ve the water sur­fa­ce in natu­ral con­di­ti­ons or grow in mars­hes with low water levels but high humi­di­ty. In aqu­ariums, the terms sub­mer­ged form and emer­ged form of plants are com­mon. The sub­mer­ged form gro­ws under­wa­ter, whi­le the emer­ged form gro­ws abo­ve the water. The indi­vi­du­al forms often dif­fer in sha­pe and color. In prac­ti­ce, vege­ta­ti­ve pro­pa­ga­ti­on of plants is wide­ly used – by cut­tings, run­ners, sho­ots, etc. The sub­mer­ged form can grow into the emer­ged form in an aqu­arium – often seen in plants like Echi­no­do­rus. If the tank is too low for the plant, it often finds its way out. Howe­ver, aqu­atic plants also blo­om, often very simi­lar to ter­res­trial spe­cies. The flo­wer some­ti­mes forms below the water sur­fa­ce, more often abo­ve it. Sexu­al repro­duc­ti­on of plants is not exc­lu­ded but is prob­le­ma­tic and is rat­her a task for a spe­cia­list. Aqu­atic plants are most­ly gre­en, some­ti­mes red, purp­le, or reddish-​brown. The­re are nume­rous spe­cies of aqu­atic plants.


Was­serpf­lan­zen unters­che­i­den sich von Landpf­lan­zen; sie sind an die Unter­was­se­rum­ge­bung ange­passt. Die Blät­ter von Was­serpf­lan­zen haben Sto­ma­ta auf sowohl der obe­ren als auch der unte­ren Oberf­lä­che – sie atmen durch bei­de Sei­ten”, im Gegen­satz zu Landpf­lan­zen. Die Oberf­lä­che von Landpf­lan­zen ist mit einer Cuti­cu­la bedec­kt, die bei fast allen Arten von Was­serpf­lan­zen fast nicht vor­han­den ist. Sie wür­de wahrs­che­in­lich die Gas­dif­fu­si­on behin­dern. Sch­wim­men­de Pflan­zen wur­zeln nor­ma­ler­we­i­se nicht, auch nicht die­je­ni­gen, die auf der Was­se­ro­berf­lä­che leben. Die Wur­zeln ähneln in ihrer Form denen ter­res­tris­cher Arten. Die Kon­se­qu­en­zen kön­nen nicht immer als Bar­rie­ren ange­se­hen wer­den, da es Was­serpf­lan­zen gibt, die in natür­li­chen Bedin­gun­gen über der Was­se­ro­berf­lä­che wach­sen oder in Sümp­fen mit nied­ri­gem Was­sers­tand, aber hoher Luft­fe­uch­tig­ke­it wach­sen. In Aqu­arien sind die Beg­rif­fe sub­mer­se Form” und emer­se Form” von Pflan­zen verb­re­i­tet. Die sub­mer­se Form wächst unter Was­ser, wäh­rend die emer­se Form über dem Was­ser wächst. Die ein­zel­nen For­men unters­che­i­den sich oft in Form und Far­be. In der Pra­xis wird die vege­ta­ti­ve Ver­meh­rung von Pflan­zen weit verb­re­i­tet – durch Steck­lin­ge, Aus­lä­u­fer, Trie­be usw. Die sub­mer­se Form kann sich in die emer­se Form in einem Aqu­arium ent­wic­keln – oft bei Pflan­zen wie Echi­no­do­rus zu beobach­ten. Wenn das Bec­ken für die Pflan­ze zu nied­rig ist, fin­det sie oft einen Weg nach drau­ßen. Was­serpf­lan­zen blühen auch, oft sehr ähn­lich wie ter­res­tris­che Arten. Die Blu­me bil­det sich manch­mal unter der Was­se­ro­berf­lä­che, häu­fi­ger darüber. Die sexu­el­le Ver­meh­rung von Pflan­zen ist nicht aus­gesch­los­sen, aber prob­le­ma­tisch und eher eine Auf­ga­be für einen Spe­zia­lis­ten. Was­serpf­lan­zen sind meis­tens grün, manch­mal rot, lila oder rötlich-​braun. Es gibt zahl­re­i­che Arten von Wasserpflanzen.


Svet­lo je dôle­ži­tým fak­to­rom pre rast­li­ny – sú dru­hy tie­ňo­mil­né, napr. Mic­ro­so­rium, Vesi­cu­la­ria, dru­hy svet­lo­mil­né, napr. Sal­vi­nia, Pis­tia. Roz­die­ly sú aj v otáz­ke opti­mál­nej tep­lo­ty. Sú dru­hy, kto­ré pri rela­tív­ne malom roz­die­ly tep­lo­ty ras­tú evi­den­tne inak. Lis­ty sú hus­tej­šie pri sebe v chlad­nej­šej vode, far­ba lis­tov je tmav­šia apod. Väč­ši­na vod­ných akvá­ri­ových rast­lín má pomer­ne úzky roz­sah tep­lo­ty, v kto­rej žijú. Nie­kto­ré akvá­ri­ové dru­hy zne­sú naozaj veľ­mi níz­ke tep­lo­ty, podob­né už aj našim stu­de­no­vod­ným prí­rod­ným pod­mien­kam mier­ne­ho pás­ma. Na rast­li­ny takis­to vplý­va prú­de­nie vody. Nie­kto­ré dru­hy sú sta­va­né na sto­ja­té vody, nie­kto­ré na rých­lo tečú­ce toky. V akvá­riu je zdro­jom prú­dov vody naj­mä fil­ter a vzdu­cho­va­nie. Prú­de­nie vody znač­ne ovplyv­ňu­je deko­rá­cia, svo­ju úlo­hu zohrá­va aj sklon, reli­éf dna. Rov­né dno dáva vznik sil­nej­šie­mu prú­de­niu. Na rast­li­ny veľ­mi nebla­ho vplý­va­jú lie­či­vá pou­ží­va­né v akva­ris­ti­ke. Ich nega­tív­ny úči­nok je bohu­žiaľ dlho­do­bý. Ak máme mož­nosť, pre­saď­me aspoň časť rast­lín do inej nádr­že počas lieč­by. Aj to je dôvod na zria­de­nie samos­tat­nej karan­tén­nej nádr­že. Po pou­ži­tí lie­čiv je mož­né pou­žiť aktív­ne uhlie. Rast­li­ny akva­ris­ti pre­sá­dza­jú. naj­čas­tej­šie k tomu dochá­dza pri vege­ta­tív­nom rozmnožovaní.


Light is an impor­tant fac­tor for plants – the­re are shade-​tolerant spe­cies, for exam­ple, Mic­ro­so­rium, Vesi­cu­la­ria, and light-​loving spe­cies, for exam­ple, Sal­vi­nia, Pis­tia. Dif­fe­ren­ces also exist in terms of the opti­mal tem­pe­ra­tu­re. The­re are spe­cies that cle­ar­ly grow dif­fe­ren­tly with rela­ti­ve­ly small tem­pe­ra­tu­re dif­fe­ren­ces. Lea­ves are den­ser toget­her in cooler water, and the color of the lea­ves is dar­ker, etc. Most aqu­atic aqu­arium plants have a rela­ti­ve­ly nar­row tem­pe­ra­tu­re ran­ge in which they live. Some aqu­arium spe­cies can tole­ra­te very low tem­pe­ra­tu­res, simi­lar to the cold-​water con­di­ti­ons of our tem­pe­ra­te zone. Water flow also affects plants. Some spe­cies are adap­ted to stag­nant water, whi­le others pre­fer fast-​flowing stre­ams. In the aqu­arium, the main sour­ces of water flow are the fil­ter and aera­ti­on. Water flow sig­ni­fi­can­tly influ­en­ces deco­ra­ti­on, and the slo­pe and relief of the bot­tom also play a role. A flat bot­tom cre­a­tes stron­ger cur­rents. Medi­ca­ti­ons used in aqu­aris­tics have a very nega­ti­ve effect on plants, unfor­tu­na­te­ly, the­ir nega­ti­ve impact is long-​lasting. If possib­le, trans­p­lant at least some of the plants to anot­her tank during tre­at­ment. This is also a rea­son to set up a sepa­ra­te quaran­ti­ne tank. After using medi­ca­ti­ons, acti­va­ted car­bon can be used. Aqu­arium ent­hu­siasts often trans­p­lant plants, usu­al­ly during vege­ta­ti­ve propagation.


Licht ist ein wich­ti­ger Fak­tor für Pflan­zen – es gibt schat­ten­lie­ben­de Arten wie Mic­ro­so­rium, Vesi­cu­la­ria und licht­lie­ben­de Arten wie Sal­vi­nia, Pis­tia. Es gibt auch Unters­chie­de hin­sicht­lich der opti­ma­len Tem­pe­ra­tur. Es gibt Arten, die sich bei rela­tiv gerin­gen Tem­pe­ra­tu­run­ters­chie­den deut­lich anders ent­wic­keln. Blät­ter sind dich­ter beie­i­nan­der in küh­le­rem Was­ser, die Far­be der Blät­ter ist dunk­ler usw. Die meis­ten Was­serpf­lan­zen im Aqu­arium haben einen rela­tiv engen Tem­pe­ra­tur­be­re­ich, in dem sie leben. Eini­ge Aqu­arie­nar­ten kön­nen sehr nied­ri­ge Tem­pe­ra­tu­ren tole­rie­ren, ähn­lich wie die Kalt­was­ser­be­din­gun­gen unse­rer gemä­ßig­ten Zone. Auch der Was­serf­luss bee­in­flusst Pflan­zen. Eini­ge Arten sind an ste­hen­des Was­ser ange­passt, wäh­rend ande­re schnell flie­ßen­de Ströme bevor­zu­gen. Im Aqu­arium sind die Haup­tqu­el­len für Was­sers­trömung der Fil­ter und die Belüf­tung. Die Was­sers­trömung bee­in­flusst die Deko­ra­ti­on erheb­lich, und die Neigung und das Relief des Bodens spie­len eben­falls eine Rol­le. Ein fla­cher Boden erze­ugt stär­ke­re Strömun­gen. Medi­ka­men­te, die in der Aqu­aris­tik ver­wen­det wer­den, haben lei­der einen sehr nega­ti­ven Ein­fluss auf Pflan­zen, und ihr nega­ti­ver Ein­fluss ist lei­der lan­gan­hal­tend. Wenn mög­lich, verpf­lan­zen Sie wäh­rend der Behand­lung zumin­dest eini­ge Pflan­zen in ein ande­res Bec­ken. Dies ist auch ein Grund für die Ein­rich­tung eines sepa­ra­ten Quaran­tä­ne­bec­kens. Nach der Anwen­dung von Medi­ka­men­ten kann Aktiv­koh­le ver­wen­det wer­den. Aqu­aria­ner trans­p­lan­tie­ren Pflan­zen oft, meist wäh­rend der vege­ta­ti­ven Vermehrung.


Väč­šie mater­ské rast­liny neod­po­rú­čam čas­to pre­sá­dzať. Rast­li­ny môžu byť aj zdro­jom potra­vy pre ryby, sli­má­ky apod., čo je však väč­ši­nou nežia­du­ce. Čas­to sa na eli­mi­ná­ciu rias pou­ží­va­jú mla­dé prí­sav­ní­ky. Pokiaľ sú malé svo­ju úlo­hu plnia poc­ti­vo, no väč­šie sa rad­šej pus­tia do rast­lín. Sli­má­ky doká­žu takis­to požie­rať ria­sy, naj­mä ak majú nedos­ta­tok inej potra­vy, vedia sa však pus­tiť aj do rast­lín. Naj­roz­ší­re­nej­šie ampu­lá­rie rast­li­ny neže­rú. V akvá­riu svie­ti­me ume­lým svet­lom, dĺž­ka osvet­le­nia by mala byť taká ako v ich domo­vi­ne. Dôle­ži­té rov­na­ko je dodr­žia­vať pra­vi­del­nosť, 12 – 14 hodi­no­vý inter­val je nut­ný. Závi­sí od umiest­ne­nia, od toho či sme v tma­vej miest­nos­ti, aká je dĺž­ka den­né­ho svet­la a koľ­ko ho sln­ko posky­tu­je. Den­né svet­lo má inú kva­li­tu ako ume­lé svet­lo, dá sa mu iba pris­pô­so­biť. Dru­hy sú pris­pô­so­be­né rôz­ne­mu pro­stre­diu. Vod­né rast­li­ny, napo­kon rov­na­ko ako aj ich sucho­zem­ské prí­buz­né menia svoj meta­bo­liz­mus v závis­los­ti od strie­da­nia dňa a noci. Je to ich vlast­ný pri­ro­dze­ný bio­ryt­mus. Rast­li­ny cez deň pri­jí­ma­jú svet­lo, CO2, tvo­ria orga­nic­kú hmo­tu a ako ved­ľaj­ší pro­dukt tvo­ria kys­lík. Tej­to reak­cii vra­ví­me foto­syn­té­za.


