Akvaristika, Biológia

Choroby rýb a ich liečenie

Hits: 66297

Kaž­dý asi pozná vetu: Zdra­vý ako ryba. Bodaj by vaše ryby boli zdra­vé, ale skú­se­nej­ší akva­ris­ta by sa asi tomu­to pore­kad­lu vyhol. Zárod­ky infek­cií sa vo vode úspeš­ne šíria a čas­to aj neus­tá­le vysky­tu­jú, avšak ryby samoz­rej­me dis­po­nu­jú imu­nit­ným sys­té­mom, kto­rý brá­ni prie­ni­ku cho­ro­by. Ten­to sys­tém môže byť samoz­rej­me rôz­ny­mi fak­tor­mi naru­še­ný, a tým sa bude­me tu zaobe­rať. Chcel by som však zno­vu zdô­raz­niť, že ryby si za nor­mál­nych pod­mie­nok, kto­ré by sme im mali vedieť poskyt­núť, pora­diť aj samé. Počas cho­ro­by ryba veľ­mi čas­to v závis­los­ti od dru­hu mení sfar­be­nie. Môže zbled­núť, aj stmavnúť.

Ak sme dospe­li do štá­dia, že sa nevyh­ne­me dez­ifen­kcii, vhod­ný je hyper­man­gán, ocot, čis­tá voda, zmes soli a octu, pod­ro­be­nie varu. Vyš­šia tep­lo­ta zni­žu­je v dlh­šom časo­vom obdo­bí kon­dí­ciu, imu­ni­tu rýb, aj keď sa v takej­to vode na pohľad cítia lep­šie a sú kraj­šie vyfar­be­né. Cho­ro­by rýb sú ťaž­šie diag­nos­ti­fi­ko­va­teľ­né a lie­či­teľ­né, naj­mä tie vnú­tor­né. Von­kaj­šie ocho­re­nia, kto­ré sú často­krát bada­teľ­né aj voľ­ným okom, aj keď aj medzi nimi sa náj­de zopár, kto­ré môžu aj napriek lie­če­niu kon­dič­ne dob­re dis­po­no­va­nej ryby viesť ku úhy­nu. Vnú­tor­né ocho­re­nia čas­to zis­tí­me pro­stred­níc­tvom zme­ny sprá­va­nia, prí­pad­ne až po úhy­ne. Špe­cia­li­zo­va­né vete­ri­nár­ne pra­co­vis­ká sú schop­né iden­ti­fi­ko­vať aj z mŕt­ve­ho mate­riá­lu typ ocho­re­nia. Pri pou­ži­tí lie­čiv je čas­to vhod­né z nádr­že rast­li­ny odstrá­niť, ak je to mož­né. Pre­to­že lie­či­vá rast­li­nám vyslo­ve­ne ško­dia, a ich účin­ky sú dlho­do­bé. Ak to nie je mož­né, po skon­če­ní lieč­by je vhod­né pou­žiť aktív­ne uhlie, kto­ré teore­tic­ky doká­že nie­čo z nena­via­za­ných súčas­tí lie­čiv a pro­duk­tov reak­cií nimi spô­so­be­ných, via­zať. Po urči­tom čase je nut­né samoz­rej­me aj aktív­ne uhlie odo­brať, pre­to­že stra­tí absorpč­né vlast­nos­ti. Šíre­nie cho­ro­by môže byť ploš­né, ale čas­to krát je via­za­né na jedi­né­ho hos­ti­te­ľa – čo nám dáva mož­nosť zba­viť sa cho­ro­by v jej počiat­ku pre­miest­ne­ním napad­nu­té­ho jedin­ca do inej nádr­že. Ak by sa také­mu­to para­zi­tu poda­ri­lo úspeš­ne zdo­lať svo­ju svo­ju obeť, táto už ďalej mu nebu­de posky­to­vať živi­ny, a prej­de resp. bude si hľa­dať nové­ho kan­di­dá­ta. Mož­no ste si všim­li nie­ke­dy, že neba­da­ne vám po jed­nom odchá­dza­jú ryby v pomer­ne dlhom časo­vom úse­ku – je to mož­ný násle­dok prá­ve také­ho­to prie­be­hu choroby.

Ich­ty­of­ti­ri­ó­za – je pomer­ne čas­té ocho­re­nie rýb, slan­go­vo sa mu hovo­rí kru­pič­ka. Spô­so­bu­je ho Icht­hy­opht­hi­rius mul­ti­fi­lis, kto­rý pat­rí medzi nálev­ní­ky. Ryby sú posia­te ako­by kru­pič­kou”. Cho­ro­ba pre­ni­ká do akvá­ria živou potra­vou, cudzou vodou, pri­ne­se­ný­mi ryba­mi. Pro­ti kru­pič­ke pomá­ha zvý­še­nie tep­lo­ty – soľ­ný kúpeľ opí­sa­ný niž­šie. Účin­ne potlá­ča kru­pič­ku aj mala­chi­to­vá zeleň, no tá vlast­ne len vylie­či symp­tó­my, samot­ná cho­ro­ba v zárod­koch zosta­ne, pre­to ju na lie­če­nie neod­po­rú­čam, ale hodia sa lie­či­vá na báze FMC.

Oodi­ni­ó­za – toto ocho­re­nie spô­so­bu­je Pis­ci­no­odi­nium pillularis.

Medzi ťaž­ké cho­ro­by rýb, kto­ré sú tak­mer nelie­či­teľ­né mož­no s isto­tou zara­diť myko­bak­te­ri­ó­zu – tuber­ku­ló­zu rýb. Pre­ja­vu­je sa naj­mä cho­rob­ným chud­nu­tím, pre­pad­nu­tou bruš­nou čas­ťou tela, nezá­uj­mom pri­jí­mať potra­vu. Je nut­né pozna­me­nať, že toto ocho­re­nie je ako jed­no z mála pre­nos­né doty­kom na člo­ve­ka. Ak lekár neprí­de na súvis s ryba­mi, môže skon­čiť aj smr­ťou pacien­ta. Čiže v prí­pa­de toh­to ocho­re­nia, nema­ni­pu­luj­me s ryba­mi ruka­mi, zabráň­me sty­ku s pos­ti­hnu­tou rybou.

Bak­te­riál­ny roz­pad plu­tiev spô­so­bu­je mik­ro­or­ga­niz­my Pse­udo­mo­nas, Aero­mo­nas. Ide o váž­nu cho­ro­bu, kto­rá sa účin­ne lie­či napr. pomo­cou príp­rav­ku Bac­to­pur Direct. Ten­to príp­ra­vok fir­my SERA zafar­bu­je vodu do žlto­ze­le­na, dôle­ži­tej­šie však je, že výraz­ne poško­dzu­je rast­li­ny, pre­to pri jeho pou­ži­tí rast­li­ny z akvá­ria odstrá­ni­me. Čas­to aj napriek lieč­be uhy­nie polo­vič­ka populácie.

Ples­ne - násled­kom náka­zy, dochá­dza na rybách k rôz­nym pre­ples­ňo­vej náka­zy. Ple­seň je huba, kto­rá v tom­to prí­pa­de napá­da pokož­ku rýb. Ples­ne sú pomer­ne dob­re na povr­chu vidi­teľ­né, nie­kto­ré sú lie­či­teľ­né Acrif­la­ví­nom, FMC a podob­ný­mi príp­rav­ka­mi, prí­pad­ne aj soľou, no nie­kto­ré sú váž­nej­šie a je nut­né siah­nuť po sil­nej­ších pros­tried­koch. Chcel by som však upo­zor­niť, že spó­ry ples­ní môžu byť prak­tic­ky neus­tá­le prí­tom­né vo vode, ale cho­rob­ný stav sa nemu­sí pre­ja­viť. Ryby majú imu­nit­ný sys­tém, kto­rý sa za opti­mál­nych pod­mie­nok doká­že brá­niť. Naj­mä drav­šie ryby, pora­ne­né sú účin­nej­šie napá­da­né ples­ňa­mi, ale ak je ryba v kon­dí­cii, v krát­kom čase si s ňou pora­dí. Pre­to, ak pozo­ru­je­me také­ho­to jedin­ca, nemu­sí­me nut­ne siah­nuť ku lieč­be, ale daj­me šan­cu pri­ro­dze­né­mu vývi­nu, zasiah­ni­me až v prí­pa­de že sa náka­za šíri, ale­bo ryby sú osla­be­né neja­kou väč­šou zme­nou. Názna­kom prí­tom­nos­ti ples­ňo­vé­ho ocho­re­nia je obtie­ra­nie sa o pod­klad, o pie­sok, o kame­ne. Ak regis­tru­je­me zvý­še­né otie­ra­nie, zrej­me ryby svr­bí prá­ve ple­seň – tým­to spô­so­bom sa jej sna­žia zbaviť.

Vod­na­tieľ­ka – ply­na­tosť. Pomer­ne váž­ne ocho­re­nie, kto­ré je zväč­ša spô­so­be­né nespráv­nou výži­vou. Pri podoz­re­ní podá­vaj­me menej biel­ko­vi­no­vých zlo­žiek a viac balast­ných látok. Pre­jav ocho­re­nia je však postup­ný, čiže aj jeho dozne­nie trvá dlh­šie obdobie.

Mala­wi blo­at - ocho­re­nie afric­kých jazer­ných cich­líd – venu­je sa mu samos­tat­ný člá­nok.

V prí­pa­de, že ryba trpí pokro­či­lou for­mou ťaž­ko lie­či­teľ­nej cho­ro­by, prí­pad­ne sme z neja­ké­ho iné­ho veľ­mi váž­ne­ho dôvo­du núte­ný ryby usmr­co­vať, mali by sme aj k tomu­to prob­lé­mu pri­stu­po­vať pro­fe­si­onál­ne a s úctou. Exis­tu­je via­ce­ro humán­nych metód, kto­rý­mi môže­me vyko­nať rybu usmr­tiť: prud­kým úde­rom ryby o pev­ný pod­klad, pono­re­ním do sódov­ky, mine­rál­ky – využi­je­me sil­ný nar­ko­ti­zač­ný úči­nok CO2 vo vyš­šej kon­cen­trá­cii, rých­lym pre­ru­še­ním chrb­ti­ce – mie­chy tes­ne za hla­vou ostrým pred­me­tom, veľ­mi stu­de­nou vodou, môže­me si pomôcť napr. ľadom. Lieč­ba Pri lieč­be môže­me čias­toč­ne úspeš­ne využiť aktív­ne uhlie, kto­ré adsor­bu­je množ­stvo nežia­du­cich látok, no pre­dov­šet­kým UV-​lampu. Ultra­fia­lo­vé žia­re­nie má svo­je využi­tie aj v medi­cí­ne, tak­že samoz­rej­me netrva­lo dlho a tech­nic­ké rie­še­nie pou­ži­tia UV-​žiarenia neda­lo na seba dlho čakať. UV-​lampa sa pou­ží­va buď ako fil­ter, ale­bo v akút­nom prí­pa­de pria­mo na kon­ta­mi­no­va­nú vodu. Jej účin­nosť je pomer­ne veľ­ká, napr. na dru­hy bak­té­rii [1] ako je Bacil­lus megat­he­rium, Clos­tri­dium teta­mi, Dysen­te­ry bacil­li, Mic­ro­coc­cus can­di­dus, Myxo­bac­te­rium tuber­cu­lo­sis, Pse­do­mo­nas aeru­ge­no­sa, Sal­mon­sel­la ente­ri­ti­dis, na víru­sy, na nálev­ní­ka, chlo­re­lu a mno­hé iné dru­hy a taxó­ny. Veľa lie­čiv pou­ží­va­ných v akva­ris­ti­ke je kon­takt­né­ho cha­rak­te­ru – čiže ak nara­zia na vhod­ný objekt, via­žu sa s ním. Zvy­čaj­ne sú teku­té. Pre­to je vhod­né zabez­pe­čiť prú­de­nie vody naprí­klad pomo­cou fil­tra, vzdu­cho­va­nia ale­bo inak a apli­ko­vať kva­pal­né lie­či­vo do celé­ho pries­to­ru zasia­hnu­té­ho cho­ro­bou. Čas­to som sa v pra­xi stre­tol s pou­ží­va­ním pre­ven­tív­nych pros­tried­kov. Pou­ží­va­jú sa špe­ciál­ne príp­rav­ky na ten­to účel, a často­krát aj lie­či­vá v niž­šej kon­cen­trá­cii. Som zásad­ne pro­ti, pre­to­že pou­ží­va­ním špe­ciál­nych príp­rav­kov osla­bu­je­me imu­nit­ný sys­tém našich rýb, kto­ré potom pri sil­nej­šom cho­ro­by nie sú schop­né náka­ze odo­lá­vať. Také­to pros­tried­ky potlá­ča­jú pri­ro­dze­nú odol­nosť orga­niz­mu. Pre­ven­ciu zabez­peč­me iným spô­so­bom – správ­ny­mi pod­mien­ka­mi cho­vu, výživ­nou roz­ma­ni­tou stra­vou, údrž­bou. Ak by som uva­žo­val o pou­ži­tí pre­ven­tív­nych pros­tried­kov, tak iba keď sú ryby v prí­liš stre­su­jú­com pro­stre­dí – napr. v pre­daj­ni, prí­pad­ne nie­kde kde dochá­dza k veľ­kým zme­nám v osád­ke rýb, nanaj­výš ak nech­ce­me pou­žiť pre nové ryby karan­té­nu. V prí­pa­de pou­ži­tia akých­koľ­vek roz­pust­ných lie­čiv musí­me uva­žo­vať o odo­bra­tí aktív­ne­ho uhlia z akvá­ria. Pre­to­že by lieč­ba bola znač­ne neúčin­ná – aktív­ne uhlie vo veľ­kej mie­re adsor­bu­je aj zlož­ky obsia­hnu­té v lie­či­vách. Jeho účin­ky je vhod­né využiť po lieč­be, tak ako som už spo­me­nul na inom mieste.

