Akvaristika, Biológia, Biológia rastlín, Príroda, Rastliny

Vodné rastliny

Hits: 50744

Vod­né rast­li­ny sa líšia od sucho­zem­ských rast­lín, sú adap­to­va­né na pro­stre­die pod vodou. Lis­ty vod­ných rast­lín majú prie­du­chy aj na vrch­nej, aj na spod­nej stra­ne – tak­po­ve­diac dýcha­jú obo­ma “stra­na­mi” na roz­diel od sucho­zem­ských rast­lín. Povrch sucho­zem­ských rast­lín tvo­rí kuti­ku­la, u rast­lín vod­ných tak­mer u všet­kých dru­hov chý­ba. Prav­de­po­dob­ne by naj­mä brá­ni­la difú­zii ply­nov. Plá­va­jú­ce rast­li­ny oby­čaj­ne neza­ko­re­ňu­jú, ani tie, kto­ré žijú na hla­di­ne. Kore­ne sú čo do tva­ru obdob­né ako pri sucho­zem­ských dru­hoch. Do dôsled­kov nemož­no brať za kaž­dých okol­nos­tí vodu ako bari­é­ru, pre­to­že sú vod­né rast­li­ny, kto­ré aj v pri­ro­dze­ných pod­mien­kach vyras­ta­jú nad hla­di­nu, resp. ras­tú v moča­ri­nách s níz­kou hla­di­nou vody vo veľ­kom vlh­ku. Aj v akva­ris­ti­ke sa zau­ží­val pojem sub­merz­ná for­ma a emerz­ná for­ma rast­li­ny. Sub­merz­ná for­ma ras­tie pod hla­di­nou vody, emerz­ná for­ma nad hla­di­nou. Jed­not­li­vé for­my sa čas­to líšia, okrem iné­ho tva­rom, aj far­bou. V pra­xi je v drvi­vej väč­ši­ne pou­ží­va­né nepo­hlav­né roz­mno­žo­va­nie rast­lín – odrez­ka­mi, pop­laz­mi, výhon­ka­mi apod. Sub­merz­ná for­ma môže aj v akvá­riu vyrásť do emerz­nej for­my – čas­to napr. Echi­no­do­rus. Ak je nádrž pre rast­li­nu prí­liš níz­ka, čas­to si náj­de ces­tu von. Avšak aj vod­ná rast­li­na kvit­ne a čas­to veľ­mi podob­ne ako sucho­zem­ské dru­hy. Kvet tvo­rí nie­ke­dy pod hla­di­nou, čas­tej­šie nad jej povr­chom. Pohlav­né mno­že­nie rast­lín nie je vylú­če­né, ale je prob­le­ma­tic­ké a je skôr prá­cou pre špe­cia­lis­tu. Vod­né rast­li­ny sú väč­ši­nou zele­né, nie­ke­dy čer­ve­né, fia­lo­vé, hne­do­čer­ve­né. Exis­tu­je množ­stvo dru­hov vod­ných rastlín.

Svet­lo je dôle­ži­tým fak­to­rom pre rast­li­ny – sú dru­hy tie­ňo­mil­né, napr. Mic­ro­so­rium, Vesi­cu­la­ria, dru­hy svet­lo­mil­né, napr. Sal­vi­nia, Pis­tia. Roz­die­ly sú aj v otáz­ke opti­mál­nej tep­lo­ty. Sú dru­hy, kto­ré pri rela­tív­ne malom roz­die­ly tep­lo­ty ras­tú evi­den­tne inak. Lis­ty sú hus­tej­šie pri sebe v chlad­nej­šej vode, far­ba lis­tov je tmav­šia apod. Väč­ši­na vod­ných akvá­ri­ových rast­lín má pomer­ne úzky roz­sah tep­lo­ty, v kto­rej žijú. Nie­kto­ré akvá­ri­ové dru­hy zne­sú naozaj veľ­mi níz­ke tep­lo­ty, podob­né už aj našim stu­de­no­vod­ným prí­rod­ným pod­mien­kam mier­ne­ho pás­ma. Na rast­li­ny takis­to vplý­va prú­de­nie vody. Nie­kto­ré dru­hy sú sta­va­né na sto­ja­té vody, nie­kto­ré na rých­lo tečú­ce toky. V akvá­riu je zdro­jom prú­dov vody naj­mä fil­ter a vzdu­cho­va­nie. Prú­de­nie vody znač­ne ovplyv­ňu­je deko­rá­cia, svo­ju úlo­hu zohrá­va aj sklon, reli­éf dna. Rov­né dno dáva vznik sil­nej­šie­mu prú­de­niu. Na rast­li­ny veľ­mi nebla­ho vplý­va­jú lie­či­vá pou­ží­va­né v akva­ris­ti­ke. Ich nega­tív­ny úči­nok je bohu­žiaľ dlho­do­bý. Ak máme mož­nosť, pre­saď­me aspoň časť rast­lín do inej nádr­že počas lieč­by. Aj to je dôvod na zria­de­nie samos­tat­nej karan­tén­nej nádr­že. Po pou­ži­tí lie­čiv je mož­né pou­žiť aktív­ne uhlie. Rast­li­ny akva­ris­ti pre­sá­dza­jú. naj­čas­tej­šie k tomu dochá­dza pri vege­ta­tív­nom rozmnožovaní.

Väč­šie mater­ské rast­liny neod­po­rú­čam čas­to pre­sá­dzať. Rast­li­ny môžu byť aj zdro­jom potra­vy pre ryby, sli­má­ky apod., čo je však väč­ši­nou nežia­du­ce. Čas­to sa na eli­mi­ná­ciu rias pou­ží­va­jú mla­dé prí­sav­ní­ky. Pokiaľ sú malé svo­ju úlo­hu plnia poc­ti­vo, no väč­šie sa rad­šej pus­tia do rast­lín. Sli­má­ky doká­žu takis­to požie­rať ria­sy, naj­mä ak majú nedos­ta­tok inej potra­vy, vedia sa však pus­tiť aj do rast­lín. Naj­roz­ší­re­nej­šie ampu­lá­rie rast­li­ny neže­rú. V akvá­riu svie­ti­me ume­lým svet­lom, dĺž­ka osvet­le­nia by mala byť taká ako v ich domo­vi­ne. Dôle­ži­té rov­na­ko je dodr­žia­vať pra­vi­del­nosť, 12 – 14 hodi­no­vý inter­val je nut­ný. Závi­sí od umiest­ne­nia, od toho či sme v tma­vej miest­nos­ti, aká je dĺž­ka den­né­ho svet­la a koľ­ko ho sln­ko posky­tu­je. Den­né svet­lo má inú kva­li­tu ako ume­lé svet­lo, dá sa mu iba pris­pô­so­biť. Dru­hy sú pris­pô­so­be­né rôz­ne­mu pro­stre­diu. Vod­né rast­li­ny, napo­kon rov­na­ko ako aj ich sucho­zem­ské prí­buz­né menia svoj meta­bo­liz­mus v závis­los­ti od strie­da­nia dňa a noci. Je to ich vlast­ný pri­ro­dze­ný bio­ryt­mus. Rast­li­ny cez deň pri­jí­ma­jú svet­lo, CO2, tvo­ria orga­nic­kú hmo­tu a ako ved­ľaj­ší pro­dukt tvo­ria kys­lík. Tej­to reak­cii vra­ví­me foto­syn­té­za.