I don’t recom­mend trans­p­lan­ting lar­ger mot­her plants fre­qu­en­tly. Plants can also be a sour­ce of food for fish, snails, etc., which is usu­al­ly unde­si­rab­le. Young suc­ti­on snails are often used to eli­mi­na­te algae. If they are small, they do the­ir job dili­gen­tly, but lar­ger ones tend to go after the plants ins­te­ad. Snails can also con­su­me algae, espe­cial­ly if they lack other food, but they can also tar­get plants. The most com­mon app­le snails do not eat plants. In the aqu­arium, we use arti­fi­cial light, and the length of illu­mi­na­ti­on should be simi­lar to the­ir natu­ral habi­tat. It’s equ­al­ly impor­tant to main­tain regu­la­ri­ty; a 12 – 14 hour inter­val is neces­sa­ry. It depends on the pla­ce­ment, whet­her we are in a dark room, the length of day­light, and how much sun­light is avai­lab­le. Natu­ral light has a dif­fe­rent quali­ty than arti­fi­cial light; it can only be adap­ted to. Spe­cies are adap­ted to dif­fe­rent envi­ron­ments. Water plants, just like the­ir ter­res­trial rela­ti­ves, chan­ge the­ir meta­bo­lism depen­ding on the alter­na­ti­on of day and night. It’s the­ir own natu­ral bio­r­hythm. During the day, plants absorb light, CO2, pro­du­ce orga­nic mat­ter, and as a by-​product, pro­du­ce oxy­gen. This pro­cess is cal­led photosynthesis.


Größe­re Mut­terpf­lan­zen soll­te man nicht häu­fig umset­zen. Pflan­zen kön­nen auch eine Nahrung­squ­el­le für Fis­che, Schnec­ken usw. sein, was jedoch in der Regel uner­wün­scht ist. Jun­ge Saug­schnec­ken wer­den oft zur Bese­i­ti­gung von Algen ein­ge­setzt. Wenn sie kle­in sind, erle­di­gen sie ihre Auf­ga­be gewis­sen­haft, aber größe­re gehen lie­ber an die Pflan­zen. Schnec­ken kön­nen auch Algen fres­sen, beson­ders wenn ihnen ande­re Nahrung fehlt, aber sie kön­nen auch Pflan­zen angre­i­fen. Die am wei­tes­ten verb­re­i­te­ten Apfel­schnec­ken fres­sen kei­ne Pflan­zen. Im Aqu­arium ver­wen­den wir künst­li­ches Licht, und die Bele­uch­tungs­dau­er soll­te ähn­lich wie in ihrem natür­li­chen Lebens­raum sein. Es ist eben­so wich­tig, die Regel­mä­ßig­ke­it ein­zu­hal­ten; ein Inter­vall von 12 – 14 Stun­den ist not­wen­dig. Es hängt von der Plat­zie­rung ab, ob wir uns in einem dunk­len Raum befin­den, wie lang das Tages­licht ist und wie viel Son­nen­licht ver­füg­bar ist. Natür­li­ches Licht hat eine ande­re Quali­tät als künst­li­ches Licht; es kann nur ange­passt wer­den. Arten sind an vers­chie­de­ne Umge­bun­gen ange­passt. Was­serpf­lan­zen ändern eben­so wie ihre ter­res­tris­chen Ver­wand­ten ihren Stof­fwech­sel je nach Wech­sel von Tag und Nacht. Es ist ihr eige­ner natür­li­cher Bio­r­hyth­mus. Tag­süber neh­men Pflan­zen Licht, CO2 auf, pro­du­zie­ren orga­nis­che Sub­stanz und pro­du­zie­ren als Neben­pro­dukt Sau­ers­toff. Die­ser Pro­zess wird Pho­to­synt­he­se genannt.


V noci naopak rast­li­ny kys­lík pri­jí­ma­jú – rast­li­ny dýcha­jú a vylu­ču­jú do vody CO2. Rast­li­ny však dýcha­jú aj cez deň, pre­vlá­da však prí­jem CO2. Vply­vom dýcha­nia rast­lín v noci – pro­duk­cie CO2 sa pH v akvá­riu zvy­šu­je. Kon­cen­trá­cia CO2 stú­pa s tvrdo­s­ťou vody, tep­lo­tou vody a kle­sá s pH. Medzi základ­né fun­kcie rast­lín pat­rí mine­ra­li­zá­cia hmo­ty. Det­rit je usa­de­ná vrstva odpa­du, výka­lov rýb, sli­má­kov apod., kto­ré je nut­né roz­lo­žiť. Ten­to pro­ces, kto­rý usku­toč­ňu­jú mik­ro­or­ga­niz­my, naj­mä bak­té­rie. Rast­li­ny hra­jú pri­tom dôle­ži­tú úlo­hu, pre­to­že nie­kto­ré lát­ky doká­žu odbú­ra­vať aj ony, ale v kaž­dom prí­pa­de už mine­ra­li­zo­va­né lát­ky sú zdro­jom výži­vy pre ne. Nie­kto­ré kore­ne tvo­ria podob­ne ako lis­ty (zele­né čas­ti rast­lín) kys­lík, no za nor­mál­nych pod­mie­nok kaž­dá rast­li­na tvo­rí malé množ­stvo kys­lí­ka, kto­ré napo­má­ha aerób­nej reduk­cii hmo­ty oko­lo nich. Nie­kto­ré dru­hy doká­žu obzvlášť dob­re odčer­pá­vať z vody živi­ny, kto­ré sú pre akva­ris­tu žia­da­né, napr. Ric­cia flu­itans je ide­ál­nym bio­lo­gic­kým pros­tried­kom na zní­že­nie hla­di­ny dusič­na­nov. Podob­ný­mi schop­nos­ťa­mi oplý­va Cera­top­hyl­lum demer­sum. Obdob­ne Ana­cha­ris den­sa efek­tív­ne odčer­pá­va z vody váp­nik. Tie­to lát­ky rast­li­ny via­žu do svo­jich ple­tív a začle­ňu­jú sa do ich fyzi­olo­gic­kých pocho­dov. Vzhľa­dom na to, že čas­to ide o lát­ky pre nás akva­ris­tov nie prí­liš víta­né, je táto schop­nosť cenná.


At night, on the other hand, plants absorb oxy­gen – plants res­pi­re and rele­a­se CO2 into the water. Howe­ver, plants also res­pi­re during the day, but CO2 upta­ke pre­vails. Due to the res­pi­ra­ti­on of plants at night – the pro­duc­ti­on of CO2, the pH in the aqu­arium inc­re­a­ses. The con­cen­tra­ti­on of CO2 rises with water hard­ness, water tem­pe­ra­tu­re, and dec­re­a­ses with pH. One of the basic func­ti­ons of plants is the mine­ra­li­za­ti­on of mat­ter. Det­ri­tus is a lay­er of sedi­ment com­po­sed of was­te, fish exc­re­ment, snails, etc., which needs to be bro­ken down. This pro­cess is car­ried out by mic­ro­or­ga­nisms, espe­cial­ly bac­te­ria. Plants play an impor­tant role in this pro­cess becau­se they can also bre­ak down some sub­stan­ces, but in any case, alre­a­dy mine­ra­li­zed sub­stan­ces are a sour­ce of nut­ri­ti­on for them. Some roots, like lea­ves (gre­en parts of plants), pro­du­ce oxy­gen, but under nor­mal con­di­ti­ons, each plant pro­du­ces a small amount of oxy­gen that con­tri­bu­tes to the aero­bic reduc­ti­on of mat­ter around them. Some spe­cies are par­ti­cu­lar­ly good at remo­ving nut­rients from the water, which are desi­red by aqu­arists, e.g., Ric­cia flu­itans is an ide­al bio­lo­gi­cal agent for redu­cing nit­ra­te levels. Simi­lar­ly, Cera­top­hyl­lum demer­sum posses­ses simi­lar abi­li­ties. Like­wi­se, Ana­cha­ris den­sa effec­ti­ve­ly remo­ves cal­cium from the water. Plants bind the­se sub­stan­ces into the­ir tis­su­es and incor­po­ra­te them into the­ir phy­si­olo­gi­cal pro­ces­ses. Sin­ce the­se sub­stan­ces are often unwel­co­me for us aqu­arists, this abi­li­ty is valuable.


Nachts neh­men Pflan­zen jedoch Sau­ers­toff auf – Pflan­zen atmen und geben CO2 ins Was­ser ab. Pflan­zen atmen jedoch auch tag­süber, aber die CO2-​Aufnahme über­wiegt. Aufg­rund der Atmung von Pflan­zen in der Nacht – der CO2-​Produktion ste­igt der pH-​Wert im Aqu­arium. Die Kon­zen­tra­ti­on von CO2 ste­igt mit der Was­ser­här­te, der Was­ser­tem­pe­ra­tur und sinkt mit dem pH-​Wert. Eine der grund­le­gen­den Funk­ti­onen von Pflan­zen ist die Mine­ra­li­sie­rung von Stof­fen. Det­ri­tus ist eine Schicht aus Sedi­men­ten, die aus Abfäl­len, Fis­chauss­che­i­dun­gen, Schnec­ken usw. bes­teht und abge­baut wer­den muss. Die­ser Pro­zess wird von Mik­ro­or­ga­nis­men, ins­be­son­de­re Bak­te­rien, durch­ge­fü­hrt. Pflan­zen spie­len dabei eine wich­ti­ge Rol­le, da sie auch eini­ge Sub­stan­zen abbau­en kön­nen, aber in jedem Fall bere­its mine­ra­li­sier­te Sub­stan­zen eine Nahrung­squ­el­le für sie sind. Eini­ge Wur­zeln, wie Blät­ter (grüne Tei­le von Pflan­zen), pro­du­zie­ren Sau­ers­toff, aber unter nor­ma­len Bedin­gun­gen pro­du­ziert jede Pflan­ze eine kle­i­ne Men­ge Sau­ers­toff, die zur aero­ben Reduk­ti­on von Stof­fen um sie herum beit­rägt. Eini­ge Arten sind beson­ders gut darin, Nährs­tof­fe aus dem Was­ser zu ent­fer­nen, die von Aqu­aria­nern gewün­scht wer­den, z.B. ist Ric­cia flu­itans ein ide­a­les bio­lo­gis­ches Mit­tel zur Redu­zie­rung des Nit­rat­ge­halts. Ähn­lich ver­hält es sich mit Cera­top­hyl­lum demer­sum. Eben­so ent­fernt Ana­cha­ris den­sa effek­tiv Cal­cium aus dem Was­ser. Pflan­zen bin­den die­se Sub­stan­zen in ihre Gewe­be und integ­rie­ren sie in ihre phy­si­olo­gis­chen Pro­zes­se. Da die­se Sub­stan­zen für uns Aqu­aria­ner oft uner­wün­scht sind, ist die­se Fähig­ke­it wertvoll.


Vplyv fil­tro­va­nia a naj­mä vzdu­cho­va­nia na rast rast­lín je viac-​menej nega­tív­ny. Nedá sa to jed­no­znač­ne pove­dať, ale fil­tro­va­nie, kto­ré čerí hla­di­nu, a teda aj vzdu­cho­va­nie je pre rast rast­lín nežia­du­ce, pre­to to nepre­há­ňaj­me. Udr­žia­vať akvá­ri­um cel­kom bez fil­trá­cie nechaj­me rad­šej na špe­cia­lis­tov, ja sám mám nie­koľ­ko takých akvá­rií. Rast­li­ny však môžu meniť aj far­bu. Vod­né rast­li­ny, ostat­ne podob­ne ako ich sucho­zem­ské prí­buz­né, oplý­va­jú vďa­ka chlo­ro­fy­lu pre­dov­šet­kým zele­ným sfar­be­ním. Avšak aj jeden jedi­nec môže vyka­zo­vať v prie­be­hu onto­ge­né­zy zme­ny. Fia­lo­vá far­ba inak zele­ných rast­lín má prí­či­nu vo veľ­kom množ­stve svet­la, živín.


The influ­en­ce of fil­tra­ti­on and espe­cial­ly aera­ti­on on plant gro­wth is more or less nega­ti­ve. It can­not be said defi­ni­ti­ve­ly, but fil­tra­ti­on that dra­ws from the sur­fa­ce, and thus aera­ti­on as well, is unde­si­rab­le for plant gro­wth, so let’s not over­do it. Let’s lea­ve the task of kee­ping an aqu­arium com­ple­te­ly wit­hout fil­tra­ti­on to the spe­cia­lists; I myself have seve­ral such aqu­ariums. Howe­ver, plants can also chan­ge color. Aqu­atic plants, much like the­ir ter­res­trial rela­ti­ves, pri­ma­ri­ly exhi­bit gre­en colo­ra­ti­on due to chlo­rop­hyll. Howe­ver, even an indi­vi­du­al can under­go chan­ges during onto­ge­ny. The purp­le color of other­wi­se gre­en plants is due to a lar­ge amount of light and nutrients.


Der Ein­fluss von Fil­tra­ti­on und ins­be­son­de­re Belüf­tung auf das Pflan­zen­wachs­tum ist mehr oder weni­ger nega­tiv. Es lässt sich nicht ein­de­utig sagen, aber Fil­tra­ti­on, die von der Oberf­lä­che absaugt, und somit auch Belüf­tung, sind für das Pflan­zen­wachs­tum uner­wün­scht, daher soll­ten wir es nicht über­tre­i­ben. Das Hal­ten eines Aqu­ariums kom­plett ohne Fil­tra­ti­on soll­ten wir lie­ber den Fach­le­uten über­las­sen; Ich selbst habe meh­re­re sol­cher Aqu­arien. Pflan­zen kön­nen jedoch auch ihre Far­be ändern. Was­serpf­lan­zen, ähn­lich wie ihre ter­res­tris­chen Ver­wand­ten, zei­gen vor allem durch Chlo­rop­hyll eine grüne Fär­bung. Ein­zel­ne Exem­pla­re kön­nen jedoch wäh­rend der Onto­ge­ne­se Verän­de­run­gen aufwe­i­sen. Die violet­te Far­be ansons­ten grüner Pflan­zen ist auf eine gro­ße Men­ge Licht und Nährs­tof­fe zurückzuführen.