Soľ­ný kúpeľ – soľ je naj­mä medzi skú­se­nej­ší­mi akva­ris­ta­mi pou­ží­va­ný pros­trie­dok na lie­če­nie nie­kto­rých cho­rôb. Napr. na odstrá­ne­nie tzv. kru­pič­ky (1 poliev­ko­vá lyži­ca na 30 lit­rov vody) je mož­né soľ a zvý­še­nú tep­lo­tu úspeš­ne pou­žiť. Soľ spô­so­bu­je zvý­še­nie vylu­čo­va­nia sli­zu, kto­rým sa orga­niz­mus ryby bráni.

FMC – nie­kto­ré lie­či­vá sú pre­dá­va­né pod rôz­ny­mi obchod­ný­mi znač­ka­mi, no sú to odvo­de­ni­ny od FMC. FMC má širo­ko­s­pek­trál­ne pôso­be­nie, obsa­hu­je tri základ­né zlož­ky: for­ma­lín, mala­chi­to­vú zeleň a mety­lé­no­vú mod­rú. Je pomer­ne účin­ný voči nie­kto­rým ekto­pa­ra­zi­tom a plesniam.

Hyper­man­gán – man­ga­nis­tan dra­sel­ný KMnO4 sa pou­ží­va napr. pro­ti kap­riv­co­vi, pro­ti ria­sam. Pôso­bí dez­in­fekč­ne, využí­va sa aj v medicíne.

Try­paf­la­vín je prí­buz­ný acrif­la­ví­nu aj prof­la­ví­nu.

Pro­ti ekto­pa­ra­zi­tom sa pou­ží­va mety­lé­no­vá mod­rá mala­chi­to­vá zeleň. Che­mic­ky mala­chi­to­vá zeleň pat­rí medzi trifenylmetány.

Z ďal­ších lie­čiv to je met­ro­ni­da­zol – enti­zol. Komerč­ne sa FMC ponú­ka aj pod rov­na­kým náz­vom FMC, ale aj napr. ako Multimedikal.

Aj v akva­ris­ti­ke sa využí­va­jú anti­bi­oti­ká: tet­ra­cyk­lín, streptomycín.

Karan­té­na Karan­té­na spo­čí­va v pries­to­ro­vej izo­lá­cii orga­niz­mov. Čas­to sa v karan­té­ne ryby lie­čia z neja­kej cho­ro­by. Karan­té­na sa využí­va po tran­s­por­te rýb, to zna­me­ná, že ak si kúpi­me nové ryby môže­me využiť karan­tén­nu nádrž. Ako zaria­diť takú­to nádrž? V prvom rade ide o jej veľ­kosť. Musí zod­po­ve­dať našim rybám. Na dno pou­ži­je­me len štrk, prí­pad­ne hrub­ší pie­sok, ale­bo môže­me mať karan­tén­nu nádrž bez dna. Fil­tro­va­nie, ak by sme ryby lie­či­li by bolo prob­le­ma­tic­ké, pre­to­že lie­či­vá nepriaz­ni­vo vplý­va­jú na mik­ro­or­ga­niz­my v ňom. Pre­to by som pou­žil len jed­no­du­chý fil­ter, kto­rý by plnil mecha­nic­kú fil­trá­ciu – čiže sta­čil by vnú­tor­ný moli­ta­no­vý fil­ter. Vzdu­cho­va­nie by som zavie­dol, nie je však nut­nos­ťou. Osvet­le­nie nemu­sí spl­ňo­vať najp­rís­nej­šie kri­té­riá. Rast­li­ny by som pou­žil len plá­va­jú­ce, napr. Cera­top­hyl­lum demer­sum, Najas apod. Do karan­té­ny sú vhod­né aj ryby, kto­ré boli ubi­té iný­mi ryba­mi v nádr­ži. Nie­kto­ré dru­hy rýb veľ­mi trpia po izo­lá­cii do karan­té­ny samo­tou. Naj­mä sociál­ne žijú­cim rybám táto izo­lá­cia čas­to veľ­mi urých­li prie­beh cho­ro­by. Je to veľ­mi ťaž­ko rie­ši­teľ­ná situ­ácia, kedy taký­to jedin­ci ska­pú skôr na násled­ky zme­ny, ako na cho­ro­bu, kto­rá ich celý čas kvárila.


Eve­ry­o­ne pro­bab­ly kno­ws the phra­se: Healt­hy as a fish.” May your fish be healt­hy, but a more expe­rien­ced aqu­arist would pro­bab­ly avo­id this pro­verb. Infec­ti­on germs spre­ad suc­cess­ful­ly in water and often occur con­ti­nu­al­ly. Of cour­se, fish have an immu­ne sys­tem that pre­vents dise­a­se. Howe­ver, this sys­tem can be dis­rup­ted by vari­ous fac­tors, and tha­t’s what we will focus on here. I would like to emp­ha­si­ze once again that, under nor­mal con­di­ti­ons that we should pro­vi­de them, fish can mana­ge on the­ir own. During an ill­ness, the fish often chan­ges its color depen­ding on the spe­cies. It may fade or darken.

If we have rea­ched the point whe­re we can­not avo­id disin­fec­ti­on, suitab­le opti­ons inc­lu­de potas­sium per­man­ga­na­te, vine­gar, pure water, a salt and vine­gar mix­tu­re, and boiling. Hig­her tem­pe­ra­tu­res affect the con­di­ti­on and immu­ni­ty of the fish over a lon­ger peri­od, alt­hough they may seem bet­ter and more beau­ti­ful­ly colo­red in such water at first glan­ce. Fish dise­a­ses are dif­fi­cult to diag­no­se and tre­at, espe­cial­ly the inter­nal ones. Exter­nal dise­a­ses, often visib­le to the naked eye, are also pre­sent, alt­hough some, des­pi­te tre­at­ment, can lead to the death of a healt­hy, well-​conditioned fish. Spe­cia­li­zed vete­ri­na­ry faci­li­ties can also iden­ti­fy the type of dise­a­se from dead mate­rial. When using medi­ci­nes, it is often advi­sab­le to remo­ve plants from the tank if possib­le, as medi­ca­ti­ons harm plants expli­cit­ly, and the­ir effects are long-​term. If this is not possib­le, it is advi­sab­le to use acti­va­ted car­bon after the tre­at­ment, which the­ore­ti­cal­ly can bind some of the unbound com­po­nents of medi­ci­nes and reac­ti­on pro­ducts. Of cour­se, acti­va­ted car­bon must be remo­ved after some time becau­se it loses its absorp­ti­on pro­per­ties. The spre­ad of the dise­a­se can be wides­pre­ad, but it is often tied to a sin­gle host. This gives us the oppor­tu­ni­ty to get rid of the dise­a­se at the begin­ning by moving the affec­ted indi­vi­du­al to anot­her tank. If such a para­si­te suc­cess­ful­ly over­co­mes its vic­tim, it will no lon­ger pro­vi­de it with nut­rients, and it will move on or find a new can­di­da­te. You may have noti­ced that your fish are gra­du­al­ly dying one by one over a lon­ger peri­od – this may be the result of just such a cour­se of the disease.

Icht­hy­opht­hy­ri­osis – is a fair­ly com­mon fish dise­a­se col­lo­qu­ial­ly cal­led whi­te spot dise­a­se.” It is cau­sed by Icht­hy­opht­hi­rius mul­ti­fi­li­is, which belo­ngs to cilia­tes. Fish are cove­red with whi­te spots.” The dise­a­se penet­ra­tes the aqu­arium through live food, fore­ign water, and intro­du­ced fish. Inc­re­a­sed tem­pe­ra­tu­re – a salt bath desc­ri­bed below – helps against whi­te spot dise­a­se. It is also effec­ti­ve in supp­res­sing whi­te spot with mala­chi­te gre­en, but it only cures the symp­toms, and the actu­al dise­a­se remains in its ear­ly sta­ges, so I do not recom­mend its use for tre­at­ment, but medi­ca­ti­ons based on FMC are suitable.

Oodi­niu­mo­sis – This dise­a­se is cau­sed by Pis­ci­no­odi­nium pillularis.

Among the seve­re fish dise­a­ses that are almost incu­rab­le, we can cer­tain­ly inc­lu­de myco­bac­te­ri­osis – fish tuber­cu­lo­sis. It mani­fests main­ly through pat­ho­lo­gi­cal ema­cia­ti­on, a sun­ken abdo­mi­nal area, and disin­te­rest in food inta­ke. It is neces­sa­ry to note that this dise­a­se, like one of the few, can be trans­mit­ted to humans by touch. So, in the case of this dise­a­se, let’s not mani­pu­la­te fish with our hands, avo­id con­tact with an affec­ted fish.

Bac­te­rial fin rot is cau­sed by mic­ro­or­ga­nisms Pse­udo­mo­nas, Aero­mo­nas. It is a seri­ous dise­a­se that can be effec­ti­ve­ly tre­a­ted, for exam­ple, with the pro­duct Bac­to­pur Direct. This SERA pro­duct stains the water yellowish-​green, but more impor­tan­tly, it sig­ni­fi­can­tly dama­ges plants, so when using it, remo­ve plants from the aqu­arium. Often, des­pi­te tre­at­ment, about half of the popu­la­ti­on may die.

Fun­gi – As a con­se­qu­en­ce of infec­ti­on, vari­ous fun­gal infec­ti­ons occur on fish. Fun­gi attack the skin of fish in this case. Some fun­gi are quite tre­a­tab­le with acrif­la­vi­ne, FMC, and simi­lar pre­pa­ra­ti­ons, or even with salt. Howe­ver, some are more seri­ous, and stron­ger agents may be needed. Howe­ver, I would like to point out that fun­gal spo­res can be prac­ti­cal­ly pre­sent in the water all the time, but the dise­a­sed con­di­ti­on may not mani­fest itself. Fish have an immu­ne sys­tem that, under opti­mal con­di­ti­ons, can defend itself. Espe­cial­ly agg­res­si­ve fish are more effec­ti­ve­ly attac­ked by fun­gi if inju­red, but if the fish is in good con­di­ti­on, it will cope with it in a short time. The­re­fo­re, if we obser­ve such an indi­vi­du­al, we do not neces­sa­ri­ly have to resort to tre­at­ment. Give a chan­ce for natu­ral deve­lop­ment; inter­ve­ne only if the infec­ti­on is spre­a­ding, or the fish are wea­ke­ned by some sig­ni­fi­cant change.

Hyd­ro­ps – Gas satu­ra­ti­on. A rela­ti­ve­ly seri­ous dise­a­se, which is most­ly cau­sed by impro­per nut­ri­ti­on. In case of sus­pi­ci­on, we should pro­vi­de less pro­te­i­na­ce­ous com­po­nents and more fib­rous sub­stan­ces. The mani­fe­sta­ti­on of the dise­a­se, howe­ver, is gra­du­al, so its cul­mi­na­ti­on takes a lon­ger period.

Mala­wi blo­at – a dise­a­se of Afri­can lake cich­lids – deser­ves a sepa­ra­te article.