V noci naopak rast­li­ny kys­lík pri­jí­ma­jú – rast­li­ny dýcha­jú a vylu­ču­jú do vody CO2. Rast­li­ny však dýcha­jú aj cez deň, pre­vlá­da však prí­jem CO2. Vply­vom dýcha­nia rast­lín v noci – pro­duk­cie CO2 sa pH v akvá­riu zvy­šu­je. Kon­cen­trá­cia CO2 stú­pa s tvrdo­s­ťou vody, tep­lo­tou vody a kle­sá s pH. Medzi základ­né fun­kcie rast­lín pat­rí mine­ra­li­zá­cia hmo­ty. Det­rit je usa­de­ná vrstva odpa­du, výka­lov rýb, sli­má­kov apod., kto­ré je nut­né roz­lo­žiť. Ten­to pro­ces, kto­rý usku­toč­ňu­jú mik­ro­or­ga­niz­my, naj­mä bak­té­rie. Rast­li­ny hra­jú pri­tom dôle­ži­tú úlo­hu, pre­to­že nie­kto­ré lát­ky doká­žu odbú­ra­vať aj ony, ale v kaž­dom prí­pa­de už mine­ra­li­zo­va­né lát­ky sú zdro­jom výži­vy pre ne. Nie­kto­ré kore­ne tvo­ria podob­ne ako lis­ty (zele­né čas­ti rast­lín) kys­lík, no za nor­mál­nych pod­mie­nok kaž­dá rast­li­na tvo­rí malé množ­stvo kys­lí­ka, kto­ré napo­má­ha aerób­nej reduk­cii hmo­ty oko­lo nich. Nie­kto­ré dru­hy doká­žu obzvlášť dob­re odčer­pá­vať z vody živi­ny, kto­ré sú pre akva­ris­tu žia­da­né, napr. Ric­cia flu­itans je ide­ál­nym bio­lo­gic­kým pros­tried­kom na zní­že­nie hla­di­ny dusič­na­nov. Podob­ný­mi schop­nos­ťa­mi oplý­va Cera­top­hyl­lum demer­sum. Obdob­ne Ana­cha­ris den­sa efek­tív­ne odčer­pá­va z vody váp­nik. Tie­to lát­ky rast­li­ny via­žu do svo­jich ple­tív a začle­ňu­jú sa do ich fyzi­olo­gic­kých pocho­dov. Vzhľa­dom na to, že čas­to ide o lát­ky pre nás akva­ris­tov nie prí­liš víta­né, je táto schop­nosť cenná.

Vplyv fil­tro­va­nia a naj­mä vzdu­cho­va­nia na rast rast­lín je viac-​menej nega­tív­ny. Nedá sa to jed­no­znač­ne pove­dať, ale fil­tro­va­nie, kto­ré čerí hla­di­nu, a teda aj vzdu­cho­va­nie je pre rast rast­lín nežia­du­ce, pre­to to nepre­há­ňaj­me. Udr­žia­vať akvá­ri­um cel­kom bez fil­trá­cie nechaj­me rad­šej na špe­cia­lis­tov, ja sám mám nie­koľ­ko takých akvá­rií. Rast­li­ny však môžu meniť aj far­bu. Vod­né rast­li­ny, ostat­ne podob­ne ako ich sucho­zem­ské prí­buz­né, oplý­va­jú vďa­ka chlo­ro­fy­lu pre­dov­šet­kým zele­ným sfar­be­ním. Avšak aj jeden jedi­nec môže vyka­zo­vať v prie­be­hu onto­ge­né­zy zme­ny. Fia­lo­vá far­ba inak zele­ných rast­lín má prí­či­nu vo veľ­kom množ­stve svet­la, žívín.