Sade­nie rastlín

V prvom rade by sme mali dodr­žať, že veľ­ké jedin­ce (dru­hy) sadí­me doza­du a men­šie dopre­du. Vyva­ruj­me sa tiež sade­niu pres­ne do stre­du nádr­že. Rov­na­ko s citom nará­baj­me so symet­ri­ou. Kore­ne skrá­ti­me ostrý­mi nož­nič­ka­mi na 12 cm (nie u rodu Anu­bias, Cryp­to­co­ry­ne) a pri sade­ní sa vyva­ruj­me ich poško­de­niu. Všet­ky kore­ne by mali byť v dne, žiad­ne trčia­ce kore­ne nie sú žia­du­ce. Pri nie­kto­rý rast­li­nách, kto­ré majú kore­ňo­vý sys­tém dob­re vyvi­nu­tý, napr. Echi­no­do­rus, zasa­de­nú rast­li­nu po zasa­de­ní mier­ne povy­tiah­ne­me – kore­ňo­vý krčok by mal troš­ku vyčnie­vať. V prí­pa­de odrez­kov je vhod­né, aby sme zasa­di­li rast­li­nu tak, aby sme nesa­di­li holú ston­ku, ale aby doslo­va spod­né lis­ty boli zafi­xo­va­né do dna. Vod­ná rast­li­ny tak zís­ka opo­ru, bude mať ove­ľa lep­šiu stav­bu. Plá­va­jú­ce rast­li­ny hla­di­ny Lim­no­bium, Pis­tia, Ric­cia, Sal­vi­nia voľ­ne pokla­dá­me na hla­di­nu, iné plá­va­jú­ce rast­li­ny voľ­ne hodí­me do vody. Nie­kto­ré z nich sú schop­né zako­re­niť, avšak nie dlho­do­bo. Ric­cia napr. sa dá cel­kom efekt­ne pou­žiť ako kobe­rec na dno. Keď­že sama ma ten­den­ciu vyplá­vať na hla­di­nu, je nut­né ju neja­ko zachy­tiť – napr. o plo­ché kame­ne. Mic­ro­so­rium, Anu­bias sa pri­pev­ňu­jú ku dre­vu, na fil­ter. Najv­hod­nej­šia na to je sple­ta­ná šnú­ra z rybár­ske­ho obcho­du. Ak kúpi­me rast­li­ny v obcho­de, prav­de­po­dob­ne budú zasa­de­né v koší­koch a v mine­rál­nej vate. Tie­to sa do akvá­ria neho­dia, naj­mä nie skal­ná vata, pre­to vod­né rast­li­ny vybe­rie­me z koší­kov a zba­ví­me ich pre­dov­šet­kým mine­rál­nej vaty. Výži­va rast­lín, hno­je­nie Rast­li­ny sa zís­ka­va­jú ener­giu via­ce­rý­mi spô­sob­mi. Ich pri­ro­dze­ným zdro­jom ener­gie je CO2 oxid uhli­či­týsvet­lo. Sta­čí si spo­me­núť na foto­syn­té­zu zo ško­ly. Ak majú rast­li­ny dosta­tok CO2, nedo­ká­žu ho zužit­ko­vať pri nedos­tat­ku svet­la. Ak rast­li­ny majú dosta­tok svet­la, pri defi­ci­te CO2 ho nedo­ká­žu dosta­toč­ne využiť. Ak však sú obe hod­no­ty opti­mál­ne, je to veľ­ký pred­po­klad pre veľ­mi úspeš­ný rast našich rast­lín. V pora­dí dôle­ži­tos­ti by som svet­lo posta­vil pred CO2. Pre úspeš­ný rast rast­lín tre­ba kva­lit­né osvet­le­nie.


Plan­ting of plants

First of all, we should keep in mind that lar­ge spe­ci­mens (spe­cies) should be plan­ted in the back and smal­ler ones in the front. Also, let’s avo­id plan­ting exact­ly in the cen­ter of the tank. Like­wi­se, hand­le sym­met­ry with care. Trim the roots with sharp scis­sors to 1 – 2 cm (not for the genus Anu­bias, Cryp­to­co­ry­ne), and when plan­ting, avo­id dama­ging them. All roots should be in the sub­stra­te; no expo­sed roots are desi­rab­le. For some plants with a well-​developed root sys­tem, such as Echi­no­do­rus, gen­tly lift the plan­ted plant after plan­ting – the root col­lar should prot­ru­de slight­ly. In the case of cut­tings, it is advi­sab­le to plant the plant so that we do not plant a bare stem, but so that the lower lea­ves are lite­ral­ly fixed into the sub­stra­te. Water plants will thus gain sup­port and have a much bet­ter struc­tu­re. Flo­ating plants such as Lim­no­bium, Pis­tia, Ric­cia, Sal­vi­nia are fre­e­ly pla­ced on the sur­fa­ce, whi­le other flo­ating plants are sim­ply drop­ped into the water. Some of them are capab­le of rooting, but not long-​term. For exam­ple, Ric­cia can be quite effec­ti­ve­ly used as a car­pet on the bot­tom. Sin­ce it tends to flo­at to the sur­fa­ce, it is neces­sa­ry to some­how anchor it – for exam­ple, with flat sto­nes. Mic­ro­so­rium, Anu­bias are atta­ched to wood, to the fil­ter. The most suitab­le for this is a brai­ded string from a fis­hing shop. If we buy plants in a sto­re, they will pro­bab­ly be plan­ted in bas­kets and mine­ral wool. The­se are not suitab­le for the aqu­arium, espe­cial­ly not rock wool, so we remo­ve water plants from the bas­kets and remo­ve them from mine­ral wool. Plants obtain ener­gy in seve­ral ways. The­ir natu­ral sour­ce of ener­gy is CO2 – car­bon dioxi­de and light. Just remem­ber pho­to­synt­he­sis from scho­ol. If plants have enough CO2, they can­not uti­li­ze it in the absen­ce of light. If plants have enough light, in the absen­ce of CO2, they can­not uti­li­ze it suf­fi­cien­tly. Howe­ver, if both valu­es are opti­mal, it is a gre­at pre­re­qu­isi­te for the very suc­cess­ful gro­wth of our plants. In terms of impor­tan­ce, I would pla­ce light befo­re CO2. Quali­ty ligh­ting is essen­tial for suc­cess­ful plant growth.


Pflan­zung von Pflanzen

Zunächst soll­ten wir beach­ten, dass gro­ße Exem­pla­re (Arten) hin­ten und kle­i­ne­re vor­ne gepf­lanzt wer­den soll­ten. Ver­me­i­den wir auch das Pflan­zen genau in die Mit­te des Tanks. Gehen wir auch mit Sym­met­rie sor­gsam um. Schne­i­den Sie die Wur­zeln mit schar­fen Sche­ren auf 1 – 2 cm (nicht für die Gat­tung Anu­bias, Cryp­to­co­ry­ne), und beim Pflan­zen ver­me­i­den Sie es, sie zu bes­chä­di­gen. Alle Wur­zeln soll­ten im Sub­strat sein; kei­ne fre­i­lie­gen­den Wur­zeln sind erwün­scht. Für eini­ge Pflan­zen mit gut ent­wic­kel­tem Wur­zel­sys­tem, wie Echi­no­do­rus, heben Sie die gepf­lanz­te Pflan­ze nach dem Pflan­zen vor­sich­tig an – der Wur­zelk­ra­gen soll­te leicht heraus­ra­gen. Im Fall von Steck­lin­gen ist es rat­sam, die Pflan­ze so zu pflan­zen, dass wir kei­nen nackten Stän­gel pflan­zen, son­dern dass die unte­ren Blät­ter buchs­täb­lich ins Sub­strat ein­ge­bet­tet sind. Was­serpf­lan­zen gewin­nen so Unters­tüt­zung und haben eine viel bes­se­re Struk­tur. Sch­wim­men­de Pflan­zen wie Lim­no­bium, Pis­tia, Ric­cia, Sal­vi­nia wer­den frei auf die Oberf­lä­che gelegt, wäh­rend ande­re Sch­wimmpf­lan­zen ein­fach ins Was­ser gewor­fen wer­den. Eini­ge von ihnen sind in der Lage zu wur­zeln, aber nicht langf­ris­tig. Zum Beis­piel kann Ric­cia recht effek­tiv als Tep­pich auf dem Boden ver­wen­det wer­den. Da es dazu neigt, an die Oberf­lä­che zu ste­i­gen, ist es not­wen­dig, es irgen­dwie zu veran­kern – zum Beis­piel mit fla­chen Ste­i­nen. Mic­ro­so­rium, Anu­bias wer­den an Holz, an den Fil­ter befes­tigt. Am bes­ten gee­ig­net dafür ist ein gef­loch­te­ner Faden aus einem Angel­ges­chäft. Wenn wir Pflan­zen im Laden kau­fen, wer­den sie wahrs­che­in­lich in Kör­ben und Mine­ra­lwol­le gepf­lanzt sein. Die­se sind für das Aqu­arium nicht gee­ig­net, ins­be­son­de­re kei­ne Ste­in­wol­le, also neh­men wir Was­serpf­lan­zen aus den Kör­ben und ent­fer­nen sie von Mine­ra­lwol­le. Pflan­zen erhal­ten Ener­gie auf vers­chie­de­ne Arten. Ihre natür­li­che Ener­gie­qu­el­le ist CO2 – Koh­len­di­oxid und Licht. Erin­nern Sie sich ein­fach an die Pho­to­synt­he­se aus der Schu­le. Wenn Pflan­zen genügend CO2 haben, kön­nen sie es im Feh­len von Licht nicht nut­zen. Wenn Pflan­zen genügend Licht haben, kön­nen sie es im Feh­len von CO2 nicht aus­re­i­chend nut­zen. Wenn jedoch bei­de Wer­te opti­mal sind, ist dies eine gro­ßar­ti­ge Voraus­set­zung für das sehr erfolg­re­i­che Wachs­tum unse­rer Pflan­zen. Ich wür­de Licht vor CO2 als wich­tig eins­tu­fen. Eine quali­ta­tiv hoch­wer­ti­ge Bele­uch­tung ist ents­che­i­dend für das erfolg­re­i­che Pflanzenwachstum.


V prí­pa­de, že vidí­me pro­duk­ciu kys­lí­ka rast­li­na­mi – tvo­ria­ce sa bub­lin­ky čerstvé­ho kys­lí­ka, kon­cen­trá­cia kys­lí­ka v bun­ke stúp­la nad 40 mg/​l. Pre úspeš­nej­ší rast rast­lín je veľa krát vhod­né siah­nuť po dopl­ne­ní výži­vy. Ku zvý­še­né­mu pri­jí­ma­niu živín – ener­gie pris­pie­va aj prú­de­nie vody. Výži­vu rast­li­ny dostá­va­jú aj vo for­me odpad­ných látok – výka­lov rýb. Aj nádr­že tzv. holand­ské­ho typu (rast­lin­né) čas­to krát obsa­hu­jú neja­ké ryby, kto­ré slú­žia prá­ve na neus­tá­le obo­ha­co­va­nie živi­na­mi. V tom­to prí­pa­de skôr tými sto­po­vý­mi. V prí­pa­de, že sa vo vode nachá­dza nedos­ta­tok CO2 a rast­li­ny doká­žu z hyd­ro­ge­nuh­li­či­ta­nov ten­to zís­kať, môže dôjsť ku bio­gén­ne­mu odváp­ne­niu – vyzrá­ža­nie neroz­pust­né­ho uhli­či­ta­nu vápe­na­té­ho na povr­chu lis­tov. Pri­jí­ma­nie hyd­ro­ge­nuh­li­či­ta­nov je však ener­ge­tic­ky nároč­nej­šie. Akvá­ri­um má čas­to dosta­tok živín vo for­me exkre­men­tov rýb. Humí­no­vé kyse­li­ny sú lát­ky, kto­ré sa naj­mä v prí­ro­de bež­ne nachá­dza­jú vo vode. Sú to pro­duk­ty lát­ko­vej pre­me­ny dre­va, pôdy, lis­tov, čas­tí rast­lín. Z hľa­dis­ka využi­tia pre akva­ris­ti­ku je zau­jí­ma­vé pou­ži­tie dre­valis­tov, prí­pad­ne šišiek, škru­pín ore­chov apod. Sú nesmier­ne dôle­ži­té pre rast­li­ny, pre­to­že doká­žu byť ener­ge­tic­kým mos­tom medzi zdro­jom výži­vy a rast­li­nou. Vďa­ka tým­to orga­nic­kým kom­ple­xom doká­že rast­li­na zís­kať to, čo je prí­ro­da ponú­ka. Je to podob­ná fun­kcia ako majú bio­f­la­vo­no­idy pre vita­mín C. Dar­mo bude­me pri­jí­mať mega­dáv­ky vita­mí­nov ak ich telo nedo­ká­že zužit­ko­vať. Humí­no­vé kyse­li­ny sa tvo­ria v prí­ro­de v pôde. Žele­zo vo vode za nor­mál­nych pod­mie­nok veľ­mi rých­lo oxi­du­je na for­mu nevy­uži­teľ­nú pre rastliny.