In case a fish suf­fers from an advan­ced form of a high­ly incu­rab­le dise­a­se, or if we are for­ced to eut­ha­ni­ze fish for some other very seri­ous rea­son, we should app­ro­ach this issue pro­fes­si­onal­ly and with res­pect. The­re are seve­ral huma­ne met­hods by which we can eut­ha­ni­ze a fish: by a sharp blow of the fish against a solid sur­fa­ce, immer­si­on in soda, mine­ral water – we use the strong nar­co­tic effect of CO2 in a hig­her con­cen­tra­ti­on, a quick bre­ak of the spi­ne – the spi­nal cord just behind the head with a sharp object, very cold water, we can use ice, for exam­ple. Tre­at­ment During tre­at­ment, we can par­tial­ly use acti­va­ted car­bon, which adsorbs many unwan­ted sub­stan­ces, but espe­cial­ly UV lamp. Ultra­vi­olet radia­ti­on also has its uses in medi­ci­ne, so it did­n’t take long for a tech­ni­cal solu­ti­on to the use of UV radia­ti­on to appe­ar. The UV lamp is used eit­her as a fil­ter or direct­ly on con­ta­mi­na­ted water in case of acu­te tre­at­ment. Its effec­ti­ve­ness is quite sig­ni­fi­cant, for exam­ple, against bac­te­rial spe­cies [1] such as Bacil­lus megat­he­rium, Clos­tri­dium teta­ni, Dysen­te­ry bacil­li, Mic­ro­coc­cus can­di­dus, Myxo­bac­te­rium tuber­cu­lo­sis, Pse­do­mo­nas aeru­ge­no­sa, Sal­mo­nel­la ente­ri­ti­dis, against viru­ses, cilia­tes, chlo­rel­la, and many other spe­cies and taxa. Many medi­ci­nes used in aqu­aris­tics are con­tact in natu­re – that is, if they encoun­ter a suitab­le object, they bind to it. They are usu­al­ly liqu­id. The­re­fo­re, it is advi­sab­le to ensu­re water cir­cu­la­ti­on in some way, such as fil­tra­ti­on, aera­ti­on, or other­wi­se, and app­ly liqu­id medi­ci­ne to the enti­re area affec­ted by the outb­re­ak. I have often encoun­te­red the use of pre­ven­ti­ve mea­su­res. The­re are spe­cial pre­pa­ra­ti­ons for this pur­po­se, and often medi­ca­ti­ons in lower con­cen­tra­ti­ons. I am fun­da­men­tal­ly against it becau­se by using spe­cial pre­pa­ra­ti­ons, we wea­ken the immu­ne sys­tem of our fish, which then can­not resist infec­ti­on in more seve­re con­di­ti­ons. Such means supp­ress the natu­ral resis­tan­ce of the body. Pre­ven­ti­on should be ensu­red in anot­her way – through pro­per bre­e­ding con­di­ti­ons, diver­se nut­ri­ti­on, and main­te­nan­ce. If I were to con­si­der using pre­ven­ti­ve means, only when the fish are in a too stress­ful envi­ron­ment – for exam­ple, in a sto­re or some­whe­re whe­re the­re are lar­ge chan­ges in fish stoc­king, at most if we don’t want to use quaran­ti­ne for new fish. When using any solub­le medi­ci­nes, we must con­si­der remo­ving acti­ve car­bon from the aqu­arium. Becau­se the tre­at­ment would be lar­ge­ly inef­fec­ti­ve – acti­va­ted car­bon adsorbs to a lar­ge extent also the com­po­nents con­tai­ned in the medi­ci­nes. Its effects should be used after tre­at­ment, as I men­ti­oned elsewhere.

Salt bath – salt is used espe­cial­ly by more expe­rien­ced aqu­arists as a reme­dy for some dise­a­ses. For exam­ple, to remo­ve the so-​called whi­te spot (1 tab­les­po­on per 30 liters of water), salt and inc­re­a­sed tem­pe­ra­tu­re can be suc­cess­ful­ly used. Salt cau­ses an inc­re­a­se in mucus sec­re­ti­on, with which the fish orga­nism fights.

FMC – some medi­ci­nes are sold under vari­ous tra­de names but are deri­va­ti­ves of FMC. FMC has a bro­ad spect­rum of acti­on and con­tains three basic com­po­nents: for­ma­lin, mala­chi­te gre­en, and met­hy­le­ne blue. It is quite effec­ti­ve against some ecto­pa­ra­si­tes and fungi.

Potas­sium per­man­ga­na­te – potas­sium per­man­ga­na­te KMnO4 is used, for exam­ple, against carp pox, against algae. It acts disin­fec­tant, and it is also used in medicine.

Try­paf­la­vin is a rela­ti­ve of acrif­la­vi­ne and proflavine.

Against ecto­pa­ra­si­tes, met­hy­le­ne blue and mala­chi­te gre­en are used. Che­mi­cal­ly mala­chi­te gre­en belo­ngs to triphenylmethanes.

Other medi­ci­nes inc­lu­de met­ro­ni­da­zo­le – enti­zol. FMC is also com­mer­cial­ly avai­lab­le under the same name FMC, but also, for exam­ple, as Multimedical.

Anti­bi­otics are also used in aqu­aris­tics: tet­ra­cyc­li­ne, streptomycin.

Quaran­ti­ne Quaran­ti­ne con­sists of the spa­tial iso­la­ti­on of orga­nisms. Often, fish are tre­a­ted in quaran­ti­ne for some dise­a­se. Quaran­ti­ne is used after tran­s­por­ting fish, that is, if we buy new fish, we can use the quaran­ti­ne tank. How to arran­ge such a tank? First of all, it’s about its size. It must cor­res­pond to our fish. On the bot­tom, we use only gra­vel, possib­ly coar­ser sand, or we can have a quaran­ti­ne tank wit­hout a bot­tom. Fil­tra­ti­on, if we tre­at fish, would be prob­le­ma­tic becau­se drugs adver­se­ly affect mic­ro­or­ga­nisms in it. The­re­fo­re, I would only use a sim­ple fil­ter that would per­form mecha­ni­cal fil­tra­ti­on – an inter­nal foam fil­ter would be suf­fi­cient. Aera­ti­on would I intro­du­ce, but is not a neces­si­ty. Ligh­ting does not have to meet the stric­test cri­te­ria. Plants must only be flo­ating, such as Cera­top­hyl­lum demer­sum, Najas, etc. Quaran­ti­ne is also suitab­le for fish that were attac­ked by other fish in a tank. Some fish spe­cies suf­fer gre­at­ly after iso­la­ti­on in quaran­ti­ne. In par­ti­cu­lar, social­ly living fish often suf­fer gre­at­ly from the acce­le­ra­ted cour­se of the dise­a­se after iso­la­ti­on. It is a very dif­fi­cult situ­ati­on to sol­ve, whe­re such indi­vi­du­als die rat­her from the con­se­qu­en­ces of the chan­ge than from the dise­a­se that has been tor­men­ting them all the time.


Jeder kennt wahrs­che­in­lich den Satz: Gesund wie ein Fisch”. Möge es Ihren Fis­chen gut gehen, aber erfah­re­ne Aqu­aria­ner wür­den die­sem Sprich­wort wahrs­che­in­lich auswe­i­chen. Infek­ti­on­ske­i­me verb­re­i­ten sich im Was­ser erfolg­re­ich und tre­ten oft und regel­mä­ßig auf. Natür­lich ver­fügen Fis­che über ein Immun­sys­tem, das das Ein­drin­gen von Kran­khe­i­ten ver­hin­dert. Die­ses Sys­tem kann jedoch durch vers­chie­de­ne Fak­to­ren ges­tört wer­den, und darauf wer­den wir hier ein­ge­hen. Ich möch­te jedoch erne­ut beto­nen, dass Fis­che unter nor­ma­len Bedin­gun­gen, die wir ihnen bie­ten soll­ten, in der Lage sind, selbst zurecht­zu­kom­men. Wäh­rend einer Kran­khe­it ändert der Fisch oft sei­ne Far­be, abhän­gig von der Art. Es kann verb­las­sen oder verdunkeln.

Wenn wir den Punkt erre­icht haben, dass wir nicht auf Desin­fek­ti­on ver­zich­ten kön­nen, ist Kalium­per­man­ga­nat, Essig, rei­nes Was­ser, eine Mis­chung aus Salz und Essig, das Kochen gee­ig­net. Eine höhe­re Tem­pe­ra­tur bee­in­träch­tigt über einen län­ge­ren Zeit­raum die Kon­di­ti­on und Immu­ni­tät der Fis­che, obwohl sie sich in sol­chem Was­ser auf den ers­ten Blick bes­ser füh­len und schöner gefärbt sind. Fischk­ran­khe­i­ten sind sch­wer zu diag­nos­ti­zie­ren und zu hei­len, beson­ders die inne­ren. Äuße­re Kran­khe­i­ten, die oft mit blo­ßem Auge erkenn­bar sind, sind jedoch auch darun­ter, obwohl es auch sol­che gibt, die trotz Behand­lung zu einem gesun­den, gut kon­di­ti­onier­ten Fischs­ter­ben kön­nen. Inter­ne Kran­khe­i­ten erken­nen wir oft durch Ver­hal­ten­sän­de­run­gen oder erst nach dem Tod. Spe­zia­li­sier­te vete­ri­när­me­di­zi­nis­che Ein­rich­tun­gen kön­nen auch die Art der Kran­khe­it aus totem Mate­rial iden­ti­fi­zie­ren. Bei der Ver­wen­dung von Medi­ka­men­ten ist es oft rat­sam, Pflan­zen aus dem Aqu­arium zu ent­fer­nen, wenn mög­lich. Denn Medi­ka­men­te scha­den Pflan­zen ausd­rück­lich, und ihre Wir­kun­gen sind langf­ris­tig. Wenn dies nicht mög­lich ist, ist es nach Absch­luss der Behand­lung rat­sam, Aktiv­koh­le zu ver­wen­den, die the­ore­tisch etwas von den unge­bun­de­nen Bes­tand­te­i­len von Arz­ne­i­mit­teln und den von ihnen verur­sach­ten Reak­ti­ons­pro­duk­ten bin­den kann. Nach eini­ger Zeit muss natür­lich auch die Aktiv­koh­le ent­fernt wer­den, da sie ihre adsor­bie­ren­den Eigen­schaf­ten ver­liert. Die Ausb­re­i­tung der Kran­khe­it kann flä­chen­dec­kend sein, ist aber oft an einen ein­zi­gen Wirt gebun­den. Dies gibt uns die Mög­lich­ke­it, die Kran­khe­it zu Beginn durch Ver­le­gen des infi­zier­ten Indi­vi­du­ums in ein ande­res Aqu­arium los­zu­wer­den. Wenn es die­sem Para­si­ten gelingt, sein Opfer erfolg­re­ich zu über­win­den, wird es die­sem kei­ne Nahrung mehr geben, und es wird zu einem neuen Kan­di­da­ten wech­seln oder einen suchen. Viel­le­icht haben Sie schon ein­mal bemer­kt, dass Ihre Fis­che unbe­mer­kt über einen län­ge­ren Zeit­raum nach und nach ster­ben – das kann ein Ergeb­nis genau die­ses Kran­khe­its­ver­laufs sein.

Icht­hy­opht­hi­ri­ose – ist eine ziem­lich häu­fi­ge Fischk­ran­khe­it, umgangss­prach­lich als Wei­ßpünkt­chen­kran­khe­it bez­e­ich­net. Es wird von Icht­hy­opht­hi­rius mul­ti­fi­lis verur­sacht, der zu den Cilia­ten gehört. Fis­che sind mit Wei­ßpünkt­chen” bedec­kt. Die Kran­khe­it gelangt durch Lebend­fut­ter, frem­des Was­ser, mit­geb­rach­te Fis­che ins Aqu­arium. Gegen Wei­ßpünkt­chen hilft eine Tem­pe­ra­tu­rer­höhung – ein Salz­bad, das wei­ter unten besch­rie­ben wird. Es unterd­rüc­kt Wei­ßpünkt­chen auch wirk­sam mit Mala­chitg­rün, heilt jedoch nur die Symp­to­me, die eigen­tli­che Kran­khe­it ble­ibt in den Anfän­gen erhal­ten, daher rate ich nicht zur Ver­wen­dung zur Behand­lung, son­dern es gibt Medi­ka­men­te auf FMC-Basis.

Oodi­niu­mo­se – Die­se Kran­khe­it wird durch Pis­ci­no­odi­nium pil­lu­la­ris verursacht.