Sade­nie rastlín

V prvom rade by sme mali dodr­žať, že veľ­ké jedin­ce (dru­hy) sadí­me doza­du a men­šie dopre­du. Vyva­ruj­me sa tiež sade­niu pres­ne do stre­du nádr­že. Rov­na­ko s citom nará­baj­me so symet­ri­ou. Kore­ne skrá­ti­me ostrý­mi nož­nič­ka­mi na 1 – 2 cm (nie u rodu Anu­bias, Cryp­to­co­ry­ne) a pri sade­ní sa vyva­ruj­me ich poško­de­niu. Všet­ky kore­ne by mali byť v dne, žiad­ne trčia­ce kore­ne nie sú žia­du­ce. Pri nie­kto­rý rast­li­nách, kto­ré majú kore­ňo­vý sys­tém dob­re vyvi­nu­tý, napr. Echi­no­do­rus, zasa­de­nú rast­li­nu po zasa­de­ní mier­ne povy­tiah­ne­me – kore­ňo­vý krčok by mal troš­ku vyčnie­vať. V prí­pa­de odrez­kov je vhod­né, aby sme zasa­di­li rast­li­nu tak, aby sme nesa­di­li holú ston­ku, ale aby doslo­va spod­né lis­ty boli zafi­xo­va­né do dna. Vod­ná rast­li­ny tak zís­ka opo­ru, bude mať ove­ľa lep­šiu stav­bu. Plá­va­jú­ce rast­li­ny hla­di­ny Lim­no­bium, Pis­tia, Ric­cia, Sal­vi­nia voľ­ne pokla­dá­me na hla­di­nu, iné plá­va­jú­ce rast­li­ny voľ­ne hodí­me do vody. Nie­kto­ré z nich sú schop­né zako­re­niť, avšak nie dlho­do­bo. Ric­cia napr. sa dá cel­kom efekt­ne pou­žiť ako kobe­rec na dno. Keď­že sama ma ten­den­ciu vyplá­vať na hla­di­nu, je nut­né ju neja­ko zachy­tiť – napr. o plo­ché kame­ne. Mic­ro­so­rium, Anu­bias sa pri­pev­ňu­jú ku dre­vu, na fil­ter. Najv­hod­nej­šia na to je sple­ta­ná šnú­ra z rybár­ske­ho obcho­du. Ak kúpi­me rast­li­ny v obcho­de, prav­de­po­dob­ne budú zasa­de­né v koší­koch a v mine­rál­nej vate. Tie­to sa do akvá­ria neho­dia, naj­mä nie skal­ná vata, pre­to vod­né rast­li­ny vybe­rie­me z koší­kov a zba­ví­me ich pre­dov­šet­kým mine­rál­nej vaty. Výži­va rast­lín, hno­je­nie Rast­li­ny sa zís­ka­va­jú ener­giu via­ce­rý­mi spô­sob­mi. Ich pri­ro­dze­ným zdro­jom ener­gie je CO2 – oxid uhli­či­týsvet­lo. Sta­čí si spo­me­núť na foto­syn­té­zu zo ško­ly. Ak majú rast­li­ny dosta­tok CO2, nedo­ká­žu ho zužit­ko­vať pri nedos­tat­ku svet­la. Ak rast­li­ny majú dosta­tok svet­la, pri defi­ci­te CO2 ho nedo­ká­žu dosta­toč­ne využiť. Ak však sú obe hod­no­ty opti­mál­ne, je to veľ­ký pred­po­klad pre veľ­mi úspeš­ný rast našich rast­lín. V pora­dí dôle­ži­tos­ti by som svet­lo posta­vil pred CO2. Pre úspeš­ný rast rast­lín tre­ba kva­lit­né osvet­le­nie.

V prí­pa­de, že vidí­me pro­duk­ciu kys­lí­ka rast­li­na­mi – tvo­ria­ce sa bub­lin­ky čerstvé­ho kys­lí­ka, kon­cen­trá­cia kys­lí­ka v bun­ke stúp­la nad 40 mg/​l. Pre úspeš­nej­ší rast rast­lín je veľa krát vhod­né siah­nuť po dopl­ne­ní výži­vy. Ku zvý­še­né­mu pri­jí­ma­niu živín – ener­gie pris­pie­va aj prú­de­nie vody. Výži­vu rast­li­ny dostá­va­jú aj vo for­me odpad­ných látok – výka­lov rýb. Aj nádr­že tzv. holand­ské­ho typu (rast­lin­né) čas­to krát obsa­hu­jú neja­ké ryby, kto­ré slú­žia prá­ve na neus­tá­le obo­ha­co­va­nie živi­na­mi. V tom­to prí­pa­de skôr tými sto­po­vý­mi. V prí­pa­de, že sa vo vode nachá­dza nedos­ta­tok CO2 a rast­li­ny doká­žu z hyd­ro­ge­nuh­li­či­ta­nov ten­to zís­kať, môže dôjsť ku bio­gén­ne­mu odváp­ne­niu – vyzrá­ža­nie neroz­pust­né­ho uhli­či­ta­nu vápe­na­té­ho na povr­chu lis­tov. Pri­jí­ma­nie hyd­ro­ge­nuh­li­či­ta­nov je však ener­ge­tic­ky nároč­nej­šie. Akvá­ri­um má čas­to dosta­tok živín vo for­me exkre­men­tov rýb. Humí­no­vé kyse­li­ny sú lát­ky, kto­ré sa naj­mä v prí­ro­de bež­ne nachá­dza­jú vo vode. Sú to pro­duk­ty lát­ko­vej pre­me­ny dre­va, pôdy, lis­tov, čas­tí rast­lín. Z hľa­dis­ka využi­tia pre akva­ris­ti­ku je zau­jí­ma­vé pou­ži­tie dre­valis­tov, prí­pad­ne šišiek, škru­pín ore­chov apod. Sú nesmier­ne dôle­ži­té pre rast­li­ny, pre­to­že doká­žu byť ener­ge­tic­kým mos­tom medzi zdro­jom výži­vy a rast­li­nou. Vďa­ka tým­to orga­nic­kým kom­ple­xom doká­že rast­li­na zís­kať to, čo je prí­ro­da ponú­ka. Je to podob­ná fun­kcia ako majú bio­f­la­vo­no­idy pre vita­mín C. Dar­mo bude­me pri­jí­mať mega­dáv­ky vita­mí­nov ak ich telo nedo­ká­že zužit­ko­vať. Humí­no­vé kyse­li­ny sa tvo­ria v prí­ro­de v pôde. Žele­zo vo vode za nor­mál­nych pod­mie­nok veľ­mi rých­lo oxi­du­je na for­mu nevy­uži­teľ­nú pre rastliny.

Fil­ter je doslo­va požie­rač žele­za. Ak sa však via­že v che­lá­toch, v orga­nic­kých kom­ple­xoch, je prí­stup­né rast­li­nám. Ide o Fe2+, aj Fe3+, a prá­ve humí­no­vé kyse­li­ny sú sub­strá­tom, v kto­rom sa môže žele­zo uplat­niť pre rast­li­ny. Nedos­ta­tok žele­za spô­so­bu­je chlo­ró­zu, kto­rá sa pre­ja­vu­je sla­bým ple­ti­vom – sklo­vi­tý­mi lis­ta­mi, žlt­nu­tím naj­mä od okra­jov podob­ne ako aj u sucho­zem­ských rast­lín. Mine­rá­ly a sto­po­vé lát­ky sú zís­ka­va­né pri­ro­dze­nou ces­tou z vody a z det­ri­tu. Sto­po­vé lát­ky sú lát­ky, prv­ky, kto­ré nie sú nevy­hnut­né vo veľ­kom množ­stve, ale iba v níz­kych (sto­po­vých) kon­cen­trá­ciách – napr. Zn, Mn, K, Cu. Nie­kto­ré z tých­to prv­kov sú vo vyš­ších kon­cen­trá­ciách škod­li­vé až jedo­va­té. Det­rit je hmo­ta, tvo­re­ná mik­ro­or­ga­niz­ma­mi orga­nic­kou hmo­tou odum­re­tých rast­lín, výka­lov rýb apod. V prí­pa­de rast­lin­né­ho akvá­ria je čas­to kame­ňom úra­zu prá­ve obsah mine­rál­nych látok. Naj­lep­ší spô­sob ako toho dosiah­nuť sú ryby. Mik­ro­or­ga­niz­my – naj­mä nit­ri­fi­kač­né a denit­ri­fi­kač­né bak­té­rie roz­kla­da­jú hmo­tu na lát­ky využi­teľ­né rast­li­na­mi. Rast­li­ny ten­to zdroj ener­gie využí­va­jú naj­mä pomo­cou kore­ňov. Nie­kto­ré sú schop­né via­zať viac NO3 – dusič­na­nov napr. Cera­top­hyl­lum demer­sum, Ric­cia flu­itans. Veľa z nás má zdro­jo­vú vodu obsa­hu­jú­cu vyso­ké množ­stvo dusič­na­nov. Nor­ma pit­nej vody o maxi­mál­nej hod­no­te je dosť vyso­ká pre akva­ris­ti­ku, nevhod­né naj­mä pre nové akvá­ri­um. Vďa­ka pomer­ne vyso­ké­mu obsa­hu dusí­ka potom môže ľah­šie dôjsť ku tvor­be toxic­ké­ho amo­nia­ku.