If we obser­ve oxy­gen pro­duc­ti­on by plants – the for­ma­ti­on of bubb­les of fresh oxy­gen, the con­cen­tra­ti­on of oxy­gen in the cell has risen abo­ve 40 mg/​l. For more suc­cess­ful plant gro­wth, it is often advi­sab­le to supp­le­ment nut­rients. Inc­re­a­sed nut­rient upta­ke – ener­gy is also con­tri­bu­ted by water flow. Plants also rece­i­ve nut­rients in the form of was­te mate­rials – fish exc­re­ment. Even tanks of the so-​called Dutch type (plan­ted) often con­tain some fish, which ser­ve to cons­tan­tly enrich the nut­rients. In this case, more with tra­ce ele­ments. If the­re is a lack of CO2 in the water and plants are able to obtain it from bicar­bo­na­tes, bio­ge­nic decal­ci­fi­ca­ti­on can occur – the pre­ci­pi­ta­ti­on of inso­lub­le cal­cium car­bo­na­te on the sur­fa­ce of lea­ves. Howe­ver, the upta­ke of bicar­bo­na­tes is more energy-​intensive. Aqu­ariums often have enough nut­rients in the form of fish exc­re­ment. Humic acids are sub­stan­ces that are com­mon­ly found in water in natu­re. They are pro­ducts of the trans­for­ma­ti­on of wood, soil, lea­ves, plant parts. From the point of view of use for aqu­aris­tics, the use of wood and lea­ves, or cones, nut shells, etc., is inte­res­ting. They are extre­me­ly impor­tant for plants becau­se they can be an ener­gy brid­ge bet­we­en a sour­ce of nut­ri­ti­on and a plant. Thanks to the­se orga­nic com­ple­xes, the plant can obtain what natu­re offers. It’s a simi­lar func­ti­on to what bio­f­la­vo­no­ids have for vita­min C. It’s use­less to take mega­do­ses of vita­mins if the body can’t uti­li­ze them. Humic acids are for­med natu­ral­ly in the soil. Iron in water under nor­mal con­di­ti­ons oxi­di­zes very quick­ly into a form unu­sab­le for plants.


Wenn wir die Sau­ers­toff­pro­duk­ti­on durch Pflan­zen beobach­ten – die Bil­dung von Bla­sen fris­chen Sau­ers­toffs -, ist die Kon­zen­tra­ti­on von Sau­ers­toff in der Zel­le auf über 40 mg/​l ges­tie­gen. Für ein erfolg­re­i­che­res Pflan­zen­wachs­tum ist es oft rat­sam, Nährs­tof­fe zu ergän­zen. Eine erhöh­te Nährs­tof­fauf­nah­me – Ener­gie wird auch durch den Was­serf­luss bei­get­ra­gen. Pflan­zen erhal­ten auch Nährs­tof­fe in Form von Abfall­ma­te­ria­lien – Fis­chauss­che­i­dun­gen. Selbst Bec­ken des soge­nann­ten hol­län­dis­chen Typs (bepf­lanzt) ent­hal­ten oft eini­ge Fis­che, die dazu die­nen, die Nährs­tof­fe stän­dig anzu­re­i­chern. In die­sem Fall eher mit Spu­re­ne­le­men­ten. Wenn es im Was­ser an CO2 man­gelt und Pflan­zen es aus Hyd­ro­gen­car­bo­na­ten gewin­nen kön­nen, kann es zu bio­ge­nem Ent­kal­ken kom­men – der Aus­fäl­lung von unlös­li­chem Cal­cium­car­bo­nat auf der Oberf­lä­che der Blät­ter. Die Auf­nah­me von Hyd­ro­gen­car­bo­na­ten ist jedoch ener­gie­au­fwen­di­ger. Aqu­arien haben oft genug Nährs­tof­fe in Form von Fis­chauss­che­i­dun­gen. Humin­sä­u­ren sind Sub­stan­zen, die in der Natur im Was­ser häu­fig vor­kom­men. Sie sind Pro­duk­te der Umwand­lung von Holz, Boden, Blät­tern, Pflan­zen­te­i­len. Vom Stand­punkt der Ver­wen­dung für die Aqu­aris­tik ist die Ver­wen­dung von Holz und Blät­tern oder Kegeln, Nusss­cha­len usw. inte­res­sant. Sie sind äußerst wich­tig für Pflan­zen, weil sie eine Ener­gieb­rüc­ke zwis­chen einer Nahrung­squ­el­le und einer Pflan­ze sein kön­nen. Dank die­ser orga­nis­chen Kom­ple­xe kann die Pflan­ze das bekom­men, was die Natur bie­tet. Es ist eine ähn­li­che Funk­ti­on wie die von Bio­f­la­vo­no­iden für Vita­min C. Es ist sinn­los, Mega­do­sen von Vita­mi­nen ein­zu­neh­men, wenn der Kör­per sie nicht nut­zen kann. Humin­sä­u­ren ents­te­hen natür­lich im Boden. Eisen im Was­ser oxi­diert unter nor­ma­len Bedin­gun­gen sehr schnell in eine Form, die für Pflan­zen unb­rauch­bar ist.


Fil­ter je doslo­va požie­rač žele­za. Ak sa však via­že v che­lá­toch, v orga­nic­kých kom­ple­xoch, je prí­stup­né rast­li­nám. Ide o Fe2+, aj Fe3+, a prá­ve humí­no­vé kyse­li­ny sú sub­strá­tom, v kto­rom sa môže žele­zo uplat­niť pre rast­li­ny. Nedos­ta­tok žele­za spô­so­bu­je chlo­ró­zu, kto­rá sa pre­ja­vu­je sla­bým ple­ti­vom – sklo­vi­tý­mi lis­ta­mi, žlt­nu­tím naj­mä od okra­jov podob­ne ako aj u sucho­zem­ských rast­lín. Mine­rá­ly a sto­po­vé lát­ky sú zís­ka­va­né pri­ro­dze­nou ces­tou z vody a z det­ri­tu. Sto­po­vé lát­ky sú lát­ky, prv­ky, kto­ré nie sú nevy­hnut­né vo veľ­kom množ­stve, ale iba v níz­kych (sto­po­vých) kon­cen­trá­ciách – napr. Zn, Mn, K, Cu. Nie­kto­ré z tých­to prv­kov sú vo vyš­ších kon­cen­trá­ciách škod­li­vé až jedo­va­té. Det­rit je hmo­ta, tvo­re­ná mik­ro­or­ga­niz­ma­mi orga­nic­kou hmo­tou odum­re­tých rast­lín, výka­lov rýb apod. V prí­pa­de rast­lin­né­ho akvá­ria je čas­to kame­ňom úra­zu prá­ve obsah mine­rál­nych látok. Naj­lep­ší spô­sob ako toho dosiah­nuť sú ryby. Mik­ro­or­ga­niz­my – naj­mä nit­ri­fi­kač­né a denit­ri­fi­kač­né bak­té­rie roz­kla­da­jú hmo­tu na lát­ky využi­teľ­né rast­li­na­mi. Rast­li­ny ten­to zdroj ener­gie využí­va­jú naj­mä pomo­cou kore­ňov. Nie­kto­ré sú schop­né via­zať viac NO3 – dusič­na­nov napr. Cera­top­hyl­lum demer­sum, Ric­cia flu­itans. Veľa z nás má zdro­jo­vú vodu obsa­hu­jú­cu vyso­ké množ­stvo dusič­na­nov. Nor­ma pit­nej vody o maxi­mál­nej hod­no­te je dosť vyso­ká pre akva­ris­ti­ku, nevhod­né naj­mä pre nové akvá­ri­um. Vďa­ka pomer­ne vyso­ké­mu obsa­hu dusí­ka potom môže ľah­šie dôjsť ku tvor­be toxic­ké­ho amo­nia­ku.


The fil­ter is lite­ral­ly an iron eater. Howe­ver, when it binds in che­la­tes, in orga­nic com­ple­xes, it beco­mes acces­sib­le to plants. This inc­lu­des Fe2+ and Fe3+, and it is pre­ci­se­ly humic acids that ser­ve as a sub­stra­te whe­re iron can be uti­li­zed by plants. Iron defi­cien­cy cau­ses chlo­ro­sis, cha­rac­te­ri­zed by weak tis­su­es – glas­sy lea­ves, yel­lo­wing espe­cial­ly from the edges, simi­lar to ter­res­trial plants. Mine­rals and tra­ce ele­ments are obtai­ned natu­ral­ly from water and det­ri­tus. Tra­ce ele­ments are sub­stan­ces, ele­ments that are not essen­tial in lar­ge quan­ti­ties, but only in low (tra­ce) con­cen­tra­ti­ons – e.g., Zn, Mn, K, Cu. Some of the­se ele­ments can be harm­ful or even toxic in hig­her con­cen­tra­ti­ons. Det­ri­tus is mat­ter com­po­sed of orga­nic mat­ter from dead plants, fish exc­re­ment, etc. In the case of a plan­ted aqu­arium, the mine­ral con­tent is often the stum­bling block. The best way to achie­ve this is through fish. Mic­ro­or­ga­nisms – espe­cial­ly nit­ri­fy­ing and denit­ri­fy­ing bac­te­ria – bre­ak down mat­ter into sub­stan­ces that plants can use. Plants pri­ma­ri­ly uti­li­ze this ener­gy sour­ce through the­ir roots. Some are capab­le of bin­ding more NO3 – nit­ra­tes, for exam­ple, Cera­top­hyl­lum demer­sum, Ric­cia flu­itans. Many of us have sour­ce water con­tai­ning high levels of nit­ra­tes. The maxi­mum value in drin­king water stan­dards is quite high for aqu­ariums, espe­cial­ly unsu­itab­le for new ones. Due to the rela­ti­ve­ly high nit­ro­gen con­tent, it can lead more easi­ly to the for­ma­ti­on of toxic ammonia.


Der Fil­ter ist buchs­täb­lich ein Eisen­fres­ser. Wenn es jedoch in Che­la­ten, in orga­nis­chen Kom­ple­xen gebun­den ist, wird es für Pflan­zen zugän­glich. Dies umfasst Fe2+ und Fe3+, und genau Humin­sä­u­ren die­nen als Sub­strat, auf dem Eisen von Pflan­zen genutzt wer­den kann. Eisen­man­gel führt zu Chlo­ro­se, gekenn­ze­ich­net durch sch­wa­che Gewe­be – gla­si­ge Blät­ter, Ver­gil­bung beson­ders an den Rän­dern, ähn­lich wie bei ter­res­tris­chen Pflan­zen. Mine­ra­lien und Spu­re­ne­le­men­te wer­den auf natür­li­che Wei­se aus Was­ser und Det­ri­tus gewon­nen. Spu­re­ne­le­men­te sind Sub­stan­zen, Ele­men­te, die nicht in gro­ßen Men­gen, son­dern nur in nied­ri­gen (Spuren-)Konzentrationen not­wen­dig sind – z. B. Zn, Mn, K, Cu. Eini­ge die­ser Ele­men­te kön­nen in höhe­ren Kon­zen­tra­ti­onen schäd­lich oder sogar gif­tig sein. Det­ri­tus bes­teht aus orga­nis­chem Mate­rial aus abges­tor­be­nen Pflan­zen, Fis­chauss­che­i­dun­gen usw. Im Fal­le eines bepf­lanz­ten Aqu­ariums ist der Mine­ral­ge­halt oft der Stol­pers­te­in. Der bes­te Weg, dies zu erre­i­chen, sind Fis­che. Mik­ro­or­ga­nis­men – ins­be­son­de­re nit­ri­fi­zie­ren­de und denit­ri­fi­zie­ren­de Bak­te­rien – zer­set­zen Mate­rie in Sub­stan­zen, die Pflan­zen nut­zen kön­nen. Pflan­zen nut­zen die­se Ener­gie­qu­el­le haupt­säch­lich über ihre Wur­zeln. Eini­ge sind in der Lage, mehr NO3 – Nit­ra­te zu bin­den, zum Beis­piel Cera­top­hyl­lum demer­sum, Ric­cia flu­itans. Vie­le von uns haben Quel­lwas­ser mit hohen Nit­rat­ge­hal­ten. Der Höchst­wert in den Trink­was­sers­tan­dards ist für Aqu­arien recht hoch, beson­ders unge­e­ig­net für neue. Aufg­rund des rela­tiv hohen Sticks­toff­ge­halts kann es leich­ter zur Bil­dung von gif­ti­gem Ammo­niak führen.


Cyk­lus dusí­ka trvá nie­čo vyše mesia­ca, tak­že dusič­na­no­vý ani­ón pri­da­ný dnes putu­je eko­sys­té­mom akvá­ria viac ako mesiac, kým ho opus­tí. Denit­ri­fi­kač­né a nit­ri­fi­kač­né pro­ce­sy sú pomer­ne zlo­ži­té, zau­jí­ma­vé aj pre lai­ka je snáď fakt, že sa ako pro­dukt tých­to reak­cií tvo­rí aj plyn­ný dusík N2. Ten samoz­rej­me uni­ká do atmo­sfé­ry – von z nádr­že. Denit­ri­fi­kač­né bak­té­rie sa nachá­dza­jú vo fil­tri. Tak ako píšem v člán­ku o fil­tro­va­ní, je nevhod­né fil­trač­né vlož­ky pod­ro­bo­vať tečú­cej vode z bež­né­ho vodo­vo­du. Pre­to, aby sme neza­bi­li naše roz­vi­nu­té bak­té­rie je vhod­nej­šie umý­vať moli­tan vo vode neob­sa­hu­jú­cej chlór a ostat­né ply­ny pou­ží­va­né vo vodo­vod­nej sie­ti. Na trhu exis­tu­jú­ce pro­duk­ty, kto­ré obsa­hu­jú bak­té­rie, kto­ré sa pri­dá­va­jú do fil­tra. Na trhu sú dostup­né rôz­ne pro­duk­ty hno­jív a výži­vo­vých dopl­n­kov pre rast­li­ny. Neod­po­rú­ča sa kom­bi­no­vať hno­ji­vá ani rôz­nych firiem ani výrob­kov jed­nej fir­my. Mecha­nic­ky zachy­te­né čas­ti z fil­tra pou­ží­vam ako hno­ji­vo aj do kve­ti­ná­čov sucho­zem­ských rast­lín. Fil­ter ako oxi­dant oby­čaj­ne obsa­hu­je množ­stvo látok, hod­not­né je naj­mä žele­zo, kto­ré je bal­za­mom pre čas­to chu­dob­né pôdy v črep­ní­koch. Táto hmo­ta, je okrem toho tak­po­ve­diac natrá­ve­ná, tak­že sa v pôde pomer­ne rých­lo rozkladá.