Zu den sch­we­ren Fischk­ran­khe­i­ten, die fast unhe­il­bar sind, gehört sicher­lich die Myko­bak­te­ri­ose – die Fisch­tu­ber­ku­lo­se. Es zeigt sich haupt­säch­lich durch kran­khaf­te Abma­ge­rung, ein­ge­fal­le­nen Bauch­be­re­ich, Desin­te­res­se am Fut­ter. Es ist zu beach­ten, dass die­se Kran­khe­it wie eine der weni­gen berüh­rung­semp­find­lich auf den Men­schen über­tra­gen wer­den kann. Wenn der Arzt kei­ne Ver­bin­dung zu Fis­chen hers­tellt, kann dies auch zum Tod des Patien­ten füh­ren. Daher soll­ten wir in die­sem Fall, in dem wir so sch­wer­wie­gen­de Erk­ran­kun­gen in Bet­racht zie­hen, pro­fes­si­onell und res­pekt­voll vor­ge­hen. Es gibt meh­re­re huma­ne Met­ho­den, mit denen wir einen Fisch töten kön­nen: einen schar­fen Sch­lag des Fis­ches auf einen fes­ten Unter­grund, Ein­tau­chen in Soda, Mine­ra­lwas­ser – wir nut­zen die star­ke nar­ko­ti­sie­ren­de Wir­kung von CO2 in höhe­rer Kon­zen­tra­ti­on, ein schnel­les Bre­chen des Rückg­rats – das Rückg­rat kurz hin­ter dem Kopf mit einem schar­fen Gegens­tand, sehr kal­tes Was­ser, wir kön­nen zum Beis­piel Eis ver­wen­den. Behand­lung Bei der Behand­lung kön­nen wir tei­lwe­i­se erfolg­re­ich Aktiv­koh­le ver­wen­den, die vie­le uner­wün­sch­te Sub­stan­zen adsor­biert, aber vor allem UV-​Licht. Ultra­vi­olet­te Strah­lung fin­det auch in der Medi­zin Anwen­dung, daher dau­er­te es natür­lich nicht lan­ge, bis die tech­nis­che Lösung für die Ver­wen­dung von UV-​Strahlung bere­its­tand. UV-​Lampe wird ent­we­der als Fil­ter oder im aku­ten Fall direkt auf das kon­ta­mi­nier­te Was­ser ange­wen­det. Ihre Effek­ti­vi­tät ist ziem­lich hoch, zum Beis­piel gegen bes­timm­te Bak­te­rien [1] wie Bacil­lus megat­he­rium, Clos­tri­dium teta­mi, Dysen­te­rie­bak­te­rien, Mic­ro­coc­cus can­di­dus, Myxo­bac­te­rium tuber­cu­lo­sis, Pse­do­mo­nas aeru­ge­no­sa, Sal­mo­nel­la ente­ri­ti­dis, gegen Viren, gegen Cilia­ten, Chlo­rel­la und vie­le ande­re Arten und Taxa. Vie­le in der Aqu­aris­tik ver­wen­de­te Heil­mit­tel haben einen Kon­takt­cha­rak­ter – dh wenn sie auf ein gee­ig­ne­tes Objekt sto­ßen, bin­den sie sich daran. Sie sind in der Regel flüs­sig. Daher soll­ten wir für eine aus­re­i­chen­de Wasserzirk

ula­ti­on sor­gen, sei es durch Fil­tra­ti­on, Belüf­tung oder auf ande­re Wei­se, und das flüs­si­ge Arz­ne­i­mit­tel auf den gesam­ten vom Kran­khe­it­sausb­ruch bet­rof­fe­nen Bere­ich anwen­den. Ich bin oft auf die Ver­wen­dung von vor­be­ugen­den Mit­teln ges­to­ßen. Es gibt spe­ziel­le Prä­pa­ra­te für die­sen Zweck, und oft auch Medi­ka­men­te in nied­ri­ge­rer Kon­zen­tra­ti­on. Ich bin grund­sätz­lich dage­gen, weil wir durch die Ver­wen­dung spe­ziel­ler Prä­pa­ra­te das Immun­sys­tem unse­rer Fis­che sch­wä­chen, die dann bei sch­we­re­ren Kran­khe­i­ten der Infek­ti­on nicht widers­te­hen kön­nen. Sol­che Mit­tel unterd­rüc­ken die natür­li­che Widers­tands­fä­hig­ke­it des Orga­nis­mus. Die Vor­be­ugung soll­te auf ande­re Wei­se sicher­ges­tellt wer­den – durch rich­ti­ge Hal­tungs­be­din­gun­gen, abwechs­lungs­re­i­che Ernäh­rung und War­tung. Wenn ich über die Ver­wen­dung vor­be­ugen­der Mit­tel nach­den­ken wür­de, dann nur, wenn die Fis­che in einer zu stres­si­gen Umge­bung sind – z. B. im Ges­chäft oder an einem Ort, an dem sich die Fisch­be­sat­zung stark ändert, höchs­tens wenn wir kei­ne Quaran­tä­ne für neue Fis­che ver­wen­den möch­ten. Bei der Ver­wen­dung von auf­lös­ba­ren Arz­ne­i­mit­teln müs­sen wir darüber nach­den­ken, ob wir die Aktiv­koh­le aus dem Aqu­arium ent­fer­nen soll­ten. Denn die Behand­lung wäre weit­ge­hend unwirk­sam – Aktiv­koh­le adsor­biert in hohem Maße auch die in den Arz­ne­i­mit­teln ent­hal­te­nen Bes­tand­te­i­le. Ihre Wir­kun­gen soll­ten nach der Behand­lung genutzt wer­den, wie ich bere­its an ande­rer Stel­le erwähnt habe.

Salz­bad – Salz wird vor allem von erfah­re­ne­ren Aqu­aria­nern als Mit­tel zur Behand­lung eini­ger Kran­khe­i­ten ver­wen­det. Zum Beis­piel zur Ent­fer­nung von soge­nann­ten Wei­ßpünkt­chen (1 Ess­löf­fel pro 30 Liter Was­ser) kann Salz und erhöh­te Tem­pe­ra­tur erfolg­re­ich ver­wen­det wer­den. Das Salz verur­sacht eine Erhöhung der Sch­le­im­sek­re­ti­on, mit der der Orga­nis­mus des Fis­ches kämpft.

FMC – eini­ge Medi­ka­men­te wer­den unter vers­chie­de­nen Han­dels­na­men ver­kauft, sind aber Deri­va­te von FMC. FMC hat ein bre­i­tes Wir­kungss­pek­trum und ent­hält drei Haupt­bes­tand­te­i­le: For­ma­lin, Mala­chitg­rün und Met­hy­lenb­lau. Es ist ziem­lich effek­tiv gegen eini­ge Ekto­pa­ra­si­ten und Pilze.

Kalium­per­man­ga­nat – Kalium­per­man­ga­nat KMnO4 wird zum Beis­piel gegen Karp­fen­poc­ken, gegen Algen ver­wen­det. Es wir­kt desin­fi­zie­rend und wird auch in der Medi­zin eingesetzt.

Try­paf­la­vin ist ein Ver­wand­ter von Acrif­la­vin und Proflavin.

Gegen Ekto­pa­ra­si­ten wer­den Met­hylb­lau und Mala­chitg­rün ver­wen­det. Mala­chitg­rün gehört che­misch zu den Triphenylmethanen.

Zu den wei­te­ren Medi­ka­men­ten gehört Met­ro­ni­da­zol – Enti­zol. Kom­mer­ziell wird FMC auch unter dem gle­i­chen Namen FMC ange­bo­ten, aber auch z. B. als Multimedical.

In der Aqu­aris­tik wer­den auch Anti­bi­oti­ka ein­ge­setzt: Tet­ra­cyc­lin, Streptomycin.

Quaran­tä­ne Die Quaran­tä­ne bes­teht in der räum­li­chen Iso­la­ti­on von Orga­nis­men. Oft wer­den Fis­che in der Quaran­tä­ne gegen eine bes­timm­te Kran­khe­it behan­delt. Die Quaran­tä­ne wird nach dem Tran­s­port von Fis­chen ver­wen­det, das hei­ßt, wenn wir neue Fis­che kau­fen, kön­nen wir das Quaran­tä­ne­bec­ken ver­wen­den. Wie rich­te ich ein sol­ches Bec­ken ein? Vor allem geht es um sei­ne Größe. Es muss unse­ren Fis­chen ents­pre­chen. Am Boden ver­wen­den wir nur Kies, gege­be­nen­falls gro­ben Sand oder kön­nen ein Quaran­tä­ne­bec­ken ohne Boden haben. Die Fil­tra­ti­on wäre sch­wie­rig, wenn wir Fis­che behan­deln wür­den, weil Arz­ne­i­mit­tel einen nach­te­i­li­gen Ein­fluss auf die Mik­ro­or­ga­nis­men darin haben. Daher wür­de ich nur einen ein­fa­chen Fil­ter ver­wen­den, der die mecha­nis­che Fil­tra­ti­on erfüllt – ein inter­ner Schaum­stoff­fil­ter wür­de aus­re­i­chen. Belüf­tung wür­de ich ein­füh­ren, ist aber kei­ne Not­wen­dig­ke­it. Die Bele­uch­tung muss nicht den streng­sten Kri­te­rien ents­pre­chen. Pflan­zen müs­sen nur sch­wim­mend sein, z. B. Cera­top­hyl­lum demer­sum, Najas usw. In die Quaran­tä­ne kön­nen auch Fis­che ges­tellt wer­den, die von ande­ren Fis­chen in einem Bec­ken angeg­rif­fen wur­den. Eini­ge Fis­char­ten lei­den sehr unter der Iso­lie­rung in die Quaran­tä­ne. Ins­be­son­de­re sozial leben­de Fis­che lei­den oft sehr unter dem besch­le­unig­ten Ver­lauf der Kran­khe­it nach der Iso­la­ti­on. Es han­delt sich um eine sehr sch­wer zu lösen­de Situ­ati­on, in der sol­che Indi­vi­du­en eher an den Fol­gen der Verän­de­rung ster­ben als an der Kran­khe­it, die sie die gan­ze Zeit gequ­ält hat.


Lite­ra­tú­ra [1] Mala­wi Cich­lid Homepage

Use Facebook to Comment on this Post

2005, Časová línia, Do roku 2005, Organizmy, Príroda, Živočíchy, Zoologické záhrady

Morský svet Praha

Hits: 4044

V októb­ri 2005 som nav­ští­vil v Pra­he Mor­ský svet. Nachá­dza sa na Výsta­viš­ti. Zasta­vi­li sme sa tu tak troš­ku náho­dou. Boli tam pek­né veci, ale expo­zí­cia pôso­bi­la na mňa pomer­ne chlad­ne, tak nezaujato.


In Octo­ber 2005, I visi­ted the Sea World in Pra­gue, loca­ted at the Exhi­bi­ti­on Grounds. We stop­ped by some­what by chan­ce. The­re were nice things, but the exhi­bi­ti­on left me rat­her indif­fe­rent, not par­ti­cu­lar­ly impressed.


Odka­zy

Use Facebook to Comment on this Post

2004, Časová línia, Cicavce, Do roku 2005, Organizmy, Príroda, Vtáky, Živočíchy, Zoologické záhrady

ZOO Budapešť

Hits: 25805

ZOO Buda­pešť je urči­te tá najk­raj­šia zoolo­gic­ká záh­ra­da, kto­rú som nav­ští­vil. Bohu­žiaľ v čase, kedy som ešte veľ­mi dob­re nefo­til – iste sa tam vybe­riem zno­vu (Peter Kac­lík). Zoolo­gic­ká záh­ra­da v Buda­peš­ti je jed­nou z naj­star­ších na sve­te. Otvo­re­ná bola v roku 1866 (zoobu​da​pest​.com). Nájsť tu mož­no viac ako 8 000 zvie­rat. Nachá­dza sa čas­ti: Aus­trá­lia, Veľ­ké hru­bož­ce, Dom pri­má­tov, Sava­na, Vod­ný svet, India, Ame­ric­ké tró­py, Mada­gas­kar, Pla­zy, Mar­gi­tin ostrov, Dom motý­ľov, Magic­ké hory, Juho­vý­chod­ná Ázia (Janos Xan­tus dom) a Bota­nic­ké špe­cia­li­ty (zoobu​da​pest​.com). Zoolo­gic­ká záh­ra­da sa nachá­dza vo Város­li­ge­ti, vo veľ­kom mest­skom par­ku v cen­tre Buda­peš­ti. S roz­lo­hou viac ako 100 hek­tá­rov posky­tu­je dosta­tok pries­to­ru pre rôz­no­ro­dé expo­zí­cie a atrak­cie. Park je nie­len domo­vom pre množ­stvo exo­tic­kých dru­hov, ale aj mies­tom oddy­chu a vzde­lá­va­nia pre náv­štev­ní­kov. Jed­ným z hlav­ných cie­ľov Zoolo­gic­kej záh­ra­dy v Buda­peš­ti je aktív­na par­ti­ci­pá­cia v ochra­ne bio­di­ver­zi­ty. Záh­ra­da sa anga­žu­je v mno­hých medzi­ná­rod­ných ochra­nár­skych prog­ra­moch, vrá­ta­ne cho­vu ohro­ze­ných dru­hov v zaja­tí a rein­tro­duk­cie do ich pri­ro­dze­né­ho pro­stre­dia. Tým­to spô­so­bom pris­pie­va k udr­ža­teľ­nos­ti a obno­ve popu­lá­cií, kto­ré sú ohro­ze­né vyhy­nu­tím. Dis­po­nu­je via­ce­rý­mi uni­kát­ny­mi atrak­ci­ami, vrá­ta­ne expo­zí­cie sov a drav­cov, kto­rá posky­tu­je náv­štev­ní­kom pohľad na tie­to fas­ci­nu­jú­ce vtá­ky. Nachá­dza­jú sa tu samoz­rej­me aj kopyt­ní­ky, vod­né vtác­tvo, opi­ce, slo­ny, šel­my a mno­ho ďal­ších dru­hov. Okrem svo­jej úlo­hy v ochra­ne dru­hov je Zoolo­gic­ká záh­ra­da v Buda­peš­ti aj dôle­ži­tým cen­trom vzde­lá­va­nia. Orga­ni­zu­je rôz­ne vzde­lá­va­cie prog­ra­my, pred­náš­ky a works­ho­py, kto­ré majú za cieľ oslo­viť verej­nosť o nut­nos­ti ochra­ny prí­ro­dy. Pre odbor­ní­kov z oblas­ti bio­ló­gie a ochra­ny život­né­ho pro­stre­dia zabez­pe­ču­je aj prí­le­ži­tos­ti na výskum a vzdelávanie.