Cyk­lus dusí­ka trvá nie­čo vyše mesia­ca, tak­že dusič­na­no­vý ani­ón pri­da­ný dnes putu­je eko­sys­té­mom akvá­ria viac ako mesiac, kým ho opus­tí. Denit­ri­fi­kač­né a nit­ri­fi­kač­né pro­ce­sy sú pomer­ne zlo­ži­té, zau­jí­ma­vé aj pre lai­ka je snáď fakt, že sa ako pro­dukt tých­to reak­cií tvo­rí aj plyn­ný dusík N2. Ten samoz­rej­me uni­ká do atmo­sfé­ry – von z nádr­že. Denit­ri­fi­kač­né bak­té­rie sa nachá­dza­jú vo fil­tri. Tak ako píšem v člán­ku o fil­tro­va­ní, je nevhod­né fil­trač­né vlož­ky pod­ro­bo­vať tečú­cej vode z bež­né­ho vodo­vo­du. Pre­to, aby sme neza­bi­li naše roz­vi­nu­té bak­té­rie je vhod­nej­šie umý­vať moli­tan vo vode neob­sa­hu­jú­cej chlór a ostat­né ply­ny pou­ží­va­né vo vodo­vod­nej sie­ti. Na trhu exis­tu­jú­ce pro­duk­ty, kto­ré obsa­hu­jú bak­té­rie, kto­ré sa pri­dá­va­jú do fil­tra. Na trhu sú dostup­né rôz­ne pro­duk­ty hno­jív a výži­vo­vých dopl­n­kov pre rast­li­ny. Neod­po­rú­ča sa kom­bi­no­vať hno­ji­vá ani rôz­nych firiem ani výrob­kov jed­nej fir­my. Mecha­nic­ky zachy­te­né čas­ti z fil­tra pou­ží­vam ako hno­ji­vo aj do kve­ti­ná­čov sucho­zem­ských rast­lín. Fil­ter ako oxi­dant oby­čaj­ne obsa­hu­je množ­stvo látok, hod­not­né je naj­mä žele­zo, kto­ré je bal­za­mom pre čas­to chu­dob­né pôdy v črep­ní­koch. Táto hmo­ta, je okrem toho tak­po­ve­diac natrá­ve­ná, tak­že sa v pôde pomer­ne rých­lo rozkladá. 

Raše­li­na zni­žu­je pH aj tvrdo­sť vody, vode posky­tu­je humí­no­vé kyse­li­ny a iné orga­nic­ké lát­ky. PMDD je sve­to­vo veľ­mi roz­ší­re­né tak­po­ve­diac neko­merč­né hno­ji­vo. Mie­ša sa zo síra­nu dra­sel­né­ho, hep­ta­hyd­rá­tu síra­nu horeč­na­té­ho, dusič­na­nu dra­sel­né­ho a sto­po­vých látok: B, Ca, Cu, Fe, Mn, Mo, Zn, kto­ré sú vo for­me orga­nic­ké­ho kom­ple­xu. Je to vhod­ná kom­bi­ná­cia, v kto­rej sú sto­po­vé lát­ky asi naj­dô­le­ži­tej­šie. CO2 ne pri­dá­vam pomo­cou zná­me­ho pro­ce­su kva­se­nia. Sta­čí však na to fľa­ša, do kto­rej nale­je­me tak­mer po vrch vodu, pri­dá­me drož­die (kvas­ni­ce) a cukor. Vodu na začia­tok odpo­rú­čam tep­lej­šiu (oko­lo 35°C). Fľa­šu uzat­vo­rím vrch­ná­kom, v kto­rom mám otvor pre hadič­ku, kto­rá na dru­hom kon­ci kon­čí v akvá­riu, kde je zakon­če­ná vzdu­cho­va­cím kame­ňom, ale­bo lipo­vým driev­kom. Pou­žiť sa dá úspeš­ne aj ciga­re­to­vý fil­ter. Prí­pad­ne hadič­ka kon­čí v akvá­ri­ovom fil­tri, cez kto­rý sa roz­stre­ku­je do vody. Taký­to dáv­ko­vač CO2 doká­že pro­du­ko­vať 3 – 5 týž­dňov oxid uhli­či­tý. Má to však chy­bu v tom, že nie je ošet­re­ný pro­ti náh­le­mu vzo­stu­pu pro­duk­cie CO2. V noci je lep­šie CO2 tak­to do nádr­že nepum­po­vať. Na pro­duk­ciu CO2 sa hodia aj bom­bič­ky z fľa­še na výro­bu sódy. Na trhu exis­tu­jú rôz­ne difú­ze­ry CO2. Ja pou­ží­vam CO2 fľa­šu, na kto­rej je redukč­ný ven­til a “ihlo­vý” (bicyk­lo­vý) ven­til, z kto­ré­ho ide hadič­ka do kanis­tra v akvá­riu. Fun­gu­je to tak, voda si “vypý­ta” toľ­ko CO2, koľ­ko “potre­bu­je”. Tak dosiah­nem maxi­mál­ne roz­um­né nasý­te­nie akvá­ria oxi­dom uhli­či­tým. Redukč­ný ven­til je nato, aby zní­žil tlak na 5 atmo­sfér. Ihlo­vý ven­til vo vše­obec­nos­ti je na to, aby tlak zní­žil na mie­ru vhod­nú do oby­čaj­nej ten­kej akva­ris­tic­kej hadič­ky. Exis­tu­jú aj nor­mál­ne ihlo­vé ven­ti­ly, ja však pou­ží­vam ven­til, kto­rý pou­ží­va­jú cyk­lis­ti na hus­te­nie pneuma­tík. Nesto­jí ani 10 €. Redukč­né ven­ti­ly exis­tu­jú rôz­ne, sú aj také, kto­ré na výstu­pe ponú­ka­jú tlak CO2, kto­rý môže ísť rov­no do nádr­že. Kom­bi­no­vať sa dá pomo­cou elek­tro­mag­ne­tic­kých ven­ti­lov, kto­ré by sa otvo­ril pod­ľa spí­na­ča. Ja si to ria­dim tak, že CO2 napus­tím vždy ráno. Neod­po­rú­čam sýtiť akvá­ri­um sústav­ne, tla­čiť do vody oxid uhli­či­tý cez otvo­re­né ven­ti­ly napr. cez roz­stre­ko­va­nie pomo­cou fil­tra. V kaž­dom prí­pa­de, či už pri zakú­pe­ní komerč­né­ho pro­duk­tu, ale­bo vlast­né­ho rie­še­nia, tre­ba mať na zre­te­li, že difú­zia ply­nov vo vode je rádo­vo 4 krát niž­šia ako vo vzdu­chu. Čiže podob­ne ako kys­lík, aj CO2 je pri­ja­té vo vyš­šom množ­stve za pred­po­kla­du tvor­by men­ších bub­li­niek. Hen­ry­ho zákon hovo­rí, že kon­cen­trá­cia roz­pus­te­né­ho ply­nu je pria­mo úmer­ná par­ciál­ne­mu tla­ku ply­nu nad jej hla­di­nou – je to v pod­sta­te ana­ló­gia ku osmo­tic­kým javom.