The nit­ro­gen cyc­le takes a litt­le over a month, so the nit­ra­te ani­on added today tra­vels through the aqu­arium eco­sys­tem for more than a month befo­re it lea­ves. Denit­ri­fi­ca­ti­on and nit­ri­fi­ca­ti­on pro­ces­ses are quite com­plex. An inte­res­ting fact even for a lay­per­son is that gase­ous nit­ro­gen N2 is also pro­du­ced as a pro­duct of the­se reac­ti­ons. This nit­ro­gen natu­ral­ly esca­pes into the atmo­sp­he­re – out of the tank. Denit­ri­fy­ing bac­te­ria are found in the fil­ter. As I wro­te in the artic­le about fil­tra­ti­on, it is not suitab­le to sub­ject fil­ter media to flo­wing water from the regu­lar water supp­ly. The­re­fo­re, to avo­id kil­ling our estab­lis­hed bac­te­ria, it is bet­ter to wash the foam in water wit­hout chlo­ri­ne and other gases used in the water supp­ly sys­tem. The­re are pro­ducts avai­lab­le on the mar­ket con­tai­ning bac­te­ria that are added to the fil­ter. Vari­ous fer­ti­li­zer pro­ducts and nut­ri­ti­onal supp­le­ments for plants are avai­lab­le on the mar­ket. It is not recom­men­ded to com­bi­ne fer­ti­li­zers from dif­fe­rent com­pa­nies or pro­ducts from one com­pa­ny. I use mecha­ni­cal­ly trap­ped par­tic­les from the fil­ter as fer­ti­li­zer for potted ter­res­trial plants. The fil­ter, as an oxi­dant, usu­al­ly con­tains a lot of sub­stan­ces, with iron being par­ti­cu­lar­ly valu­ab­le, which acts as a balm for often nutrient-​poor soils in pots. This mate­rial is, more­over, so to spe­ak, diges­ted, so it decom­po­ses rela­ti­ve­ly quick­ly in the soil.


Der Sticks­toffk­re­is­lauf dau­ert etwas mehr als einen Monat, sodass das heute zuge­ge­be­ne Nitrat-​Anion mehr als einen Monat lang durch das Aquarium-​Ökosystem wan­dert, bevor es es ver­lässt. Die Pro­zes­se der Denit­ri­fi­ka­ti­on und Nit­ri­fi­ka­ti­on sind ziem­lich kom­plex. Eine inte­res­san­te Tat­sa­che auch für Laien ist, dass als Pro­dukt die­ser Reak­ti­onen auch gas­för­mi­ger Sticks­toff N2 ents­teht. Die­ser Sticks­toff ent­we­icht natür­lich in die Atmo­sp­hä­re – aus dem Bec­ken heraus. Denit­ri­fi­zie­ren­de Bak­te­rien befin­den sich im Fil­ter. Wie ich in dem Arti­kel über die Fil­tra­ti­on sch­rieb, ist es nicht rat­sam, Fil­ter­me­dien dem flie­ßen­den Was­ser aus der nor­ma­len Was­ser­ver­sor­gung aus­zu­set­zen. Daher ist es bes­ser, um unse­re etab­lier­ten Bak­te­rien nicht zu töten, den Sch­wamm in Was­ser ohne Chlor und ande­re Gase, die im Was­ser­ver­sor­gungs­sys­tem ver­wen­det wer­den, zu was­chen. Es gibt Pro­duk­te auf dem Mar­kt, die Bak­te­rien ent­hal­ten, die dem Fil­ter zuge­setzt wer­den. Auf dem Mar­kt sind vers­chie­de­ne Dün­ger­pro­duk­te und Nahrung­ser­gän­zungs­mit­tel für Pflan­zen erhält­lich. Es wird nicht emp­foh­len, Dün­ger vers­chie­de­ner Unter­neh­men oder Pro­duk­te eines Unter­neh­mens zu kom­bi­nie­ren. Ich ver­wen­de mecha­nisch ein­ge­fan­ge­ne Par­ti­kel aus dem Fil­ter als Dün­ger für Topfpf­lan­zen. Der Fil­ter ent­hält als Oxi­da­ti­ons­mit­tel in der Regel vie­le Sub­stan­zen, wobei Eisen beson­ders wer­tvoll ist, das als Bal­sam für oft nährs­tof­far­me Böden in Töp­fen wir­kt. Die­ses Mate­rial wird außer­dem sozu­sa­gen ver­daut, sodass es sich im Boden rela­tiv schnell zersetzt.


Raše­li­na zni­žu­je pH aj tvrdo­sť vody, vode posky­tu­je humí­no­vé kyse­li­ny a iné orga­nic­ké lát­ky. PMDD je sve­to­vo veľ­mi roz­ší­re­né tak­po­ve­diac neko­merč­né hno­ji­vo. Mie­ša sa zo síra­nu dra­sel­né­ho, hep­ta­hyd­rá­tu síra­nu horeč­na­té­ho, dusič­na­nu dra­sel­né­ho a sto­po­vých látok: B, Ca, Cu, Fe, Mn, Mo, Zn, kto­ré sú vo for­me orga­nic­ké­ho kom­ple­xu. Je to vhod­ná kom­bi­ná­cia, v kto­rej sú sto­po­vé lát­ky asi naj­dô­le­ži­tej­šie. CO2 ne pri­dá­vam pomo­cou zná­me­ho pro­ce­su kva­se­nia. Sta­čí však na to fľa­ša, do kto­rej nale­je­me tak­mer po vrch vodu, pri­dá­me drož­die (kvas­ni­ce) a cukor. Vodu na začia­tok odpo­rú­čam tep­lej­šiu (oko­lo 35°C). Fľa­šu uzat­vo­rím vrch­ná­kom, v kto­rom mám otvor pre hadič­ku, kto­rá na dru­hom kon­ci kon­čí v akvá­riu, kde je zakon­če­ná vzdu­cho­va­cím kame­ňom, ale­bo lipo­vým driev­kom. Pou­žiť sa dá úspeš­ne aj ciga­re­to­vý fil­ter. Prí­pad­ne hadič­ka kon­čí v akvá­ri­ovom fil­tri, cez kto­rý sa roz­stre­ku­je do vody. Taký­to dáv­ko­vač CO2 doká­že pro­du­ko­vať 35 týž­dňov oxid uhli­či­tý. Má to však chy­bu v tom, že nie je ošet­re­ný pro­ti náh­le­mu vzo­stu­pu pro­duk­cie CO2. V noci je lep­šie CO2 tak­to do nádr­že nepum­po­vať. Na pro­duk­ciu CO2 sa hodia aj bom­bič­ky z fľa­še na výro­bu sódy. Na trhu exis­tu­jú rôz­ne difú­ze­ry CO2. Ja pou­ží­vam CO2 fľa­šu, na kto­rej je redukč­ný ven­til a ihlo­vý” (bicyk­lo­vý) ven­til, z kto­ré­ho ide hadič­ka do kanis­tra v akvá­riu. Fun­gu­je to tak, voda si vypý­ta” toľ­ko CO2, koľ­ko potre­bu­je”. Tak dosiah­nem maxi­mál­ne roz­um­né nasý­te­nie akvá­ria oxi­dom uhli­či­tým. Redukč­ný ven­til je nato, aby zní­žil tlak na 5 atmo­sfér. Ihlo­vý ven­til vo vše­obec­nos­ti je na to, aby tlak zní­žil na mie­ru vhod­nú do oby­čaj­nej ten­kej akva­ris­tic­kej hadič­ky. Exis­tu­jú aj nor­mál­ne ihlo­vé ven­ti­ly, ja však pou­ží­vam ven­til, kto­rý pou­ží­va­jú cyk­lis­ti na hus­te­nie pneuma­tík. Nesto­jí ani 10 €. Redukč­né ven­ti­ly exis­tu­jú rôz­ne, sú aj také, kto­ré na výstu­pe ponú­ka­jú tlak CO2, kto­rý môže ísť rov­no do nádr­že. Kom­bi­no­vať sa dá pomo­cou elek­tro­mag­ne­tic­kých ven­ti­lov, kto­ré by sa otvo­ril pod­ľa spí­na­ča. Ja si to ria­dim tak, že CO2 napus­tím vždy ráno. Neod­po­rú­čam sýtiť akvá­ri­um sústav­ne, tla­čiť do vody oxid uhli­či­tý cez otvo­re­né ven­ti­ly napr. cez roz­stre­ko­va­nie pomo­cou fil­tra. V kaž­dom prí­pa­de, či už pri zakú­pe­ní komerč­né­ho pro­duk­tu, ale­bo vlast­né­ho rie­še­nia, tre­ba mať na zre­te­li, že difú­zia ply­nov vo vode je rádo­vo 4 krát niž­šia ako vo vzdu­chu. Čiže podob­ne ako kys­lík, aj CO2 je pri­ja­té vo vyš­šom množ­stve za pred­po­kla­du tvor­by men­ších bub­li­niek. Hen­ry­ho zákon hovo­rí, že kon­cen­trá­cia roz­pus­te­né­ho ply­nu je pria­mo úmer­ná par­ciál­ne­mu tla­ku ply­nu nad jej hla­di­nou – je to v pod­sta­te ana­ló­gia ku osmo­tic­kým javom.


Peat redu­ces the pH and water hard­ness, pro­vi­ding humic acids and other orga­nic sub­stan­ces to the water. PMDD is a wide­ly used non-​commercial fer­ti­li­zer. It is mixed from potas­sium sul­fa­te, mag­ne­sium sul­fa­te hep­ta­hyd­ra­te, potas­sium nit­ra­te, and tra­ce ele­ments: B, Ca, Cu, Fe, Mn, Mo, Zn, which are in the form of orga­nic com­ple­xes. It is a suitab­le com­bi­na­ti­on in which tra­ce ele­ments are pro­bab­ly the most impor­tant. I don’t add CO2 using the well-​known fer­men­ta­ti­on pro­cess. Howe­ver, a bott­le is enough for this pur­po­se, into which we pour water almost to the top, add yeast and sugar. I recom­mend star­ting with war­mer water (around 35°C). I seal the bott­le with a stop­per, in which I have a hole for a tube, which ends in the aqu­arium with an air sto­ne or a lime wood pie­ce. A ciga­ret­te fil­ter can also be suc­cess­ful­ly used. Alter­na­ti­ve­ly, the tube ends in the aqu­arium fil­ter, through which it spra­ys into the water. Such a CO2 dis­pen­ser can pro­du­ce car­bon dioxi­de for 35 weeks. Howe­ver, it has a flaw in that it is not pro­tec­ted against a sud­den inc­re­a­se in CO2 pro­duc­ti­on. It’s bet­ter not to pump CO2 into the tank at night. CO2 cylin­ders for making soda can also be used for CO2 pro­duc­ti­on. The­re are vari­ous CO2 dif­fu­sers avai­lab­le on the mar­ket. I use a CO2 cylin­der with a pre­ssu­re regu­la­tor and a need­le” (bicyc­le) val­ve, from which a tube goes into the canis­ter in the aqu­arium. It works so that the water requ­ests” as much CO2 as it needs”. This way, I achie­ve a maxi­mal­ly rea­so­nab­le satu­ra­ti­on of the aqu­arium with car­bon dioxi­de. The pre­ssu­re regu­la­tor is the­re to redu­ce the pre­ssu­re to 5 atmo­sp­he­res. The need­le val­ve, in gene­ral, redu­ces the pre­ssu­re to a suitab­le level for a regu­lar thin aqu­arium hose. The­re are also nor­mal need­le val­ves, but I use a val­ve that cyc­lists use to infla­te tires. It costs less than 10 €. The­re are vari­ous pre­ssu­re regu­la­tors avai­lab­le; some offer CO2 pre­ssu­re at the out­put, which can go straight into the tank. It can be com­bi­ned using sole­no­id val­ves, which would open accor­ding to a switch. I mana­ge it so that I alwa­ys inject CO2 in the mor­ning. I do not recom­mend cons­tan­tly satu­ra­ting the aqu­arium, pus­hing car­bon dioxi­de into the water through open val­ves, for exam­ple, through spra­y­ing using a fil­ter. In any case, whet­her pur­cha­sing a com­mer­cial pro­duct or a DIY solu­ti­on, it should be bor­ne in mind that gas dif­fu­si­on in water is about 4 times lower than in air. So, simi­lar­ly to oxy­gen, CO2 is absor­bed in lar­ger quan­ti­ties assu­ming the for­ma­ti­on of smal­ler bubb­les. Hen­ry­’s law sta­tes that the con­cen­tra­ti­on of dis­sol­ved gas is direct­ly pro­por­ti­onal to the par­tial pre­ssu­re of the gas abo­ve its sur­fa­ce – it is essen­tial­ly ana­lo­gous to osmo­tic phenomena.