Buda­pest Zoo, dee­med by many, inc­lu­ding myself, as the most beau­ti­ful zoolo­gi­cal gar­den, cap­ti­va­tes visi­tors with its rich his­to­ry, diver­se exhi­bits, and unwa­ve­ring com­mit­ment to wild­li­fe con­ser­va­ti­on. Alt­hough my ini­tial visit lac­ked the pho­tog­rap­hic pro­wess I now possess, I am eager to return, as expres­sed by Peter Kac­lík. Foun­ded in 1866, Buda­pest Zoo stands as one of the worl­d’s oldest zoolo­gi­cal parks, boas­ting a lega­cy of over a cen­tu­ry and a half (zoobu​da​pest​.com). Bey­ond its his­to­ri­cal sig­ni­fi­can­ce, it has evol­ved into a glo­bal lea­der in wild­li­fe con­ser­va­ti­on. Span­ning over 100 hec­ta­res in the heart of Buda­pes­t’s Város­li­ge­ti City Park, the zoo is divi­ded into the­ma­tic sec­ti­ons that tran­s­port visi­tors across con­ti­nents. From the Aus­tra­lian Out­back to the Grand Savan­nah, Pri­ma­te Hou­se, Water World, and the enchan­ting Magic Moun­tains, each sec­ti­on offers a uni­que per­spec­ti­ve on the worl­d’s eco­sys­tems (zoobu​da​pest​.com). Buda­pest Zoo acti­ve­ly par­ti­ci­pa­tes in inter­na­ti­onal con­ser­va­ti­on prog­rams, inc­lu­ding cap­ti­ve bre­e­ding of endan­ge­red spe­cies and the­ir rein­tro­duc­ti­on into the­ir natu­ral habi­tats. This com­mit­ment con­tri­bu­tes sig­ni­fi­can­tly to the sus­tai­na­bi­li­ty and revi­ta­li­za­ti­on of endan­ge­red popu­la­ti­ons, alig­ning with the zoo’s pri­ma­ry goal of bio­di­ver­si­ty pro­tec­ti­on. Bey­ond its role in spe­cies con­ser­va­ti­on, Buda­pest Zoo ser­ves as a vital edu­ca­ti­on cen­ter. Through vari­ous edu­ca­ti­onal prog­rams, lec­tu­res, and works­hops, it aims to rai­se awa­re­ness among the pub­lic about the impor­tan­ce of natu­re con­ser­va­ti­on. Addi­ti­onal­ly, it pro­vi­des oppor­tu­ni­ties for pro­fes­si­onals in bio­lo­gy and envi­ron­men­tal con­ser­va­ti­on to enga­ge in rese­arch and con­ti­nu­ous lear­ning. Buda­pest Zoo seam­less­ly com­bi­nes beau­ty, his­to­ry, and a com­mit­ment to pre­ser­ving bio­di­ver­si­ty, making it a must-​visit des­ti­na­ti­on for natu­re ent­hu­siasts and tho­se see­king to con­tri­bu­te to the pro­tec­ti­on of our pla­ne­t’s wildlife.


A Buda­pes­ti Állat­ker­tet, amit sokan, köz­tük én is, a legs­zebb állat­kert­ként tar­ta­nak szá­mon, gaz­dag tör­té­nel­mé­vel, vál­to­za­tos kiál­lí­tá­sai­val és az álla­tok védel­mé­be vetett elköte­le­zett­sé­gé­vel hódít­ja meg a láto­ga­tó­kat. Bár az első láto­ga­tá­som során még nem ren­del­kez­tem a mos­ta­ni foto­g­rá­fiai képes­sé­ge­im­mel, alig várom, hogy újra oda­lá­to­gas­sak, aho­gy­an azt Peter Kac­lík is kife­jez­te. A 1866-​ban ala­pí­tott Buda­pes­ti Állat­kert több mint más­fél évs­zá­za­dos múl­tra tekint viss­za, büsz­kél­ked­ve a több mint szá­zöt­ven éves örök­sé­gé­vel (zoobu​da​pest​.com). Tör­té­nel­mi jelen­tősé­ge mel­lett glo­bá­lis veze­tővé vált a vadon élő álla­tok védel­mé­ben. Több mint 100 hek­tá­ron terül el a Buda­pes­ti Állat­kert a város szí­vé­ben, a Város­li­ge­ti Város­li­get­ben, tema­ti­kus rés­zek­re osz­lik, ame­ly­ek az egész vilá­got bejár­va mutat­ják be a külön­böző ökos­zisz­té­má­kat. Az auszt­rál Outback-​től a Nagy Sza­van­nán át a Prí­mák­tól a Vízi Vilá­gig és a varázs­la­tos Hegy­ekig, min­de­gy­ik rész egy­edi nézőpon­tot kínál a világ ökos­zisz­té­má­i­ra (zoobu​da​pest​.com). A Buda­pes­ti Állat­kert aktí­van részt vesz nemzet­közi védel­mi prog­ra­mok­ban, ide­ér­tve a ves­zé­ly­ez­te­tett fajok állat­kert­ben tör­té­nő sza­po­rí­tá­sát és viss­za­te­le­pí­té­süket a ter­més­ze­tes élőhe­ly­eik­re. Ez az elköte­le­zett­ség jelen­tősen hoz­zá­já­rul a ves­zé­ly­ez­te­tett popu­lá­ci­ók fenn­tart­ha­tó­sá­gá­hoz és újjá­é­lesz­té­sé­hez, össz­hang­ban az állat­kert fő cél­ki­tűzé­sé­vel, a bio­di­ver­zi­tás védel­mé­vel. Az Állat­kert sze­re­pe a fajok védel­mén túl­mu­tat­va fon­tos okta­tá­si köz­pont­ként is meg­ny­il­vá­nul. Külön­fé­le okta­tá­si prog­ra­mok­kal, előa­dá­sok­kal és műhe­ly­mun­kák­kal igy­eks­zik fel­hív­ni a nyil­vá­nos­ság figy­el­mét a ter­més­zet­vé­de­lem fon­tos­sá­gá­ra. Emel­lett lehe­tősé­get biz­to­sít a bio­ló­gia és kör­ny­ezet­vé­de­lem terüle­tén dol­go­zó sza­kem­be­rek­nek a kuta­tás­ra és foly­ama­tos tanu­lás­ra. A Buda­pes­ti Állat­kert kön­ny­edén ötvözi a szép­sé­get, a tör­té­nel­met és a köte­le­zett­ség­vál­la­lást a bio­di­ver­zi­tás megőr­zé­se érde­ké­ben, ezért köte­le­ző cél­pont min­den ter­més­zet­ked­ve­lő és min­da­zok szá­má­ra, akik hoz­zá kíván­nak járul­ni boly­gónk vadon élő álla­tai­nak védelméhez.


Odka­zy

Use Facebook to Comment on this Post

Akvaristika, Biológia

Parametre vody

Hits: 39750

Voda – H2O je spo­lu zo sln­kom asi naj­dô­le­ži­tej­šia pod­mien­ka živo­ta. Je to zlú­če­ni­na vodí­ka a kys­lí­ka. Ak v ché­mii povie­me roz­to­ky bez ďal­šie­ho prí­vlas­t­ku, je jas­né že ide o roz­tok vo vode. Voda sa nachá­dza v živých sústa­vách, v tka­ni­vách živo­čí­chov, ple­ti­vách rast­lín, v pro­ka­ry­o­tic­kých orga­niz­moch, v bak­té­riách, v orga­ne­lách buniek. Vo vode vzni­kol aj život, voda dáva pries­tor vzni­ku. Medzi vodí­kom a kys­lí­kom je špe­ci­fic­ká väz­ba, takz­va­ná vodí­ko­vá väz­ba, pre­to­že inak by bola voda za nor­mál­nych fyzi­kál­nych pod­mie­nok pri izbo­vej tep­lo­te plyn. Navy­še voda má tú vlast­nosť, že je naj­ťaž­šia“ pre tep­lo­te 4°C. Vďa­ka tomu, rie­ky, jaze­rá, poto­ky v zime neza­mŕ­za­jú od dna, čo by malo fatál­ne dôsled­ky. Vodí­ko­vá väz­ba spô­so­bu­je aj ďal­šiu ano­má­liu – pev­né sku­pen­stvo vody je red­šie ako v sta­ve kva­pa­li­ny. To zaprí­či­ňu­je trha­nie fliaš, narú­ša­nie väzieb v bun­kách orga­niz­mov pri tep­lo­tách pod bodom mra­zu. Voda v prí­ro­de však nie je nikdy čis­tá. Vždy obsa­hu­je čosi v sebe. V nej sa roz­púš­ťa mno­ho látok ako som už naz­na­čil vyš­šie. More zamŕ­za pri niž­šej tep­lo­te ako slad­ká voda, pre­to­že obsa­hu­je rela­tív­ne vyš­šie per­cen­to prí­me­sí, naj­mä solí. Prie­mer­ne 3.5%. Bod mra­zu mor­skej vode je oko­lo ‑1.7 °C. Che­mic­ky čis­tá voda je voda ste­ril­ná. Sku­pen­stvá vody takis­to vie snáď kaž­dý pome­no­vať – ľad, voda, vod­ná para.

Voda sa vyzna­ču­je puf­rač­nou schop­nos­ťou v závis­los­ti od roz­pus­te­ných látok v nej. To zna­me­ná, že doká­že pomer­ne účin­ne tlmiť rôz­ne vply­vy. Pre akva­ris­tu je táto vlast­nosť tak­mer vždy výho­dou. Voda má vyš­šiu puf­rač­nú schop­nosť ak je boha­tá na mine­rá­ly. Lát­ky v prí­ro­de sa sko­ro vždy vysky­tu­jú vo for­me iónov – sú teda diso­ci­ova­né. Vo vode obzvlášť. V akej podo­be, závi­sí od veľ­ké­ho množ­stva fak­to­rov. Voda je jed­no­du­cho poklad. My ako akva­ris­ti pou­ží­va­me oby­čaj­ne vodu pit­nú z vodo­vod­nej sie­te. Táto voda je pre akva­ris­ti­ku vhod­ná, ale zďa­le­ka nie ide­ál­na. Úpra­vy, kto­ré vodu zasiah­li počas jej tran­s­por­tu k nám sú naklo­ne­né nezá­vad­nos­ti pre nás ľudí, ako zdroj základ­nej teku­ti­ny na poží­va­nie, ale nie pre život v akvá­riu. Dnes sa už v ove­ľa men­šej mie­re v čis­tič­kách pou­ží­va na dez­in­fek­ciu chlór, ale kaž­do­pád­ne čerstvá voda obsa­hu­je mno­ho ply­nov, kto­ré nie sú žia­du­ce pre naše ryby. Máme dve mož­nos­ti ako sa toho zba­viť – buď príp­rav­ka­mi na to urče­ný­mi z obcho­du, ale­bo odstá­tím. Chlór vypr­chá behom 2 hodín – zále­ží od toho aká veľ­ká je plo­cha hla­di­ny a či je umož­ne­ný jej voľ­ný prie­chod. Ostat­né ply­ny vypr­cha­jú do 2 až 4 dní. Nie­kto­ré dru­hy sú chú­los­ti­vej­šie viac, iné menej, ale­bo prak­tic­ky vôbec.

Sprá­va­nie rýb nám čas­to napo­vie. Čias­toč­ne pomô­že napúš­ťa­nie vody poma­lým tokom v dlhej hadi­ci. To má napo­kon aj súvis so zvý­še­ním tep­lo­ty napúš­ťa­nej vody. Vhod­nej­šia je voda stu­de­ná ako tep­lá. Ak nemá­me vodu ohrie­va­nú boj­le­rom. Voda vo vodo­vod­nej sie­ti sa jed­no­znač­ne pou­ží­va naj­čas­tej­šie. Keď­že sa táto voda pou­ží­va ako voda pit­ná, moh­li by sme pred­po­kla­dať, že jej para­met­re by mali zod­po­ve­dať požia­dav­kám akva­ris­ti­ky. Veď pred­sa pit­ná voda dodr­žia­va nor­mu, hygie­nic­ké požia­dav­ky. Nie je tomu cel­kom tak, to čo vyho­vu­je nám, nie vždy je ide­ál­ne pre ryby. Vodo­vod­ná voda obsa­hu­je naj­čas­tej­šie tie­to nežia­du­ce zložky:

  • chlór (oby­čaj­ne 0.10.2 mg/​l) – zabí­ja (dez­in­fi­ku­je) mik­ro­or­ga­niz­my kto­ré tvo­ria dôle­ži­tú časť spo­lo­čen­stva v akváriu,
  • dusič­na­ny – nor­ma dovo­ľu­je veľ­mi vyso­ký obsah z hľa­dis­ka cho­vu nie­kto­rých dru­hov rýb ako sú napr. Trop­he­us, Apis­to­gram­ma, plô­dik Cory­do­ras sterbai,
  • fos­fo­reč­na­ny – spô­so­bu­jú napr. roz­mach siníc,
  • ťaž­ké kovy – naj­mä z potru­bia, v mor­skej akva­ris­ti­ke je ten­to prob­lém veľ­mi vypuklý,
  • flu­ori­dy,
  • ochran­né pros­tried­ky voči hmy­zuškod­com atď. Tie­to zlož­ky je mož­né eli­mi­no­vať napr. selek­tív­ny­mi ion­to­me­nič­mi, pomo­cou reverz­nej osmózy.