Use Facebook to Comment on this Post

Akvaristika, Technika

Osvetlenie akvária

Hits: 26482

Svet­lo je pod­stat­nou abi­otic­kou zlož­kou, kto­rou sa musí akva­ris­ta v byte zapo­die­vať. Za jeho výdat­nej pomo­ci pre­bie­ha­jú v akvá­riu bio­lo­gic­ké bio­che­mic­ké aj fyzi­kál­ne pro­ce­sy. Keď­že v mier­nom pás­me, v kto­rom sa nachá­dzam ja, a asi aj väč­ši­na z vás, kde je dĺž­ka slneč­né­ho svi­tu od jese­ne do jari nedos­ta­toč­ná, zabez­pe­če­nie ume­lé­ho osvet­le­nia je nevy­hnut­né. Samot­né slneč­né lúče sú síce pri­már­nym zdro­jom ener­gie, avšak nie sú prí­liš žia­du­ce v akva­ris­ti­ke. Dôvo­dom je to, že lúče v prí­ro­de nedo­pa­da­jú mimo hla­di­ny. V ume­lých nádr­žiach však dopa­da­jú na boč­né ste­ny, čo je čas­to dôvo­dom rias na čel­nom skle aj vo vode. Navy­še vod­né toky tečú v doli­nách, a tie sú neraz zare­za­né v kra­ji­ne, v ska­lách. Z geomor­fo­lo­gic­ké­ho hľa­dis­ka sa dá pred­po­kla­dať, že vod­ný tok tečie v zvl­ne­nom pro­fi­le. To zna­me­ná, že slneč­né lúče ťaž­šie pre­ni­ka­jú do vody v nich ako u nás v dome či byte. Voda v prí­ro­de je okrem toho čas­to zne­čis­te­ná, ale­bo jed­no­du­cho zafar­be­ná.. Aj pre­to odpo­rú­čam mať akvá­ri­um v tmav­šej čas­ti miest­nos­ti, a svie­tiť počas dná rad­šej ume­lým svet­lo. Je len samoz­rej­mé, že slneč­né­ho svet­la sa celé­mu kom­ple­tu prav­de­po­dob­ne aj tak dosta­ne dosť. Ani rybám by sa asi nepá­či­lo neus­tá­le plá­vať v tme. Svo­ju úlo­hu má aj este­tic­ké a funkč­né hľa­dis­ko, naj­mä pri pozo­ro­va­ní živo­ta v akvá­riu. Ryby nedo­ká­žu prí­liš svet­lo pri­jí­mať oča­mi. Nie do takej mie­ry ako cicav­ce, ale­bo hmyz. Je to mož­no zvlášt­ne, ale evo­luč­ne nedo­siah­li taký stup­ňa vývo­ja, ako by sme si asi na prvý pohľad mys­le­li. Ryby pri­jí­ma­jú svet­lo hlav­ne kožou, celým povr­chom tela.

Pri nad­byt­ku svet­la v akvá­riu, vzni­ka­jú zele­né ria­sy, pri nedos­tat­ku svet­la, hne­dé ria­sy. Kedy­si sa pou­ží­va­li v cho­va­teľ­stve vôbec žia­rov­ky. Už dáv­nej­šie sa od toho upus­ti­lo. Je to vhod­né napr. pre pla­zy do terá­ria, kde ten­to skve­lý vyná­lez slú­ži skôr ako zdroj tep­la, ako svet­la. Náj­du prí­pad­ne uplat­ne­nie pre rast­lin­né akvá­ria ak akva­ris­ta nemá iný zdroj tep­lé­ho svet­la. Pre­to­že rast­li­ny pre­fe­ru­jú skôr tep­lú zlož­ku fareb­né­ho spek­tra, kto­rú posky­tu­je bež­ná žia­rov­ka. Je to podob­né ako u sucho­zem­ských rast­lín. Chlo­ro­fyl je obsia­hnu­tý aj vo vod­ných rast­li­nách, len ria­sy obsa­hu­jú iný typ chlo­ro­fy­lu. Sucho­zem­ské rast­li­ny majú foto­syn­te­tic­kú účin­nosť iba 1 %, tak­že je to z ľud­ské­ho pohľa­du, mrha­nie ener­gie. Je to zaprí­či­ne­né špe­cia­li­zá­ci­ou enzý­mov, chlo­ro­fy­lu a širo­ko­pás­mo­vos­ťou spek­tra pri­ro­dze­né­ho svet­la. Žia­rov­ky odo­vzdá­va­jú akva­ris­to­vi ener­giu tak, že 20 % sa trans­for­mu­je na svet­lo a 80 % na tep­lo. Ten­to stav nie je veľ­mi žia­du­ci. Akva­ris­ta potre­bu­je z osvet­le­nia zís­kať svet­lo, tep­lo je nad­by­toč­né. Navy­še zabez­pe­čiť dosta­toč­né žia­rov­ko­vé osvet­le­nie pre napr. väč­šiu nádrž môže byť prob­lém. Prob­lé­mom je aj to, že žia­rov­ko­vé svet­lo je bodo­vé. Tie­to nedos­tat­ky však nema­jú žia­riv­ky. Ich svet­lo sa šíri rov­no­mer­nej­šie a ener­giu odo­vzdá­va zhru­ba v opač­nom pome­re ako žia­rov­ka – 85% svet­lo, 15% tep­lo. Exis­tu­jú rôz­ne odpo­rú­ča­nia, pre žia­rov­ky odpo­rú­čam 1 – 2 W na 1 l objemu.