Torf senkt den pH-​Wert und die Was­ser­här­te und lie­fert dem Was­ser Humin­sä­u­ren und ande­re orga­nis­che Sub­stan­zen. PMDD ist ein weit verb­re­i­te­ter nicht kom­mer­ziel­ler Dün­ger. Er wird aus Kalium­sul­fat, Magnesiumsulfat-​Heptahydrat, Kalium­nit­rat und Spu­re­ne­le­men­ten wie B, Ca, Cu, Fe, Mn, Mo, Zn gemischt, die in Form orga­nis­cher Kom­ple­xe vor­lie­gen. Es han­delt sich um eine gee­ig­ne­te Kom­bi­na­ti­on, bei der Spu­re­ne­le­men­te wahrs­che­in­lich am wich­tigs­ten sind. Ich füge kein CO2 nach dem bekann­ten Gärungs­pro­zess hin­zu. Es reicht jedoch eine Flas­che, in die wir fast bis zum Rand Was­ser gie­ßen, Hefe und Zuc­ker hin­zu­fügen. Ich emp­feh­le, zu Beginn war­mes Was­ser zu ver­wen­den (etwa 35°C). Ich versch­lie­ße die Flas­che mit einem Stop­fen, in den ich ein Loch für einen Sch­lauch habe, der im Aqu­arium mit einem Lufts­prud­ler oder einem Kalk­holzs­tück endet. Auch ein Ziga­ret­ten­fil­ter kann erfolg­re­ich ver­wen­det wer­den. Alter­na­tiv endet der Sch­lauch im Aqu­arium­fil­ter, durch den er in das Was­ser sprüht. Ein sol­cher CO2-​Spender kann Koh­len­di­oxid für 35 Wochen pro­du­zie­ren. Es hat jedoch den Feh­ler, dass es nicht gegen einen plötz­li­chen Ans­tieg der CO2-​Produktion ges­chützt ist. Es ist bes­ser, nachts kein CO2 in den Tank zu pum­pen. CO2-​Zylinder zur Hers­tel­lung von Soda kön­nen eben­falls zur CO2-​Produktion ver­wen­det wer­den. Auf dem Mar­kt gibt es vers­chie­de­ne CO2-​Diffusoren. Ich ver­wen­de einen CO2-​Zylinder mit Druck­reg­ler und einem Nadel” (Fahrrad)-Ventil, von dem aus ein Sch­lauch in den Behäl­ter im Aqu­arium führt. Es funk­ti­oniert so, dass das Was­ser so viel CO2 anfragt”, wie es benötigt”. Auf die­se Wei­se erre­i­che ich eine maxi­mal ver­nünf­ti­ge Sät­ti­gung des Aqu­ariums mit Koh­len­di­oxid. Der Druck­reg­ler ist dafür da, den Druck auf 5 Atmo­sp­hä­ren zu redu­zie­ren. Das Nadel­ven­til redu­ziert den Druck im All­ge­me­i­nen auf ein für einen nor­ma­len dün­nen Aqu­arien­sch­lauch gee­ig­ne­tes Nive­au. Es gibt auch nor­ma­le Nadel­ven­ti­le, aber ich ver­wen­de ein Ven­til, das von Rad­fah­rern zum Auf­pum­pen von Rei­fen ver­wen­det wird. Es kos­tet weni­ger als 10 €. Es gibt vers­chie­de­ne Druck­reg­ler erhält­lich; eini­ge bie­ten CO2-​Druck am Aus­gang an, der direkt in den Tank gele­i­tet wer­den kann. Es kann mit Hil­fe von Mag­nets­pu­len­ven­ti­len kom­bi­niert wer­den, die sich ents­pre­chend einem Schal­ter öff­nen wür­den. Ich ste­ue­re es so, dass ich immer mor­gens CO2 eins­prit­ze. Ich emp­feh­le nicht, das Aqu­arium stän­dig zu sät­ti­gen, indem man Koh­len­di­oxid durch offe­ne Ven­ti­le in das Was­ser pumpt, beis­piel­swe­i­se durch Sprühen mit einem Fil­ter. Auf jeden Fall, ob Sie ein kom­mer­ziel­les Pro­dukt kau­fen oder eine DIY-​Lösung ver­wen­den, soll­te beach­tet wer­den, dass die Gas­dif­fu­si­on im Was­ser etwa 4‑mal gerin­ger ist als in der Luft. Also wird, ähn­lich wie bei Sau­ers­toff, CO2 in größe­ren Men­gen auf­ge­nom­men, voraus­ge­setzt, es ents­te­hen kle­i­ne­re Bla­sen. Das Hen­rys­che Gesetz besagt, dass die Kon­zen­tra­ti­on des gelös­ten Gases direkt pro­por­ti­onal zum Par­tial­druck des Gases über sei­ner Oberf­lä­che ist – es ist im Wesen­tli­chen ana­log zu osmo­tis­chen Phänomenen.

Use Facebook to Comment on this Post

Akvaristika, Biológia, Organizmy, Príroda, Ryby, Výživa, Živočíchy

Nálevníky – drobná živá potrava pre ryby

Hits: 19545

Nálev­ní­ky – kmeň Cili­op­ho­ra je veľ­ká sku­pi­na jed­no­bun­ko­vých orga­niz­mov – prvo­kov, kto­ré sa vysky­tu­jú bež­ne v poto­koch, v rie­kach, v pod­zem­nej vode. Nepat­rí medzi prí­liš vhod­né a výživ­né krmi­vo, nie­ke­dy je však nevy­hnut­né. Exis­tu­jú dru­hy, kto­ré sú škod­li­vé pre ryby, je lep­šie nálev­ní­ky cho­vať zo zís­ka­nej nása­dy, ale­bo si ich vypes­to­vať. Nie­kto­ré nálev­ní­ky: trep­ka – Para­me­cium cau­da­tum, vhod­nú pre poter, Para­me­cium bur­sa­ria, Pro­ro­don teres, Loxo­des ros­trum, Chi­lo­do­nel­la cucul­lu­lus, Dilep­tus anser, Bur­sa­ria trun­ca­tel­la, Lac­ry­ma­ria olor, Spi­ros­to­mum ambi­gu­um, Sty­lo­ny­chia myti­lus, Coleps hir­tus, Eup­lo­tes cha­ron, Hal­te­ria gran­di­nel­la, Col­pi­dium col­po­da, Icht­hy­opht­hi­rius mul­ti­fi­lis – zaprí­či­ňu­jú­ci zná­mu kru­pič­ku, Vor­ti­cel­la, Epis­ty­lis, Sten­tor roese­li, Sten­tor coeru­le­us, atď.

Alter­na­tív­ny chov

Docho­va­nie nálev­ní­ka opí­sa­né v nasle­du­jú­cich vetách v tom­to odstav­ci je mož­ný, ale ja ho neod­po­rú­čam. Ak sa odhod­lá­me ku vlast­né­mu odcho­vu nálev­ní­ka, zabud­ni­te na sen­ný nálev, o kto­rom ste sa uči­li v ško­le. Sen­ným nále­vom si síce pri­pra­ví­te nálev­ní­ka, ale nie je to správ­ny postup. Na to je nut­né vyme­niť sla­mu za seno. Tak­že vez­me­me sla­mu, kto­rú zais­tí­me aby zosta­la pono­re­ná, zale­je­me ju vodou, naj­lep­šie z neja­kej sto­ja­tej vody. Nanaj­výš odstá­tou vodou a pri­dá­me kúsok povr­cho­vé­ho bah­na. Zabez­pe­čí­me izbo­vú tep­lo­tu, dosta­tok svet­la, ale nie pria­me slneč­né lúče. Keď­že sa sla­ma začne časom roz­kla­dať, dôj­de k masív­ne­mu roz­mno­že­niu bak­té­rií. Kon­cen­trá­cia kys­lí­ku rapíd­ne kle­sá – nálev­ní­ky odum­rú, až na trep­ku (Para­me­cium), kto­rá žije tes­ne pod povr­chom. Behom 2 – 3 týž­dňov môže­me pozo­ro­vať mlieč­ne zaka­le­nú vrch­nú vrstvu, kde sa nachá­dza trep­ka. Chov sa nám čosko­ro vyčer­pá – ide o veľ­mi uzav­re­tý sys­tém, tak­že kaž­dý mesiac by sme mali chov pre­oč­ko­vať do novej nádo­by. Sta­čí nám tre­ti­na sta­rej kul­tú­ry, pri­dá­me vodo­vod­nú vodu (ide­ál­ne odstá­tu) a sla­mu. Je mož­né udr­žia­vať kul­tú­ru mlie­kom, kto­ré roz­pú­ta masív­ny roz­voj bak­té­rií. Sta­čí kaž­dý dru­hý deň kvap­núť do kul­tú­ry jed­nu – dve kvap­ky. Namies­to sla­my sa dá pou­žiť aj repa, kedy sa okrem trep­ky vyvi­nie aj neškod­né Col­pi­dium. Prí­pad­ne sa dá pou­žiť baná­no­vá šup­ka. Šalát a seno dáva­jú vznik ples­niam a čas­to aj na rybách para­zi­tu­jú­cich nálevníkov.

Návod na chov čis­tej kul­tú­ry nálevníka

Nálev­ní­ka cho­vám v PET fľa­šiach, ide­ál­ne sú také, kto­ré sú čo najp­rie­hľad­nej­šie a bez­fa­reb­né. Z prak­tic­kých dôvo­dov – je do nich naj­lep­šie vidieť. Ide­ál­na je dostup­ná mäk­ká voda a samoz­rej­me exis­tu­jú­ce kul­tú­ra nálev­ní­ka, kto­rú dáme do vody a pri­dá­me suro­vý vaječ­ný žĺtok ako potra­vu pre nálev­ní­ka. Ak nemá­me mäk­kú vodu, pou­ži­me aspoň odstá­tu vodu, mini­mál­ne dva dni, lep­šie až šty­ri, aby sa všet­ky ply­ny z nej eli­mi­no­va­li. Cho­vať nálev­ní­ka je ťaž­šie ako udr­žať pri živo­te chú­los­ti­vé ryby. Keď chcem roz­ší­riť kul­tú­ru nálev­ní­ka, nale­jem do novej fľa­še do polo­vi­ce obje­mu odstá­tu vodu a pri­le­jem k nej vodu s dob­re roz­vi­nu­tým nálev­ní­kom. Nálev­ní­ka tre­ba samoz­rej­me kŕmiť – na čo nám poslú­ži naj­lep­šie suro­vé žĺtok. Po pri­da­ní krmi­va zvy­čaj­ne dva dni trvá, než mate­riál začnú bak­té­rie výdat­ne roz­kla­dať a vte­dy má nálev­ník vhod­né pro­stre­die pre svoj roz­voj. Je vhod­né nálev­ní­ka cho­vať vo via­ce­rých fľa­šiach, pre­to­že naj­mä výdat­ným kŕme­ním si veľ­kú časť nálev­ní­ka vždy odstrá­ni­me z kul­tú­ry a čas­to sa sta­ne, že zmiz­ne z nie­kto­rej fľa­še. Dôle­ži­té je, aby sa vo fľa­ši netvo­ri­la ria­sa, pre­to drží­me kul­tú­ru bez prí­stu­pu svet­la. Dôvod je pros­tý, pri zaria­se­nej fľa­ši nebu­de­me vidieť, či tam neja­ký nálev­ník je. Ak sa nám pred­sa len fľa­ša zaria­si, pomô­že SAVO, kto­ré roz­rie­di­me vo vode a nale­je­me do fľa­še. Samoz­rej­me bez nálev­ní­ka. Po takom­to čis­te­ní sta­čí fľa­šu dob­re umyť, prí­pad­ne nechať pár hodín vypr­chať chlór a potom môže­me opäť zalo­žiť nálev­ní­ka. V prí­pa­de, že sa v nie­kto­rej fľa­ši nech­ce nálev­ník roz­vi­núť, pomô­že­me si tým, že vyle­je­me z neho časť obsa­hu a dole­je­me z fľa­še, kde je nálev­ník pek­ný”. Fľa­še s nálev­ní­kom by mali mať pre­vŕ­ta­ný vrch­ná­čik, aby sme mu zabez­pe­či­li vzduch..

Nálev­ník je veľ­mi malý, pre­to ho nie­kto­rí ľudia nevi­dia. Mám skú­se­nosť, že ľudia, kto­rí nosia diop­tric­ké oku­lia­re a poze­ra­jú na kul­tú­ru bez nich, vo fľa­ši nič živé nevi­dia, vidia len špi­nu”. Aj bys­trým očiam pomô­že lupa, kaž­do­pád­ne je dob­ré naj­mä neskú­se­né­mu oku, sústre­diť sa a nasta­viť si nálev­ní­ka tak, že za fľa­šou svie­ti ume­lé svet­lo, pred ňou je zhas­nu­té, a fľa­šu si nasta­ví­me opro­ti nie­čo­mu tma­vé­mu, napr. opro­ti noč­nej oblo­he. Ide­ál­na kul­tú­ra má na spod­ku mini­mum potra­vy a nálev­ník je roz­miest­ne­ný po celom obje­me a vese­lo si pláva :-).

Skr­mo­va­nie nálev­ní­ka nie je bez­prob­lé­mo­vé. Nálev­ní­kom kŕmim podob­ným spô­so­bom ako octo­vé mik­ry. Pre nálev­ní­ky sú ide­ál­ne fľa­še na víno, kto­ré majú zúže­né hrd­lo, kto­ré sa násled­ne roz­ši­ru­je. Nálev­ní­ky zle­jem do takej­to fľa­še, zvr­chu utes­ním fil­trač­nou hmo­tou a dole­jem čerstvú vodu. Do dru­hé­ho dňa sa zväč­ša väč­ši­na tých­to malých živo­čí­chov pre­pa­sí­ru­je do čis­tej vody. Z tej­to ich strie­kač­kou vytiah­nem ale­bo jed­no­du­cho zle­jem a skŕ­mim rybám. Sub­strát, kto­rý bol pod utes­ne­ním zno­vu vle­jem do PET fľa­še s kul­tú­rou. Občas vyme­ním zašpi­ne­né PET fľaše.