Voda z vodo­vo­du ma zvy­čaj­ne pH vyš­šie ako 7.5. Je to kvô­li tomu, aby neroz­púš­ťa­la a nena­lep­tá­va­la potru­bie. Má rôz­nu tvrdo­sť. Jej pres­né hod­no­ty vám ozná­mi prí­sluš­ná vodá­reň (vply­vom potru­bia, jej pre­no­su na ces­te do vašej domác­nos­ti vy sa nema­la prí­liš meniť), ale­bo si ju môže­te zme­rať. V akva­ris­tic­kých obcho­doch je pre ten­to účel dostať kúpiť rôz­ne pro­duk­ty. Ryby jed­not­li­vých oblas­tí sú pris­pô­so­be­né na urči­tú tvrdo­sť. Doká­žu exis­to­vať aj v inej vode, ale mali by sme sa im sna­žiť pris­pô­so­biť. Napr. oblasť Ama­zo­nu vyka­zu­je veľ­mi níz­ku tvrdo­sť, oblasť Mexi­ka naopak pomer­ne vyso­kú tvrdo­sť. IndiaSumat­ra posky­tu­je oby­čaj­ne vodu mäk­kú až stred­ne tvr­dú, naopak afric­ká Tan­ga­ni­ka vodu tvr­d­šiu. Je to ana­ló­giu ku moriam. Aj v nich exis­tu­je diver­zi­ta v obsa­hu solí. Balt­ské more obsa­hu­je iné množ­stvo ako Atlan­tik, a úpl­ne inú ako Mŕt­ve moreVoda hor­ských oblas­tí je oby­čaj­ne mäk­ká – žulo­vý pod­klad jad­ro­vých poho­rí, nížin­ných oblas­tí naopak tvr­d­šia – vyš­ší obsah vápen­cu blíz­kych hor­nín a pôd – sad­rov­ca, tra­ver­tí­nu. Úzko to súvi­sí z geolo­gic­kým pod­lo­žím a pedo­lo­gic­ký­mi pomer­mi. Tvrdo­sť u nás na Slo­ven­sku sa pohy­bu­je od zvy­čaj­ne od 5°N po 35°N.

Nie­kto však má vlast­nú stud­ňu. Táto voda môže byť veľ­mi dob­rá, avšak nechaj­te si rad­šej uro­biť roz­bor.. V prí­pa­de, že nie je pit­ná, zrej­me nebu­de vhod­ná ani pre akva­ris­ti­ku. Ide­ál­na je voda z artéz­skej stud­ne – takých je naozaj málo, posky­tu­jú mäk­kú vodu vyso­kej kva­li­ty. Nemu­sím zdô­raz­ňo­vať, že stud­nič­ná voda je voda bez úprav, tak­že nie je nut­né vodu nechať odstáť, snáď len v prí­pa­de vyš­šie­ho obsa­hu CO2. Ak sa nebo­jí­te expe­ri­men­to­vať, skôr by som pou­žil vodu pochá­dza­jú­cu z pra­me­ňov, resp. z hor­ných oblas­tí hor­ských oblas­tí, ale kaž­do­pád­ne blíz­ko pri pra­me­ni, a tam kde ešte neži­jú ryby. Táto voda je v zása­de veľ­mi vhod­ná, naj­mä v oblas­tiach, kde sú rašeliniská. 

Daž­ďo­vá voda je teore­tic­ky najv­hod­nej­ší zdroj vody. Ale v dneš­nej dobe v stred­nej Euró­pe by som veľ­mi neod­po­rú­čal pou­ží­vať daž­ďo­vú vodu. Zne­čis­ťo­va­nie je takých roz­me­rov, že to čo na nás padá často­krát z neba chu­tí skôr ako cit­rón ako voda. V atmo­sfé­re sa voda aku­mu­lu­je, obsa­hu­je mno­ho nežia­du­cich, až toxic­kých prí­me­sí. Neza­bú­daj­te, že prí­ro­da hra­ni­ce nepoz­ná. V nija­kom prí­pa­de, ak necho­vá­te jazier­ko­vé dru­hy, ale­bo stu­de­no­vod­né, neod­po­rú­čam pou­ží­vať vodu z ryb­ní­kov, poto­kov, riek.

Jeden zo základ­ných para­met­rov vody zau­jí­ma­vých a dôle­ži­tých pre akva­ris­tov je jej tvrdo­sť. Deter­mi­nu­je mož­nos­ti, kto­ré nám posky­tu­je pri úspeš­nom cho­ve, a odcho­ve rýb a pes­to­va­ní rast­lín. Tvrdo­sť urču­je obsah vápe­na­tých a horeč­na­tých solí (Ca + Mg). Defi­ní­cia stá­lej tvrdo­s­ti je urče­ná pre­dov­šet­kým síran­mi – SO42-, chlo­rid­mi – Cl dusič­nan­mi – NO32-Uhli­či­ta­no­vú tvrdo­sť (ozna­čo­va­nej nie­ke­dy aj pre­chod­nej) obsa­hom uhli­či­ta­nov – CO32– a hyd­ro­gé­nuh­li­či­ta­nov – HCO3. Tie­to však môžu byť navia­za­né aj na iné kati­ó­ny ako váp­nik resp. hor­čík – naj­čas­tej­šie na sodík – Na. Cel­ko­vá tvrdo­sť je súč­tom uhli­či­ta­no­vej a stá­lej tvrdo­s­ti. V pra­xi, aj mera­nia mera­jú zvy­čaj­ne cel­ko­vú tvrdo­sť a uhli­či­ta­no­vú tvrdo­sť. Vďa­ka tomu, že hyd­ro­gé­nuh­li­či­ta­ny sa môžu nachá­dzať aj v inej väz­be ako s Ca, Mg, ako to uvá­dzam v pred­chá­dza­jú­com odstav­ci, súčet uhli­či­ta­no­vej a stá­lej tvrdo­s­ti nemu­sí dávať rov­na­kú hod­no­tu ako je cel­ko­vá tvrdo­sť. Aj z toh­to dôvo­du sa čas­to uvá­dza iba tvrdo­sť uhli­či­ta­no­vá, ale­bo ako para­me­ter vody sa uvá­dza jej vodi­vosť. Jed­not­kou tvrdo­s­ti je mg.l-1 – čo sa však tak­mer vždy pre­rá­ta­va pria­mo­ú­mer­ne na dKH a dGH, ale­bo na stup­ne nemec­ké – °N. Akva­ris­ti mera­jú tvrdo­sť zväč­ša pomo­cou komerč­ne pre­dá­va­ných pro­duk­tov, kto­ré sú zalo­že­né na tit­rá­cii. Dochá­dza pri­tom ku zme­ne far­by roz­to­ku pomo­cou orga­nic­ké­ho far­bi­va, napr. mety­lo­ran­že, metyl­čer­ve­ne. Meria sa pomo­cou kva­piek – kto­ré pred­sta­vu­jú napr. 1 °N. Oso­bit­ne uhli­či­ta­no­vá a cel­ko­vá tvrdo­sť. Pre­poč­ty tvrdosti:

  • dKH – uhli­či­ta­no­vá tvrdosť
  • dNKH – stá­la tvrdosť
  • dGH – cel­ko­vá tvrdo­sť; 1°dGH = 10 mg/​l CaO ale­bo 14 mg MgO = 7.143 mg/​l Ca = 17.8575 mg/​l CaCO3 = 0.179 mol/​l CaCO3, inak 1 mmol/​l = 56.08 mg CaO/​l

Ioni­zá­cia – vodi­vosť – mineralizácia

Na diver­zi­fi­ko­va­nej­šiu kva­li­tu jed­not­li­vých prv­kov by som chcel nad­via­zať v tej­to čas­ti. Tvrdo­sť totiž vyjad­ru­je len to čo jej posky­tu­je defi­ní­cia. Avšak rea­li­ta nie je taká čier­no­bie­la. Voda v prí­ro­de, a aj vo vašom akvá­riu obsa­hu­je aj iné prv­ky, kto­ré sú hod­né pozor­nos­ti. Nej­de len o Ca a Mg. Je tu aj P, Na, K, Fe, S, orga­nic­ké che­lá­ty, humí­no­vé kyse­li­ny, atď. Nie­kto­ré z nich sa dajú merať – špe­ci­fi­ko­vať vodi­vos­ťou. Je to kom­plex­nej­šie vyjad­re­nie rea­li­ty ako v prí­pa­de mera­nia tvrdo­s­ti. Názor­ným prí­kla­dom roz­die­lom medzi tvrdo­s­ťou a vodi­vos­ťou je voda rie­ky Ama­zon. Táto obsa­hu­je len sto­po­vé množ­stvá Ca a Mg, pri­čom obsa­hu­je pomer­ne veľa iónov. Čiže aj keď je to voda prak­tic­ky nulo­vej tvrdo­s­ti, nej­de ani zďa­le­ka o vodu demi­ne­ra­li­zo­va­nú. Pre­to je chy­ba ak pre urči­tý druh pri­pra­ví­me vodu nulo­vej tvrdo­s­ti, kto­rá neob­sa­hu­je žiad­ne ióny – napr. des­ti­lá­ci­ou. Taká­to voda je prak­tic­ky ste­ril­ná. Aj ioni­zá­ciu vie­me upra­viť. Naše ryby sú nie­ke­dy vysta­ve­né šoku, kto­rý by sa dal popí­sať aj zme­nou vodi­vos­ti. Ak napr. vymie­ňa­me väč­šie množ­stvo vody – vte­dy môže dôjsť za urči­tých okol­nos­tí dôjsť ku výraz­nej­šie­mu pokle­su ale­bo k náras­tu kon­cen­trá­cie látok vo for­me iónov. Ale­bo ak napr. apli­ku­je­me NaCl – môže dôjsť až ku lep­ta­niu pokož­ky rýb – naru­še­niu sli­zo­vi­té­ho ochran­né­ho povla­ku rýb. Nie­ke­dy je to žia­du­ce, napr. je na tom zalo­že­ný lie­čeb­ný postup tzv. soľ­né­ho kúpe­ľu

Vodi­vosť je udá­va­ná v µS – mik­ro­sie­men­soch, je mera­teľ­ná kon­duk­to­me­rom. Slo­vo vodi­vosť nám hovo­rí že ide o vyjad­re­nie obsa­hu iónov. Syno­ny­mom je v tej­to súvis­los­ti aj slo­vo mine­ra­li­zá­cia, aj keď do dôsled­kov vyjad­ru­jú tie­to tri ter­mí­ny rôz­ne veci. Voda sama o sebe vyka­zu­je diso­ciá­ciu na ióny – H3OOH, opi­su­je to diso­ciač­ná kon­štan­ta – jav sa nazý­va pro­to­lý­za vody – vďa­ka nemu je che­mic­ky čis­tá voda elek­tric­kým vodi­čom. Avšak voda v prí­ro­de obsa­hu­je množ­stvo iónov, čím sa jej elek­tric­ké vlast­nos­ti dosť zme­nia. Na to sú mimo­cho­dom cit­li­vé naj­mä orga­niz­my žijú­ce vo vode, teda aj ryby. Roz­diel medzi obsa­hom mine­rá­lov a iónov sa dá vysvet­liť elek­tric­ký­mi vlast­nos­ťa­mi súčas­tí. Mine­rá­ly sú totiž aj vo for­me neut­rál­nej roz­pus­te­né vo vode, síce men­šie množ­stvo, ale pred­sa. Väč­ši­na zlo­žiek živých sústav vôbec a čas­to aj v prí­rod­ných sub­strá­toch diso­ci­ova­ná na iónypH – pon­dus hyd­ro­ge­nii pH je para­me­ter, kto­rý je defi­no­va­ný ako zápor­ný deka­dic­ký loga­rit­mus kon­cen­trá­cie vodí­ko­vej H3O+. Pohy­bu­je sa v inter­va­le 014. Jeho vyjad­re­nie je loga­rit­mic­ké, na čo je tre­ba brať zre­teľ – voda s pH 6 a pH 8 je voda dia­met­rál­ne roz­diel­na. Kon­cen­trá­cia zása­di­tej sku­pi­ny OH je v loga­rit­mic­kom vyjad­re­ní dopl­n­kom do čís­la 14, čiže ak má voda pH 6, kon­cen­trá­cia H3Oje 10-6 mol​.dm-3 a OH ja 10-8 mol.m-3. Ak má voda pH 7 hovo­rí­me, že je to voda neut­rál­na, pH pod 7 je voda kys­lá, nad 7 je voda zása­di­tá (alka­lic­ká). pH 8 napr. zna­me­ná, že voda o tep­lo­te 25 °C má kon­cen­trá­ciu H3O10-8 mol​.dm-3 OH 10-6 mol.m-3.