Pre žia­riv­ko­vé tru­bi­ce – na 1 dm2 plo­chy dna mini­mál­ne 1W, opti­mál­ne 1.5 – 2 W pri nádr­žiach do výš­ky 50 cm. Tí čo chcú pes­to­vať rast­li­ny môžu pou­žiť ešte vyš­šie výko­ny, avšak potom hro­zí vyso­ká kon­cen­trá­cia rias. Samoz­rej­me, že to nie je len o wat­toch. Zále­ží na sve­tel­nom toku, na tom akej kva­li­ty je dané svet­lo, či posky­tu­je tep­lú bie­lu, stu­de­nú bie­lu, mod­ré, čer­ve­né svet­lo, atď. Para­met­re by mali byť uve­de­né na tru­bi­ciach, odpo­rú­čam si to riad­ne pred kúpou pre­štu­do­vať. Bež­ne sa pou­ží­va­jú tru­bi­ce, kto­rých tep­lo­ta far­by je od 3500 – do 25000 Kel­vi­nov. Pre rast­lin­né akvá­ri­um odpo­rú­čam tep­lej­šie far­by – pod 5000K. Pre bež­né­ho akva­ris­tu 6500 K, pre mor­ské­ho akva­ris­tu nad 9300 K. Pou­ži­teľ­nosť tru­bíc je čas­to u špe­ciál­nych akva­ris­tic­kých tru­bíc 0.5 – 0.75 roka. To je veľ­mi krát­ka doba. Po nej je dob­ré tru­bi­ce vyme­niť, ich účin­nosť kle­sá až na 50%. Oby­čaj­nej­šie tru­bi­ce, vydr­žia účin­ne ove­ľa dlh­šie. Pri všet­kých tru­bi­ciach, s kto­rý­mi som sa dote­raz stre­tol, bola uve­de­ná život­nosť 8 000 – 10 000 hodín. Avšak špe­ciál­ne tru­bi­ce nedo­siah­nu za 0.5 roka 10 000 sve­tel­ných hodín a ich výkon­nosť pri­tom rapíd­ne kle­sá. Iné tru­bi­ce pri kon­ci život­nos­ti ešte stá­le majú 80 – 90 % účin­nosť. Pre­fe­ru­jem tru­bi­ce Phi­lips, Osram. V kaž­dom prí­pa­de je dob­ré mať poru­ke neja­ké náh­rad­né tru­bi­ce.

Pre vyš­šiu život­nosť tru­bíc je ide­ál­ne mať medzi vypí­na­čom a štar­té­rom pred­rad­ník. Svet­lo sa bude spí­nať naraz, a výraz­ne sa pre­dĺži život­nosť tru­bi­ce. Ako alter­na­tí­va ku line­ár­nym žia­riv­kám – tru­bi­ciam je mož­né pou­žiť aj kom­pakt­né žia­riv­ky. Tie sú napo­kon dnes už bež­ne dostup­né v hyper­mar­ke­toch. Ich účin­nosť je samoz­rej­me niž­šia. Pre akvá­ria vyš­šie ako 50 cm sa odpo­rú­čam tzv. HQI výboj­ky. Tie sú schop­né účin­nej­šie pre­svie­tiť vyš­ší vod­ný stĺpec ako žia­riv­ky. Pre to, aby naša nádrž pros­pe­ro­va­la je ide­ál­ne mať pra­vi­del­né, resp. objek­tív­ne kon­tro­lo­va­teľ­né spí­na­nie svet­la. Je to lep­šie rie­še­nie ako sa spo­lie­hať na ľud­ský fak­tor. Kom­ple­ty s rast­li­na­mi by mali mať dosta­tok svet­la počas dňa 12 – 14 hodín,. Pred­sta­va, že sta­čí posky­to­vať pros­pe­ru­jú­ce­mu akvá­riu svet­lo iba večer je myl­ná. Vod­né rast­li­ny sú skôr schop­né pris­pô­so­biť sa sla­bé­mu zdro­ju osvet­le­nia ako jeho nedos­ta­toč­nej dĺž­ke. Pre opti­mál­ne zabez­pe­če­nie pra­vi­del­né­mu sve­tel­né­ho reži­mu sú ide­ál­ne spí­na­cie hodi­ny. Pra­vi­del­nosť reži­mu vplý­va výraz­ne aj na akti­vi­tu a cel­ko­vé sprá­va­nie rýb. Nie­kto­ré ryby dokon­ca začnú inak plá­vať. Je to zná­me napr. o neón­kach. Ak im poskyt­ne­me boč­né svet­lo, kto­ré nedo­pa­dá zvr­chu, tak sa sta­ne, že neón­ky začnú úpl­ne mimo­voľ­ne plá­vať šik­mo. Ako by sa im naklo­ni­la zem – sna­žia ja plá­vať kol­mo na smer dopa­da­jú­cich lúčov. Napr. živo­rod­ky veľ­mi rých­lo “oží­va­jú” po zasvie­te­ní po pred­chá­dza­jú­cej “tme”, cich­li­dám sa narú­ša bio­ryt­mus a ove­ľa dlh­šie im trvá, než ich “pre­sved­čím” aby sa aspoň tro­chu rozp­lá­va­li. Dru­há stra­na min­ce je zase fakt, že pri tme nie sú také “sle­pé”. Napo­kon sami dob­re vie­me, že tma a svet­lo vplý­va výraz­ne aj na člo­ve­ka. Prob­lé­mom je, že spí­na­cie hodi­ny trpia na vyso­kú indukč­nú záťaž. Naj­pou­ží­va­nej­šie žia­riv­ko­vé tru­bi­ce majú vyso­kú indukč­nú záťaž, napriek rela­tív­ne níz­ke­mu odbe­ru prú­du. Pre­to odpo­rú­čam mecha­nic­ké spí­na­cie hodi­ny, ale­bo pre­ve­re­né digi­tál­ne. Mám skú­se­nosť, že digi­tál­ne spí­na­cie hodi­ny sa čas­to resetovali.