Cili­op­ho­ra is a lar­ge group of single-​celled orga­nisms – pro­to­zoa, which are com­mon­ly found in stre­ams, rivers, and groun­dwa­ter. They are not con­si­de­red very suitab­le or nut­ri­ti­ous food, but some­ti­mes it is neces­sa­ry. The­re are spe­cies that are harm­ful to fish, so it is bet­ter to bre­ed Cili­op­ho­ra from obtai­ned cul­tu­re or cul­ti­va­te them. Some Cili­op­ho­ra: Para­me­cium cau­da­tum, suitab­le for fry, Para­me­cium bur­sa­ria, Pro­ro­don teres, Loxo­des ros­trum, Chi­lo­do­nel­la cucul­lu­lus, Dilep­tus anser, Bur­sa­ria trun­ca­tel­la, Lac­ry­ma­ria olor, Spi­ros­to­mum ambi­gu­um, Sty­lo­ny­chia myti­lus, Coleps hir­tus, Eup­lo­tes cha­ron, Hal­te­ria gran­di­nel­la, Col­pi­dium col­po­da, Icht­hy­opht­hi­rius mul­ti­fi­lis – cau­sing kno­wn ich, Vor­ti­cel­la, Epis­ty­lis, Sten­tor roese­li, Sten­tor coeru­le­us, etc.

Alter­na­ti­ve breeding

The bre­e­ding of Cili­op­ho­ra­desc­ri­bed in the fol­lo­wing sen­ten­ces in this parag­raph is possib­le, but I do not recom­mend it. If we deci­de to bre­ed Cili­op­ho­ra on our own, for­get about the hay nálev you lear­ned about in scho­ol. With hay nálev, you will pre­pa­re Cili­op­ho­ra, but it is not the right pro­ce­du­re. For this, it is neces­sa­ry to repla­ce the straw with hay. So we take straw, which we ensu­re remains sub­mer­ged, pour water over it, pre­fe­rab­ly from some stag­nant water. At most, with stan­ding water, and add a pie­ce of sur­fa­ce mud. We ensu­re room tem­pe­ra­tu­re, suf­fi­cient light, but not direct sun­light. Sin­ce straw begins to decom­po­se over time, the­re is a mas­si­ve pro­li­fe­ra­ti­on of bac­te­ria. Oxy­gen con­cen­tra­ti­on rapid­ly dec­re­a­ses – Cili­op­ho­ra will die, except for the Para­me­cium, which lives just below the sur­fa­ce. Wit­hin 2 – 3 weeks, we can obser­ve a mil­ky clou­dy top lay­er whe­re Para­me­cium is loca­ted. The bre­e­ding will soon exhaust itself – it is a very clo­sed sys­tem, so eve­ry month we should re-​inoculate the cul­tu­re into a new con­tai­ner. We only need a third of the old cul­tu­re, add tap water (ide­al­ly stag­nant), and straw. It is possib­le to main­tain the cul­tu­re with milk, which pro­mo­tes mas­si­ve bac­te­rial gro­wth. It is enough to add one or two drops to the cul­tu­re eve­ry other day. Ins­te­ad of straw, beet­ro­ot can also be used, whe­re, in addi­ti­on to Para­me­cium, harm­less Col­pi­dium deve­lops. Alter­na­ti­ve­ly, bana­na peel can be used. Let­tu­ce and hay pro­mo­te mold gro­wth, and often para­si­tes of Cili­op­ho­ra also para­si­ti­ze on fish.

Guide to bre­e­ding a pure cul­tu­re of Ciliophora

I bre­ed Cili­op­ho­ra in PET bott­les, ide­al­ly tho­se that are as trans­pa­rent and color­less as possib­le. For prac­ti­cal rea­sons – it is best to see into them. Ide­al­ly, the­re is soft water avai­lab­le and of cour­se an exis­ting Cili­op­ho­ra cul­tu­re, which we put into the water and add a raw egg yolk as food for the Cili­op­ho­ra. If we do not have soft water, we use at least stan­ding water, for at least two days, pre­fe­rab­ly up to four, to eli­mi­na­te all gases from it. Bre­e­ding Cili­op­ho­ra is more dif­fi­cult than kee­ping deli­ca­te fish ali­ve. When I want to expand the Cili­op­ho­ra cul­tu­re, I pour half of the volu­me of stan­ding water into a new bott­le and add water with well-​developed Cili­op­ho­ra to it. Of cour­se, Cili­op­ho­ra needs to be fed – for which raw yolk ser­ves us best. After adding the feed, it usu­al­ly takes two days for the bac­te­ria to start decom­po­sing the mate­rial exten­si­ve­ly, and then the Cili­op­ho­ra has a suitab­le envi­ron­ment for its deve­lop­ment. It is advi­sab­le to bre­ed Cili­op­ho­ra in seve­ral bott­les, becau­se espe­cial­ly with abun­dant fee­ding, we alwa­ys remo­ve a lar­ge part of the Cili­op­ho­ra from the cul­tu­re, and it often hap­pens that it disap­pe­ars from some bott­le. It is impor­tant that no algae form in the bott­le, so we keep the cul­tu­re wit­hout access to light. The rea­son is sim­ple, with a dar­ke­ned bott­le, we will not see if the­re is any Cili­op­ho­ra in it. If, howe­ver, the bott­le still beco­mes clou­dy, SAVO helps, which we dilu­te in water and pour into the bott­le. Of cour­se, wit­hout Cili­op­ho­ra. After such cle­a­ning, it is enough to wash the bott­le well, or let it air out for a few hours to remo­ve chlo­ri­ne, and then we can set up the Cili­op­ho­ra again. If Cili­op­ho­ra does not want to deve­lop in some bott­le, we help our­sel­ves by pou­ring out part of the con­tents and pou­ring from the bott­le whe­re the Cili­op­ho­ra is nice”. Bott­les with Cili­op­ho­ra should have a pier­ced cap to pro­vi­de air to it.

Cili­op­ho­ra is very small, so some peop­le do not see it. I have expe­rien­ced that peop­le who wear pre­sc­rip­ti­on glas­ses and look at the cul­tu­re wit­hout them, see not­hing living in the bott­le, they see only dirt”. Even sharp eyes are hel­ped by a mag­ni­fy­ing glass, in any case, it is good, espe­cial­ly for ine­xpe­rien­ced eyes, to focus and set up the Cili­op­ho­ra so that arti­fi­cial light shi­nes behind the bott­le, it is dark in front of it, and we set up the bott­le against somet­hing dark, for exam­ple against the night sky. An ide­al cul­tu­re has a mini­mum of food at the bot­tom, and the Cili­op­ho­ra is dis­tri­bu­ted throug­hout the volu­me and swims merrily :-).

Fee­ding Cili­op­ho­ra is not wit­hout prob­lems. I feed Cili­op­ho­ra in a simi­lar way to vine­gar mic­rae. Wine bott­les are ide­al for Cili­op­ho­ra, which have a nar­ro­wed neck, which then expands. I pour Cili­op­ho­ra into such a bott­le, seal it from abo­ve with fil­ter mate­rial, and pour in fresh water. Usu­al­ly, by the second day, most of the­se small ani­mals are fil­te­red into cle­an water. I then extract them with a pipet­te or sim­ply pour them and feed them to fish. The sub­stra­te that was under the seal is then pou­red back into the PET bott­le with the cul­tu­re. I occa­si­onal­ly repla­ce dir­ty PET bottles.

Use Facebook to Comment on this Post

Akvaristika, Technika

Osvetlenie akvária

Hits: 26849

Svet­lo je pod­stat­nou abi­otic­kou zlož­kou, kto­rou sa musí akva­ris­ta v byte zapo­die­vať. Za jeho výdat­nej pomo­ci pre­bie­ha­jú v akvá­riu bio­lo­gic­ké bio­che­mic­ké aj fyzi­kál­ne pro­ce­sy. Keď­že v mier­nom pás­me, v kto­rom sa nachá­dzam ja, a asi aj väč­ši­na z vás, kde je dĺž­ka slneč­né­ho svi­tu od jese­ne do jari nedos­ta­toč­ná, zabez­pe­če­nie ume­lé­ho osvet­le­nia je nevy­hnut­né. Samot­né slneč­né lúče sú síce pri­már­nym zdro­jom ener­gie, avšak nie sú prí­liš žia­du­ce v akva­ris­ti­ke. Dôvo­dom je to, že lúče v prí­ro­de nedo­pa­da­jú mimo hla­di­ny. V ume­lých nádr­žiach však dopa­da­jú na boč­né ste­ny, čo je čas­to dôvo­dom rias na čel­nom skle aj vo vode. Navy­še vod­né toky tečú v doli­nách, a tie sú neraz zare­za­né v kra­ji­ne, v ska­lách. Z geomor­fo­lo­gic­ké­ho hľa­dis­ka sa dá pred­po­kla­dať, že vod­ný tok tečie v zvl­ne­nom pro­fi­le. To zna­me­ná, že slneč­né lúče ťaž­šie pre­ni­ka­jú do vody v nich ako u nás v dome či byte. Voda v prí­ro­de je okrem toho čas­to zne­čis­te­ná, ale­bo jed­no­du­cho zafar­be­ná.. Aj pre­to odpo­rú­čam mať akvá­ri­um v tmav­šej čas­ti miest­nos­ti, a svie­tiť počas dná rad­šej ume­lým svet­lo. Je len samoz­rej­mé, že slneč­né­ho svet­la sa celé­mu kom­ple­tu prav­de­po­dob­ne aj tak dosta­ne dosť. Ani rybám by sa asi nepá­či­lo neus­tá­le plá­vať v tme. Svo­ju úlo­hu má aj este­tic­ké a funkč­né hľa­dis­ko, naj­mä pri pozo­ro­va­ní živo­ta v akvá­riu. Ryby nedo­ká­žu prí­liš svet­lo pri­jí­mať oča­mi. Nie do takej mie­ry ako cicav­ce, ale­bo hmyz. Je to mož­no zvlášt­ne, ale evo­luč­ne nedo­siah­li taký stup­ňa vývo­ja, ako by sme si asi na prvý pohľad mys­le­li. Ryby pri­jí­ma­jú svet­lo hlav­ne kožou, celým povr­chom tela.

Pri nad­byt­ku svet­la v akvá­riu, vzni­ka­jú zele­né ria­sy, pri nedos­tat­ku svet­la, hne­dé ria­sy. Kedy­si sa pou­ží­va­li v cho­va­teľ­stve vôbec žia­rov­ky. Už dáv­nej­šie sa od toho upus­ti­lo. Je to vhod­né napr. pre pla­zy do terá­ria, kde ten­to skve­lý vyná­lez slú­ži skôr ako zdroj tep­la, ako svet­la. Náj­du prí­pad­ne uplat­ne­nie pre rast­lin­né akvá­ria ak akva­ris­ta nemá iný zdroj tep­lé­ho svet­la. Pre­to­že rast­li­ny pre­fe­ru­jú skôr tep­lú zlož­ku fareb­né­ho spek­tra, kto­rú posky­tu­je bež­ná žia­rov­ka. Je to podob­né ako u sucho­zem­ských rast­lín. Chlo­ro­fyl je obsia­hnu­tý aj vo vod­ných rast­li­nách, len ria­sy obsa­hu­jú iný typ chlo­ro­fy­lu. Sucho­zem­ské rast­li­ny majú foto­syn­te­tic­kú účin­nosť iba 1 %, tak­že je to z ľud­ské­ho pohľa­du, mrha­nie ener­gie. Je to zaprí­či­ne­né špe­cia­li­zá­ci­ou enzý­mov, chlo­ro­fy­lu a širo­ko­pás­mo­vos­ťou spek­tra pri­ro­dze­né­ho svet­la. Žia­rov­ky odo­vzdá­va­jú akva­ris­to­vi ener­giu tak, že 20 % sa trans­for­mu­je na svet­lo a 80 % na tep­lo. Ten­to stav nie je veľ­mi žia­du­ci. Akva­ris­ta potre­bu­je z osvet­le­nia zís­kať svet­lo, tep­lo je nad­by­toč­né. Navy­še zabez­pe­čiť dosta­toč­né žia­rov­ko­vé osvet­le­nie pre napr. väč­šiu nádrž môže byť prob­lém. Prob­lé­mom je aj to, že žia­rov­ko­vé svet­lo je bodo­vé. Tie­to nedos­tat­ky však nema­jú žia­riv­ky. Ich svet­lo sa šíri rov­no­mer­nej­šie a ener­giu odo­vzdá­va zhru­ba v opač­nom pome­re ako žia­rov­ka – 85% svet­lo, 15% tep­lo. Exis­tu­jú rôz­ne odpo­rú­ča­nia, pre žia­rov­ky odpo­rú­čam 12 W na 1 l objemu.