Väč­ši­na rýb potre­bu­je vodu kys­lú, pH sa pohy­bu­je v inter­va­le od 6.2 do 6.8. No sú dru­hy, kto­rým sa darí a nor­mál­ne sa roz­mno­žu­jú pri pH 5, ale­bo naopak nad pH 8. Z pH úzko súvi­sí aj kon­cen­trá­cia amo­nia­ku, cyk­lus dusí­ka. Pri vyso­kom ph je amo­niak vo vode vo for­me ove­ľa nebez­peč­nej­šej ako v kys­lom pro­stre­dí. pH stú­pa v noci vply­vom dýcha­nia rast­lín. pH kolí­še naj­mä v mäk­kých vodách, kde je puf­rač­ná schop­nosť vody niž­šia. Hod­no­ta pH úzko súvi­sí aj s foto­syn­té­zou dýcha­ním vod­ných rast­lín. To má na sve­do­mí kolí­sa­nie hla­di­ny CO2 vo vode – rast­li­ny via­žu CO2 a tie­to zme­ny majú za násle­dok kolí­sa­nie pH počas dňa, resp. kolí­sa­nie v závis­los­ti od dostup­né­ho svet­la, keď­že máme na mys­li pod­mien­ky v akvá­riu a nie v prírode. 

Oxid uhli­či­tý vplý­va na pH – pri reak­cii s H2O vzni­ká sla­bá kyse­li­na uhli­či­tá – H2CO3, ale­bo naopak sa kyse­li­na diso­ciu­je v zása­di­tom pro­stre­dí. Cyk­lus kyse­li­ny uhli­či­tej je veľ­mi zná­my v bio­ló­gii a pat­rí ku základ­ným pro­ce­som živo­ta. Je to ukáž­ka puf­rač­nej schop­nos­ti. Toto kolí­sa­nie sa vyzna­ču­je pomer­ne veľ­kou ampli­tú­dou, zme­na závi­sí od puf­rač­nej schop­nos­ti vody – prak­tic­ky čím je vode viac mine­rá­lov a látok schop­ných via­zať CO2 – čím je vyš­šia vodi­vosť, tým men­šie kolí­sa­nie. Hla­di­na CO2 je počas dňa (dostat­ku svet­la) niž­šia ako počas noci (nedos­tat­ku svet­la) – pH je v cez deň vyš­šie (alka­lic­ká fáza) ako v noci (kys­lej­šia fáza). Podob­né cyk­ly sú aj počas roč­ných obdo­bí – v lete dochá­dza pri inten­zív­nom ras­te ku nedos­tat­ku CO2 a tým ku zvý­še­niu hla­di­ny pH – tie­to zme­ny sú však pozo­ro­va­teľ­né skôr v prírode.

pH sa meria buď elek­tro­nic­ky, ale­bo pomo­cou reak­cie vo fareb­nej šká­le, čo je samoz­rej­me ove­ľa lac­nej­ší, avšak nepres­nej­ší nástroj – tit­rá­ci­ou. Obsah CO2 – oxi­du uhli­či­té­ho je závis­lý naj­mä od obsa­hu Ca a Mg – od tvrdo­s­ti vody a od pH vody, od kyse­li­ny uhli­či­tej a teda aj od puf­rač­nej schop­nos­ti vody. Súhr­n­ne môžem pove­dať, že závi­sí od bio­che­mic­kých vlast­nos­tí vody. Obsah CO2 je naj­mä pre rast rast­lín. Za nor­mál­nych okol­nos­tí totiž obsah oxi­du uhli­či­té­ho nie je tak vyso­ký, aby ohro­zo­val život rýb. Výnim­kou môže byť pou­ži­tie vody z mine­rál­nych pra­me­ňov prí­pad­ne z neove­re­nej stud­ne, z mine­rál­ky, ale­bo apli­ká­cia CO2. Hla­di­na CO2 stú­pa s množ­stvom uhli­či­ta­nov – s alka­li­tou vody a kle­sá s tep­lo­tou vody. V prí­ro­de – kde samoz­rej­me nie je che­mic­ky čis­tá voda – dochá­dza naj­mä v hlbo­kých jaze­rách a v sto­ja­tých vodách so sla­bým prú­de­ním k javu, kedy od urči­tej hĺb­ky je vode voľ­ný kys­lík (O2) vo veľ­kom defi­ci­te – to je pre ryby a pre vyš­šie rast­li­ny mŕt­va zóna. Ak sa obme­dzím na obsah kys­lí­ka v čis­tej vode, tak jeho kon­cen­trá­cia je závis­lá od tla­ku a tep­lo­ty. Keď­že pred­po­kla­dám, že tlak sa v akva­ris­tic­kej pra­xi veľ­mi neme­ní, osta­ne pre nás zau­jí­ma­vá len tep­lo­ta.

V závis­los­ti od tep­lo­ty je kon­cen­trá­cia kys­lí­ka vo vode v nepria­mej úme­re. Čím je voda tep­lej­šia, tým menej je v nej obsia­hnu­tý aj voľ­ný kys­lík. Mož­no ste si to už aj nie­ke­dy všim­li, že ryby vám počas horú­cich let­ných dní naj­mä v men­ších nádr­žiach zača­li pri zvý­še­ných tep­lo­tách stú­pať vyš­šie k hla­di­ne a rých­lej­šie dýchať. Nemož­no to však zjed­no­du­šo­vať, pre­to­že ak naozaj je v akvá­riu defi­cit kys­lí­ka, prí­či­nou nemu­sí a čas­to ani nie je len zvý­še­ná tep­lo­ta – prí­či­nu tre­ba hľa­dať inde. Skôr vo zvý­še­nom meta­bo­liz­me. Dochá­dza ku vyš­šej spot­re­be kys­lí­ka roz­klad­ný­mi pro­ces­mi. Ale aj vďa­ka sla­bej, resp. neúčin­nou fil­trá­cii. Čis­tá voda o tep­lo­te 0°C obsa­hu­je 14.16 mg kys­lí­ka, pri tep­lo­te 30°C tak­mer iba polo­vič­ku – 7.53 mg.

Z hľa­dis­ka meta­bo­liz­mu naj­mä rast­lín je žele­zo – Fe veľ­mi potreb­né. Jeho obsah závi­sí od oxi­dač­nej schop­nos­ti, od redox­né­ho poten­ciá­lu. Fe veľ­mi rých­lo doká­že oxi­do­vať na rast­li­nám neprí­stup­nú for­mu. Pla­tí to, čo som spo­mí­nal v úvo­de. Žele­zo je v akvá­riu, ale v akej for­me závi­sí od toho, či a kde je via­za­né. Exis­tu­jú aj pre potre­by akva­ris­tu tes­ty obsa­hu Fe zalo­že­né na podob­nom prin­cí­pe ako tes­ty na pH.


Water – H2O is pro­bab­ly the most cru­cial con­di­ti­on for life, along with the sun. It is a com­pound of hyd­ro­gen and oxy­gen. When we talk about solu­ti­ons in che­mis­try wit­hout furt­her spe­ci­fi­ca­ti­on, it is cle­ar that it is a solu­ti­on in water. Water is pre­sent in living sys­tems, in the tis­su­es of ani­mals, in plant tis­su­es, in pro­ka­ry­o­tic orga­nisms, in bac­te­ria, in cell orga­nel­les. Life itself ori­gi­na­ted in water; water pro­vi­des spa­ce for its emer­gen­ce. The­re is a spe­ci­fic bond bet­we­en hyd­ro­gen and oxy­gen cal­led a hyd­ro­gen bond, wit­hout which, under nor­mal phy­si­cal con­di­ti­ons at room tem­pe­ra­tu­re, water would be a gas. Addi­ti­onal­ly, water has the pro­per­ty that it is hea­viest” at 4°C. This cha­rac­te­ris­tic pre­vents rivers, lakes, and stre­ams from fre­e­zing from the bot­tom in win­ter, avo­iding fatal con­se­qu­en­ces. The hyd­ro­gen bond also cau­ses anot­her ano­ma­ly – the solid sta­te of water is less den­se than in the liqu­id sta­te. This leads to the burs­ting of bott­les and dis­rup­ti­on of bonds in cell orga­nisms at tem­pe­ra­tu­res below fre­e­zing. Howe­ver, water in natu­re is never pure; it alwa­ys con­tains somet­hing wit­hin it. Many sub­stan­ces dis­sol­ve in it, as men­ti­oned ear­lier. The sea fre­e­zes at a lower tem­pe­ra­tu­re than fresh water becau­se it con­tains a rela­ti­ve­ly hig­her per­cen­ta­ge of impu­ri­ties, espe­cial­ly salts, ave­ra­ging 3.5%. The fre­e­zing point of sea­wa­ter is around ‑1.7 °C. Che­mi­cal­ly pure water is ste­ri­le water. Almost eve­ry­o­ne can name the sta­tes of water – ice, water, water vapor.

Water is cha­rac­te­ri­zed by its buf­fe­ring capa­ci­ty, depen­ding on the dis­sol­ved sub­stan­ces in it. This means that it can effec­ti­ve­ly dam­pen vari­ous influ­en­ces. This pro­per­ty is almost alwa­ys an advan­ta­ge for aqu­arium ent­hu­siasts. Water has a hig­her buf­fe­ring capa­ci­ty when rich in mine­rals. Sub­stan­ces in natu­re almost alwa­ys occur in the form of ions, so they are dis­so­cia­ted. This is espe­cial­ly true in water. The form they take depends on a lar­ge num­ber of fac­tors. Water is sim­ply a tre­a­su­re. As aqu­arium ent­hu­siasts, we usu­al­ly use tap water from the muni­ci­pal supp­ly. This water is suitab­le for aqu­ariums but far from ide­al. Tre­at­ments that the water under­go­es during tran­s­port to us are inc­li­ned towards safe­ty for us humans, as a sour­ce of basic drin­king flu­id, but not neces­sa­ri­ly suitab­le for aqu­arium life. Today, chlo­ri­na­ti­on is used to a much les­ser extent in water tre­at­ment plants, but fresh water still con­tains many gases that are unde­si­rab­le for our fish. We have two opti­ons to get rid of them – eit­her with com­mer­cial­ly avai­lab­le pro­ducts or by let­ting the water stand. Chlo­ri­ne eva­po­ra­tes wit­hin 2 hours – it depends on the size of the water sur­fa­ce and whet­her the­re is free pas­sa­ge. Other gases will dis­si­pa­te wit­hin 2 to 4 days. Some spe­cies are more sen­si­ti­ve, others less so, or prac­ti­cal­ly not at all.

The beha­vi­or of fish often pro­vi­des us with clu­es. Par­tial­ly, fil­ling the tank with water through a long hose at a slow rate can help. This is also rela­ted to rai­sing the tem­pe­ra­tu­re of the added water. Cold water is more suitab­le than warm water if we don’t have water hea­ted by a boiler. Water from the muni­ci­pal water supp­ly is unqu­es­ti­onab­ly the most com­mon­ly used. Alt­hough this water is desig­na­ted as potab­le, its para­me­ters may not alwa­ys meet the requ­ire­ments of aqu­ariums. Stan­dards and hygie­nic requ­ire­ments app­li­cab­le to drin­king water do not neces­sa­ri­ly mean ide­al con­di­ti­ons for fish. Muni­ci­pal water often con­tains the­se unde­si­rab­le components:

  • Chlo­ri­ne (usu­al­ly 0.10.2 mg/​l) – kills (disin­fects) mic­ro­or­ga­nisms that cons­ti­tu­te an impor­tant part of the aqu­arium community.
  • Nit­ra­tes – per­mis­sib­le levels allow for a high con­tent suitab­le for the bre­e­ding of cer­tain fish spe­cies such as Trop­he­us, Apis­to­gram­ma, and the fry of Cory­do­ras sterbai.
  • Phosp­ha­tes – con­tri­bu­te to the gro­wth of algae, such as cyanobacteria.
  • Hea­vy metals – pri­ma­ri­ly from pipes; this issue is par­ti­cu­lar­ly pro­noun­ced in mari­ne aquariums.
  • Flu­ori­des.
  • Pes­ti­ci­des, insec­ti­ci­des, and other pro­tec­ti­ve agents – the­se com­po­nents can be eli­mi­na­ted, for exam­ple, through the use of selec­ti­ve ion exchan­gers or rever­se osmosis.