Use Facebook to Comment on this Post

Akvaristika, Biológia, Príroda, Ryby, Živočíchy

Fyziológia rýb a rastlín

Hits: 14810

Ryby

Krv­ný obeh rýb je jed­no­du­chý, ner­vo­vá sústa­va obdob­ne – tvo­rí ju jed­no­du­chý mozog mie­cha. Ryby dýcha­jú žiab­ra­mi, no nie­kto­rým dru­hom sa vyvi­nu­lo aj iný prí­jem vzdu­chu. Napr. pan­cier­ni­ky dýcha­jú črev­nou sliz­ni­cou atmo­sfé­ric­ký kys­lík. Laby­rint­kám na rov­na­ký účel slú­ži tzv. laby­rint. Laby­rint je pomer­ne zlo­ži­tý ústroj, kto­rý sa vyví­ja napr. bojov­ni­ciam, gura­mám po 50 dni ich živo­ta. Akva­rij­né ryby sa doží­va­jú 0.5 až 20 rokov. Pre veľ­mi hru­bé porov­na­nie sa dá uva­žo­vať, že men­šie dru­hy sa doží­va­jú niž­šie­ho veku a väč­šie dru­hy vyš­šie­ho. Napr. neón­ky sa doží­va­jú 2 – 3 roky, dánia, tet­ry, gup­ky 4 – 5 rokov, kap­ro­zúb­ky 1 – 4 roky, prí­sav­ní­ky Ancis­trus - 8 – 10 rokov, no väč­šie cich­li­dy aj 10 až 20 rokov. Sum­če­ky Cory­do­ras sa neraz doži­jú 18 rokov. Akva­ri­ové ryby ras­tú postup­ne. Dá sa pove­dať, že ras­tú celý svoj život. Vše­obec­ne mož­no pri porov­na­ní s prí­ro­dou kon­šta­to­vať, že ned­ra­vé dru­hy oby­čaj­ne nedo­sa­hu­jú veľ­kos­ti v prí­ro­de, naopak dru­hy dra­vé čas­to pre­kra­ču­jú veľ­kos­ti v prí­ro­de. Je to spô­so­be­né kon­ku­ren­ci­ou a našou sta­rost­li­vos­ťoukŕme­ním. Ak však nepos­ky­tu­je­me našim rybám dosta­tok pries­to­ru, ryby jed­no­du­cho tak veľ­mi naras­tú – ak bude­me cho­vať napr. aka­ru mod­rú v akvá­riu o obje­me 20 lit­rov, nepo­ras­tie ani zďa­le­ka do plnej veľ­kos­ti. Ak jej ale­bo v podob­nej situ­ácii poskyt­ne­me rybám časom väč­šiu nádrž, vedia náh­le narásť. Prí­pad­ne ryby nám ras­tú, ale vo väč­šej nádr­ži ras­tú ove­ľa rých­lej­šie. Nie­kto­ré ryby napr. nedos­ta­nú správ­nu stra­vu a akva­ris­ti vra­via, že sú tzv. sek­nu­té. Môže to byť spô­so­be­né napr. tým, že sú kŕme­né inak ako boli u iné­ho akva­ris­tu. Dôvo­dov na poma­lý rast, resp. jeho zasta­ve­nie je však neúre­kom. Sú nie­kto­ré taxó­ny, kto­ré ras­tú rých­lej­šie gene­tic­ky. Ide napr. o kap­ro­zúb­ky, kto­ré sa musia za jedi­nú sezó­nu – pol­ro­ka, naro­diť, dospieť, roz­mno­žo­vať sa a čosko­ro aj zomrieť.

Ryby sa vyzna­ču­jú pre­men­li­vou tep­lo­tou tela – pat­ria medzi poiki­lo­term­né živo­čí­chy – to zna­me­ná, že si nedo­ká­žu zabez­pe­čiť vlast­né tep­lo, sú v tom­to sme­re závis­lé od tep­lo­ty oko­li­té­ho pro­stre­dia. V pra­xi – ryba nachá­dza­jú­ca sa vo vode s tep­lo­tou 25°C má tep­lo­tu tela rov­na­ko 25°C. Je dob­re si uve­do­miť, že voda ma inú tepel­né vlast­nos­ti ako napr. vzduch, prí­pad­ne kov. Na jej zahria­tie je tre­ba väč­šie množ­stvo ener­gie ako pri vzdu­chu. To zna­me­ná, že aj na ochla­de­nie je tre­ba vyvi­núť viac úsi­lia. Pod­rob­nej­šie sa tými­to ener­ge­tic­ký­mi náklad­mi zaobe­rá iný člá­nok.

Mož­no ste si všim­li, že veľ­ká vod­ná nádrž doká­že ovplyv­niť oko­li­tú klí­mu. Voda drží tep­lo, kto­ré v lete ochla­dzu­je a v zime otep­ľu­je. Podob­ne sa sprá­va aj more. Vo vode sa ove­ľa rých­lej­šie strá­ca aj tep­lo náš­ho tela – vte­dy keď vstú­pi­me vo vody, asi 200 krát rých­lej­šie pri rov­na­kej tep­lo­te ako na vzdu­chu. Tepel­né vlast­nos­ti vody je vhod­né poznať. Vo vyš­šej tep­lo­te vody sa ryby čas­to cítia lep­šie, no táto tep­lo­ta zni­žu­je ich vek – keď­že pat­ria medzi orga­niz­my, kto­ré si neve­dia udr­žať stá­lu tep­lo­tu tela, ich meta­bo­liz­mus je pri vyš­šej tep­lo­te na akú sú gene­tic­ky adap­to­va­né, una­vo­va­ný viac. Vyš­šia tep­lo­ta doká­že život­ný cyk­lus rýb zní­žiť aj na polo­vi­cu. Vyš­šia tep­lo­ta zni­žu­je časom kon­dí­ciu, obra­ny­schop­nosť. Krát­ko­do­bo ryby vydr­žia aj vyso­ké a veľ­mi níz­ke tep­lo­ty. Tep­lo­ta kto­rú sú schop­né zniesť je 43°C. Po pre­kro­če­ní tej­to hra­ni­ce sa ryby dusia, strá­ca­jú koor­di­ná­ciu a kapú. Podob­ne sa sprá­va­jú aj po zní­že­ní tep­lo­ty pod 5°C. Je samoz­rej­mé, že nie­kto­ré dru­hy sú odol­nej­šie viac, iné menej. Samoz­rej­me mám na mys­li bež­né dru­hy tro­pic­ké­ho a subt­ro­pic­ké­ho pásma.