Pre žia­riv­ko­vé tru­bi­ce – na 1 dm2 plo­chy dna mini­mál­ne 1W, opti­mál­ne 1.52 W pri nádr­žiach do výš­ky 50 cm. Tí čo chcú pes­to­vať rast­li­ny môžu pou­žiť ešte vyš­šie výko­ny, avšak potom hro­zí vyso­ká kon­cen­trá­cia rias. Samoz­rej­me, že to nie je len o wat­toch. Zále­ží na sve­tel­nom toku, na tom akej kva­li­ty je dané svet­lo, či posky­tu­je tep­lú bie­lu, stu­de­nú bie­lu, mod­ré, čer­ve­né svet­lo, atď. Para­met­re by mali byť uve­de­né na tru­bi­ciach, odpo­rú­čam si to riad­ne pred kúpou pre­štu­do­vať. Bež­ne sa pou­ží­va­jú tru­bi­ce, kto­rých tep­lo­ta far­by je od 3500 – do 25000 Kel­vi­nov. Pre rast­lin­né akvá­ri­um odpo­rú­čam tep­lej­šie far­by – pod 5000K. Pre bež­né­ho akva­ris­tu 6500 K, pre mor­ské­ho akva­ris­tu nad 9300 K. Pou­ži­teľ­nosť tru­bíc je čas­to u špe­ciál­nych akva­ris­tic­kých tru­bíc 0.50.75 roka. To je veľ­mi krát­ka doba. Po nej je dob­ré tru­bi­ce vyme­niť, ich účin­nosť kle­sá až na 50%. Oby­čaj­nej­šie tru­bi­ce, vydr­žia účin­ne ove­ľa dlh­šie. Pri všet­kých tru­bi­ciach, s kto­rý­mi som sa dote­raz stre­tol, bola uve­de­ná život­nosť 8 00010 000 hodín. Avšak špe­ciál­ne tru­bi­ce nedo­siah­nu za 0.5 roka 10 000 sve­tel­ných hodín a ich výkon­nosť pri­tom rapíd­ne kle­sá. Iné tru­bi­ce pri kon­ci život­nos­ti ešte stá­le majú 8090 % účin­nosť. Pre­fe­ru­jem tru­bi­ce Phi­lips, Osram. V kaž­dom prí­pa­de je dob­ré mať poru­ke neja­ké náh­rad­né tru­bi­ce.

Pre vyš­šiu život­nosť tru­bíc je ide­ál­ne mať medzi vypí­na­čom a štar­té­rom pred­rad­ník. Svet­lo sa bude spí­nať naraz, a výraz­ne sa pre­dĺži život­nosť tru­bi­ce. Ako alter­na­tí­va ku line­ár­nym žia­riv­kám – tru­bi­ciam je mož­né pou­žiť aj kom­pakt­né žia­riv­ky. Tie sú napo­kon dnes už bež­ne dostup­né v hyper­mar­ke­toch. Ich účin­nosť je samoz­rej­me niž­šia. Pre akvá­ria vyš­šie ako 50 cm sa odpo­rú­čam tzv. HQI výboj­ky. Tie sú schop­né účin­nej­šie pre­svie­tiť vyš­ší vod­ný stĺpec ako žia­riv­ky. Pre to, aby naša nádrž pros­pe­ro­va­la je ide­ál­ne mať pra­vi­del­né, resp. objek­tív­ne kon­tro­lo­va­teľ­né spí­na­nie svet­la. Je to lep­šie rie­še­nie ako sa spo­lie­hať na ľud­ský fak­tor. Kom­ple­ty s rast­li­na­mi by mali mať dosta­tok svet­la počas dňa 12 – 14 hodín,. Pred­sta­va, že sta­čí posky­to­vať pros­pe­ru­jú­ce­mu akvá­riu svet­lo iba večer je myl­ná. Vod­né rast­li­ny sú skôr schop­né pris­pô­so­biť sa sla­bé­mu zdro­ju osvet­le­nia ako jeho nedos­ta­toč­nej dĺž­ke. Pre opti­mál­ne zabez­pe­če­nie pra­vi­del­né­mu sve­tel­né­ho reži­mu sú ide­ál­ne spí­na­cie hodi­ny. Pra­vi­del­nosť reži­mu vplý­va výraz­ne aj na akti­vi­tu a cel­ko­vé sprá­va­nie rýb. Nie­kto­ré ryby dokon­ca začnú inak plá­vať. Je to zná­me napr. o neón­kach. Ak im poskyt­ne­me boč­né svet­lo, kto­ré nedo­pa­dá zvr­chu, tak sa sta­ne, že neón­ky začnú úpl­ne mimo­voľ­ne plá­vať šik­mo. Ako by sa im naklo­ni­la zem – sna­žia ja plá­vať kol­mo na smer dopa­da­jú­cich lúčov. Napr. živo­rod­ky veľ­mi rých­lo oží­va­jú” po zasvie­te­ní po pred­chá­dza­jú­cej tme”, cich­li­dám sa narú­ša bio­ryt­mus a ove­ľa dlh­šie im trvá, než ich pre­sved­čím” aby sa aspoň tro­chu rozp­lá­va­li. Dru­há stra­na min­ce je zase fakt, že pri tme nie sú také sle­pé”. Napo­kon sami dob­re vie­me, že tma a svet­lo vplý­va výraz­ne aj na člo­ve­ka. Prob­lé­mom je, že spí­na­cie hodi­ny trpia na vyso­kú indukč­nú záťaž. Naj­pou­ží­va­nej­šie žia­riv­ko­vé tru­bi­ce majú vyso­kú indukč­nú záťaž, napriek rela­tív­ne níz­ke­mu odbe­ru prú­du. Pre­to odpo­rú­čam mecha­nic­ké spí­na­cie hodi­ny, ale­bo pre­ve­re­né digi­tál­ne. Mám skú­se­nosť, že digi­tál­ne spí­na­cie hodi­ny sa čas­to resetovali.


Light is an essen­tial abi­otic com­po­nent that aqu­arium ent­hu­siasts must con­si­der in the­ir homes. With its sig­ni­fi­cant help, bio­lo­gi­cal, bio­che­mi­cal, and phy­si­cal pro­ces­ses take pla­ce in the aqu­arium. In the tem­pe­ra­te zone whe­re I am loca­ted, and pro­bab­ly many of you, the sun­light dura­ti­on from fall to spring is insuf­fi­cient. The­re­fo­re, pro­vi­ding arti­fi­cial ligh­ting is neces­sa­ry. Whi­le sun­light is the pri­ma­ry sour­ce of ener­gy, it’s not high­ly desi­rab­le in aqu­ariums. In natu­re, sun­light does­n’t penet­ra­te below the water sur­fa­ce, but in arti­fi­cial tanks, it often hits the side walls, lea­ding to algae gro­wth on the glass and in the water. Addi­ti­onal­ly, water cur­rents flow in val­le­ys, which are often cut into the lands­ca­pe, making it har­der for sun­light to penet­ra­te the water.

For the­se rea­sons, I recom­mend pla­cing the aqu­arium in a dar­ker part of the room and using arti­fi­cial light during the day. It’s evi­dent that some sun­light will still reach the enti­re setup. Fish pro­bab­ly would­n’t enjoy swim­ming in cons­tant dark­ness eit­her. Aest­he­tic and func­ti­onal aspects also play a role, espe­cial­ly when obser­ving aqu­arium life. Fish can’t per­ce­i­ve light with the­ir eyes as much as mam­mals or insects. They main­ly sen­se light through the­ir skin, cove­ring the­ir enti­re body sur­fa­ce. Excess light in the aqu­arium leads to gre­en algae, whi­le a lack of light results in bro­wn algae. In the past, incan­des­cent bulbs were used in bre­e­ding. Howe­ver, this prac­ti­ce has been aban­do­ned as the­y­’re more suitab­le as a heat sour­ce than a light sour­ce. Com­pact flu­ores­cent bulbs are a com­mon alter­na­ti­ve, but the­ir effi­cien­cy is lower.

Flu­ores­cent tubes are pre­fer­red for aqu­ariums tal­ler than 50 cm. High-​Intensity Dis­char­ge (HQI) lamps are recom­men­ded for even bet­ter penet­ra­ti­on in tal­ler tanks. Regu­lar main­te­nan­ce and repla­ce­ment of tubes are cru­cial for opti­mal per­for­man­ce. Pre­cau­ti­ons, such as using a bal­last befo­re the switch and star­ter, can extend the life of flu­ores­cent tubes. Having a regu­lar and objec­ti­ve­ly con­trol­lab­le light sche­du­le is cru­cial for the aqu­ariu­m’s well-​being. Timers are bet­ter than rely­ing on human inter­ven­ti­on. Aqu­arium kits with plants should rece­i­ve light for 12 – 14 hours a day for opti­mal gro­wth. Pro­vi­ding light only in the eve­ning is a mis­con­cep­ti­on. The regu­la­ri­ty of the light regi­me sig­ni­fi­can­tly affects the acti­vi­ty and ove­rall beha­vi­or of fish. Some fish chan­ge the­ir swim­ming pat­terns based on the light sour­ce­’s direc­ti­on. In conc­lu­si­on, pro­per ligh­ting is vital for a thri­ving aqu­arium, con­si­de­ring fac­tors like light type, dura­ti­on, and schedule.


Licht ist eine wesen­tli­che abi­otis­che Kom­po­nen­te, mit der sich der Aqu­aria­ner in sei­ner Woh­nung ause­i­nan­der­set­zen muss. Mit sei­ner erheb­li­chen Hil­fe lau­fen bio­lo­gis­che, bio­che­mis­che und phy­si­ka­lis­che Pro­zes­se im Aqu­arium ab. Da die Son­ne­ne­ins­trah­lung im gemä­ßig­ten Bere­ich, in dem ich mich befin­de und wahrs­che­in­lich vie­le von Ihnen, von Herbst bis Früh­ling unzu­re­i­chend ist, ist die Bere­its­tel­lung künst­li­cher Bele­uch­tung not­wen­dig. Wäh­rend Son­nen­licht die pri­mä­re Ener­gie­qu­el­le ist, ist es in Aqu­arien nicht beson­ders wün­schen­swert. In der Natur dringt Son­nen­licht nicht unter die Was­se­ro­berf­lä­che, trifft aber in künst­li­chen Behäl­tern oft auf die Sei­ten­wän­de, was zu Algen­wachs­tum auf dem Glas und im Was­ser führt. Darüber hinaus flie­ßen Was­sers­tröme in Tälern, die oft in die Lands­chaft geschnit­ten sind, was es für Son­nen­licht ersch­wert, ins Was­ser einzudringen.

Aus die­sen Grün­den emp­feh­le ich, das Aqu­arium in einem dunk­le­ren Teil des Rau­mes zu plat­zie­ren und tag­süber künst­li­ches Licht zu ver­wen­den. Es ist offen­sicht­lich, dass trotz­dem etwas Son­nen­licht die gesam­te Ein­rich­tung erre­icht. Fis­che wür­den wahrs­che­in­lich auch nicht ger­ne in stän­di­ger Dun­kel­he­it sch­wim­men. Äst­he­tis­che und funk­ti­ona­le Aspek­te spie­len eben­falls eine Rol­le, ins­be­son­de­re beim Beobach­ten des Aqu­arium­le­bens. Fis­che kön­nen Licht nicht so stark mit ihren Augen wahr­neh­men wie Säu­ge­tie­re oder Insek­ten. Sie neh­men Licht haupt­säch­lich durch ihre Haut wahr, die ihre gesam­te Kör­pe­ro­berf­lä­che bedec­kt. Übers­chüs­si­ges Licht im Aqu­arium führt zu grünem Algen­wachs­tum, wäh­rend Licht­man­gel zu brau­nen Algen führt. In der Ver­gan­gen­he­it wur­den Glüh­lam­pen zur Zucht ver­wen­det. Die­se Pra­xis wur­de jedoch auf­ge­ge­ben, da sie eher als Wär­me­qu­el­le denn als Lich­tqu­el­le gee­ig­net sind. Kom­pakt­le­uchts­toff­lam­pen sind eine übli­che Alter­na­ti­ve, aber ihre Effi­zienz ist geringer.

Flu­ores­zie­ren­de Röh­ren wer­den für Aqu­arien über 50 cm Höhe bevor­zugt. Für noch bes­se­re Durchd­rin­gung in höhe­ren Tanks wer­den Hochd­ruc­ken­tla­dungs­lam­pen (HQI) emp­foh­len. Regel­mä­ßi­ge War­tung und Aus­tausch der Röh­ren sind ents­che­i­dend für eine opti­ma­le Leis­tung. Vor­sichts­ma­ßnah­men wie die Ver­wen­dung eines Vors­chalt­ge­räts vor dem Schal­ter und dem Star­ter kön­nen die Lebens­dau­er von Leuchts­toff­röh­ren ver­län­gern. Ein regel­mä­ßi­ger und objek­tiv kon­trol­lier­ba­rer Lichtp­lan ist ents­che­i­dend für das Wohl­be­fin­den des Aqu­ariums. Timer sind bes­ser als die Abhän­gig­ke­it von men­sch­li­chem Ein­gre­i­fen. Aqu­arium­sets mit Pflan­zen soll­ten für opti­ma­les Wachs­tum 12 – 14 Stun­den am Tag bele­uch­tet wer­den. Die Vors­tel­lung, dass es aus­re­icht, einem pros­pe­rie­ren­den Aqu­arium nur abends Licht zu geben, ist ein Irr­tum. Die Regel­mä­ßig­ke­it des Licht­re­gi­mes bee­in­flusst das Ver­hal­ten und die Gesamt­be­we­gung der Fis­che erheb­lich. Eini­ge Fis­che ändern sogar ihre Sch­wim­mus­ter basie­rend auf der Rich­tung der Lich­tqu­el­le. Zusam­men­fas­send ist eine ord­nungs­ge­mä­ße Bele­uch­tung für ein blühen­des Aqu­arium uner­läss­lich, wobei Fak­to­ren wie Licht­typ, Dau­er und Zeitp­lan zu berück­sich­ti­gen sind.

Use Facebook to Comment on this Post