Svet­lo ryby vní­ma­jú pomer­ne sla­bo. V porov­na­ní tre­bárs z cicav­ca­mi, hmy­zom, hla­vo­nož­ca­mi je to pomer­ne sla­bé. Ich krát­ko­zra­ké oči nepat­ria medzi ich dob­re vyvi­nu­té zmys­ly. Ryby nema­jú vieč­ka, ani slz­né žľa­zy. Ryby poču­jú infra­zvuk. O ich príj­me a spra­co­va­ní zvu­ku toho veľa nevie­me. V kaž­dom prí­pa­de, naše bež­né zvu­ky nepo­ču­jú – ak sa vám to zdá – tak potom rea­gu­jú na vlne­nie, ale náš roz­ho­vor urči­te nepo­ču­jú. Ich slu­cho­vé ústro­je sú skôr orgá­nom rov­no­vá­hy. Boč­ná čia­ra je orgán, kto­rý doká­že veľ­mi veľa. Pomo­cou neho sa vedia napr. osle­pe­né jedin­ce orien­to­vať. Dokon­ca veľ­mi bez­peč­ne. Prav­de­po­dob­ne ním veľ­mi pres­ne vní­ma­jú vlne­nie, tlak, smer, prú­de­nie, elek­tro­mag­ne­tic­ké vzru­chy, potra­vu, pre­káž­ky, kto­ré doká­žu naj­lep­šie spra­co­vať a násled­ne sa pod­ľa nich riadiť.

Ryby majú aj hma­to­vé a čucho­vé bun­ky. Chu­ťo­vé bun­ky sa nachá­dza­jú aj v ústach ako by sme moh­li pred­po­kla­dať, no veľ­ká časť sa nachá­dza na plut­vách. Je to zau­jí­ma­vé, ale ryba sa dot­kne potra­vy plut­vou a vie, či je sústo môže chu­tiť, ale­bo nie. Ryby sa vyzna­ču­jú pohlav­ným dimor­fiz­mom. Zau­jí­ma­vý je však fakt, že nie­kto­ré dru­hy živo­ro­diek doká­žu za urči­tých okol­nos­tí zme­niť pohla­vie. Ten­to jav sa vysky­tu­je naj­mä u mečú­ňa mexic­ké­hoXip­hop­ho­rus hel­le­ri. V prí­pa­de, že sa v akvá­riu nachá­dza vyso­ká pre­va­ha sami­čiek – je teda nedos­ta­tok sam­cov, môžu sa nie­kto­ré samič­ky zme­niť na sam­ca – naras­tie im mečík, gono­pó­dium atď. Mno­ho však z takých­to sam­cov je neplod­ných. Mne samé­mu sa to v mojej pra­xi sta­lo, keď som cho­val dlh­ší čas mečú­ne. Zme­na pohla­via sa vysky­tu­je aj u iných dru­hov živo­ro­diek, nie však tak čas­to ako u X. hel­le­ri. Z hľa­dis­ka plod­nos­ti Xip­hop­ho­rus hel­le­ri je zau­jí­ma­vé, že čím neskôr dôj­de ku začiat­ku ras­tu mečí­ka sam­cov – vlast­ne ku dospie­va­niu, tým je sam­ček spra­vid­la plod­nej­ší. Ako však naz­na­ču­jem v pred­chá­dza­jú­com odstav­ci, ak k tomu dôj­de zme­nou pohla­via, čas­to sú sam­ci úpl­ne neplod­ní. Takz­va­ný sko­rí sam­ci, kto­rým sa mečík a gono­pó­dium tvo­rí v sko­rom veku majú vyš­šiu dis­po­zí­ciu k neplodnosti.


Rast­li­ny

Rast­li­ny žijú­ce pod vodou, resp. vod­né rast­li­ny vysky­tu­jú­ce sa v akva­ris­ti­ke sú veľ­mi blíz­ke prí­buz­né svo­jim sucho­zem­ským ekvi­va­len­tom. Rov­na­ko obsa­hu­jú ciev­ne zväz­ky, kto­ré sa nazý­va­jú žil­na­ti­na. Tie­to cie­vy a cie­vi­ce sú oby­čaj­ne dob­re vidi­teľ­né. Rast­li­ny dýcha­jú počas celé­ho 24 hodi­no­vé­ho cyk­lu, cez deň – resp. za dostat­ku svet­la pri­jí­ma­jú oxid uhli­či­tý a vodu a tvo­ria z tej­to neús­troj­nej hmo­ty sacha­ri­dy (sta­veb­né lát­ky) naj­mä pre kon­zu­men­tov a živo­to­dar­ný kys­lík. Na roz­diel od sucho­zem­ských rast­lín sú vod­né­mu pro­stre­diu pris­pô­so­be­né tak, že prí­jem živín, dýcha­nie pre­bie­ha celým povr­chom rast­li­ny (čas­to aj kore­ňom). Vod­né rast­li­ny nema­jú prie­du­chy – sucho­zem­ské rast­li­ny majú prie­du­chy na spod­nej stra­ne lis­tov. Rast­li­ny pro­du­ku­jú pro­stred­níc­tvom foto­syn­té­zy kys­lík. V prí­pa­de, že vidí­me pro­duk­ciu kys­lí­ka rast­li­na­mi – bub­lin­ky, kon­cen­trá­cia kys­lí­ka v bun­ke stúp­la nad 40 mg/​l. Avšak vzhľa­dom na dosť roz­diel­ne fyzi­kál­ne a che­mic­ké pod­mien­ky a cel­ko­vý cha­rak­ter vod­ných rast­lín, foto­syn­té­za vod­ných rast­lín pre­bie­ha ove­ľa pomal­šie ako u rast­lín sucho­zem­ských – teda aj ras­to­vé prí­ras­t­ky sú pre­to menšie.

Odka­zy

Use Facebook to Comment on this Post