Water from the tap usu­al­ly has a pH hig­her than 7.5. This is to pre­vent the water from dis­sol­ving and cor­ro­ding the pipes. It also has vary­ing hard­ness. The spe­ci­fic valu­es can be obtai­ned from the rele­vant water supp­ly aut­ho­ri­ty (it should­n’t chan­ge sig­ni­fi­can­tly during tran­s­port to your hou­se­hold), or you can mea­su­re it your­self. Vari­ous pro­ducts for this pur­po­se are avai­lab­le in aqu­arium sto­res. Fish from dif­fe­rent regi­ons are adap­ted to a cer­tain hard­ness. Whi­le they can sur­vi­ve in dif­fe­rent water con­di­ti­ons, it is advi­sab­le to try to adapt the water to the­ir natu­ral habi­tat. For exam­ple, the Ama­zon regi­on exhi­bits very low hard­ness, whi­le the Mexi­can regi­on, on the other hand, has rela­ti­ve­ly high hard­ness. India and Sumat­ra typi­cal­ly pro­vi­de soft to mode­ra­te­ly hard water, whe­re­as the Afri­can Tan­ga­ni­ka regi­on has har­der water. This is ana­lo­gous to the diver­si­ty in salt con­tent in seas. The Bal­tic Sea has a dif­fe­rent salt con­cen­tra­ti­on than the Atlan­tic, and both dif­fer from the Dead Sea. Water from moun­tai­nous are­as is usu­al­ly soft due to the gra­ni­te base of nuc­le­ar moun­tain ran­ges, whi­le in lowland are­as, the water tends to be har­der due to a hig­her con­tent of limes­to­ne in near­by rocks and soils, such as gyp­sum and tra­ver­ti­ne. This is clo­se­ly rela­ted to geolo­gi­cal and pedo­lo­gi­cal con­di­ti­ons. Hard­ness in Slo­va­kia typi­cal­ly ran­ges from 5°N to 35°N.

Some­one, howe­ver, has the­ir own well. This water can be very good, but it’s bet­ter to have it ana­ly­zed. If it’s not drin­kab­le, it pro­bab­ly won’t be suitab­le for aqu­ariums eit­her. Ide­al is water from an arte­sian well – the­re are very few of them, pro­vi­ding soft, high-​quality water. I don’t need to emp­ha­si­ze that well water is untre­a­ted, so the­re­’s no need to let it stand, per­haps only in the case of hig­her CO2 con­tent. If you­’re not afraid to expe­ri­ment, I would rat­her use water from springs, or from the upper are­as of moun­tain regi­ons, but in any case, clo­se to the sour­ce, whe­re fish do not inha­bit yet. This water is gene­ral­ly very suitab­le, espe­cial­ly in are­as with peat bogs.

Rain­wa­ter is the­ore­ti­cal­ly the most suitab­le sour­ce of water. Howe­ver, in toda­y­’s Cen­tral Euro­pe, I would not recom­mend using rain­wa­ter. Pol­lu­ti­on has rea­ched such pro­por­ti­ons that what falls from the sky often tas­tes more like lemon than water. In the atmo­sp­he­re, water accu­mu­la­tes, con­tai­ning many unde­si­rab­le, even toxic impu­ri­ties. Remem­ber that natu­re kno­ws no boun­da­ries. In no case, unless you keep spe­cies adap­ted to pond con­di­ti­ons or cold-​water spe­cies, do I recom­mend using water from ponds, stre­ams, or rivers.

One of the fun­da­men­tal and impor­tant para­me­ters of water for aqu­arium ent­hu­siasts is its hard­ness. It deter­mi­nes the possi­bi­li­ties we have for suc­cess­ful bre­e­ding, fish rea­ring, and plant cul­ti­va­ti­on. Hard­ness deter­mi­nes the con­tent of cal­cium and mag­ne­sium salts (Ca + Mg). The defi­ni­ti­on of per­ma­nent hard­ness is pri­ma­ri­ly deter­mi­ned by sul­fa­tes – SO42‑, chlo­ri­des – Cl – , and nit­ra­tes – NO32-. Car­bo­na­te hard­ness (some­ti­mes also cal­led tem­po­ra­ry hard­ness) is deter­mi­ned by the con­tent of car­bo­na­tes – CO32- and bicar­bo­na­tes – HCO3 – . Howe­ver, the­se can also be bound to other cati­ons than cal­cium or mag­ne­sium – most com­mon­ly to sodium – Na. Total hard­ness is the sum of car­bo­na­te hard­ness and per­ma­nent hard­ness. In prac­ti­ce, mea­su­re­ments usu­al­ly mea­su­re total hard­ness and car­bo­na­te hard­ness. Becau­se bicar­bo­na­tes can be found in a dif­fe­rent bin­ding than with Ca, Mg, as men­ti­oned in the pre­vi­ous parag­raph, the sum of car­bo­na­te and per­ma­nent hard­ness may not give the same value as the total hard­ness. For this rea­son, only car­bo­na­te hard­ness is often repor­ted, or the water con­duc­ti­vi­ty is given as a para­me­ter. The unit of hard­ness is mg.l‑1 – which is almost alwa­ys con­ver­ted direct­ly to dKH and dGH or degre­es Ger­man – °N. Aqu­arium hob­by­ists usu­al­ly mea­su­re hard­ness using com­mer­cial­ly avai­lab­le pro­ducts based on tit­ra­ti­on. This invol­ves chan­ging the color of the solu­ti­on using an orga­nic dye, such as met­hyl oran­ge or met­hyl red. It is mea­su­red using drops – which repre­sent, for exam­ple, 1 °N. Espe­cial­ly car­bo­na­te and total hard­ness. Hard­ness conversions:

  • dKH – Car­bo­na­te hardness
  • dNKH – Per­ma­nent hardness
  • dGH – Total hard­ness; 1°dGH = 10 mg/​l CaO or 14 mg MgO = 7.143 mg/​l Ca = 17.8575 mg/​l CaCO3 = 0.179 mol/​l CaCO3, other­wi­se 1 mmol/​l = 56.08 mg CaO/​l

Ioni­za­ti­on – Con­duc­ti­vi­ty – Mineralization

To furt­her diver­si­fy the quali­ty of indi­vi­du­al ele­ments, I would like to add­ress this aspect in this sec­ti­on. Hard­ness expres­ses only what its defi­ni­ti­on pro­vi­des. Howe­ver, rea­li­ty is not as black and whi­te. Water in natu­re, and also in your aqu­arium, con­tains other ele­ments that are worth atten­ti­on. It’s not just about Ca and Mg. The­re are also P, Na, K, Fe, S, orga­nic che­la­tes, humic acids, etc. Some of them can be mea­su­red – spe­ci­fied by con­duc­ti­vi­ty. It is a more com­plex expres­si­on of rea­li­ty than in the case of mea­su­ring hard­ness. A illu­stra­ti­ve exam­ple of the dif­fe­ren­ce bet­we­en hard­ness and con­duc­ti­vi­ty is the water of the Ama­zon River. This water con­tains only tra­ce amounts of Ca and Mg, whi­le it con­tains a rela­ti­ve­ly lar­ge amount of ions. So even though it is water with prac­ti­cal­ly zero hard­ness, it is by no means demi­ne­ra­li­zed water. The­re­fo­re, it is a mis­ta­ke to pre­pa­re water of zero hard­ness for a cer­tain spe­cies, which does not con­tain any ions – for exam­ple, by dis­til­la­ti­on. Such water is prac­ti­cal­ly ste­ri­le. Ioni­za­ti­on can also be adjus­ted. Our fish are some­ti­mes expo­sed to shock, which could also be desc­ri­bed as a chan­ge in con­duc­ti­vi­ty. For exam­ple, if we exchan­ge a lar­ge amount of water – then, under cer­tain cir­cum­stan­ces, the­re may be a sig­ni­fi­cant dec­re­a­se or inc­re­a­se in the con­cen­tra­ti­on of sub­stan­ces in the form of ions. Or if, for exam­ple, we app­ly NaCl – it can lead to the ero­si­on of the fis­h’s skin – dis­rup­ting the sli­my pro­tec­ti­ve coating of the fish. Some­ti­mes this is desi­rab­le, for exam­ple, it is the basis for the tre­at­ment pro­ce­du­re of the so-​called salt bath.

Con­duc­ti­vi­ty is expres­sed in µS – mic­ro­sie­mens, and it can be mea­su­red with a con­duc­ti­vi­ty meter. The term con­duc­ti­vi­ty tells us that it expres­ses the con­tent of ions. In this con­text, the syno­nym is also the word mine­ra­li­za­ti­on, alt­hough the­se three terms express dif­fe­rent things in the con­se­qu­en­ces. Water itself exhi­bits dis­so­cia­ti­on into ions – H3O+ and OH – ; this is desc­ri­bed by the dis­so­cia­ti­on cons­tant – the phe­no­me­non is cal­led water pro­to­ly­sis – thanks to it, che­mi­cal­ly pure water beco­mes an elect­ri­cal con­duc­tor. Howe­ver, water in natu­re con­tains a mul­ti­tu­de of ions, which sig­ni­fi­can­tly chan­ges its elect­ri­cal pro­per­ties. By the way, orga­nisms living in water, inc­lu­ding fish, are par­ti­cu­lar­ly sen­si­ti­ve to this. The dif­fe­ren­ce bet­we­en the con­tent of mine­rals and ions can be explai­ned by the elect­ri­cal pro­per­ties of the com­po­nents. Mine­rals are also in the form of neut­ral­ly dis­sol­ved in water, alt­hough in smal­ler quan­ti­ties. Most com­po­nents of living sys­tems are not dis­so­cia­ted into ions in natu­ral sub­stra­tes. pH – pon­dus hyd­ro­ge­nii pH is a para­me­ter defi­ned as the nega­ti­ve deci­mal loga­rithm of the con­cen­tra­ti­on of hyd­ro­gen ions H3O+. It ran­ges from 0 to 14. Its expres­si­on is loga­rith­mic, so it should be taken into account – water with pH 6 and pH 8 is dras­ti­cal­ly dif­fe­rent. The con­cen­tra­ti­on of the basic group OH– is loga­rith­mi­cal­ly expres­sed as a com­ple­ment to the num­ber 14, so if the water has a pH of 6, the con­cen­tra­ti­on of H3O+ is 10 – 6 mol.dm‑3 and OH– is 10 – 8 mol.m‑3. If the water has a pH of 7, it is said to be neut­ral, below 7 is aci­dic water, abo­ve 7 is alka­li­ne (basic) water. For exam­ple, pH 8 means that water at a tem­pe­ra­tu­re of 25 °C has a con­cen­tra­ti­on of H3O+ 10 – 8 mol.dm‑3 and OH10 – 6 mol.m‑3.

Most fish requ­ire aci­dic water, with a pH ran­ging from 6.2 to 6.8. Howe­ver, the­re are spe­cies that thri­ve and repro­du­ce nor­mal­ly at pH 5 or, con­ver­se­ly, abo­ve pH 8. pH is clo­se­ly rela­ted to the con­cen­tra­ti­on of ammo­nia and the nit­ro­gen cyc­le. At high pH, ammo­nia in water is in a much more dan­ge­rous form than in an aci­dic envi­ron­ment. pH rises at night due to the res­pi­ra­ti­on of plants. pH fluc­tu­ates main­ly in soft waters, whe­re the buf­fe­ring capa­ci­ty of water is lower. The pH value is also clo­se­ly rela­ted to pho­to­synt­he­sis and res­pi­ra­ti­on of aqu­atic plants. This is due to the fluc­tu­ati­on of CO2 levels in the water – plants bind CO2, and the­se chan­ges result in pH fluc­tu­ati­ons during the day, depen­ding on the avai­lab­le light, as we are refer­ring to con­di­ti­ons in the aqu­arium and not in nature.

Car­bon dioxi­de affects pH – when reac­ting with H2O, weak car­bo­nic acid is for­med – H2CO3, or con­ver­se­ly, the acid dis­so­cia­tes in an alka­li­ne envi­ron­ment. The car­bo­nic acid cyc­le is well-​known in bio­lo­gy and is one of the fun­da­men­tal pro­ces­ses of life. It is an exam­ple of buf­fe­ring capa­ci­ty. This fluc­tu­ati­on is cha­rac­te­ri­zed by a rela­ti­ve­ly lar­ge ampli­tu­de, and the chan­ge depends on the buf­fe­ring capa­ci­ty of water – prac­ti­cal­ly, the more mine­rals and sub­stan­ces capab­le of bin­ding CO2 in the water (hig­her con­duc­ti­vi­ty), the smal­ler the fluc­tu­ati­on. The level of CO2 is lower during the day (with suf­fi­cient light) than at night (with insuf­fi­cient light) – pH is hig­her during the day (alka­li­ne pha­se) than at night (more aci­dic pha­se). Simi­lar cyc­les also occur during the sea­sons – in sum­mer, during inten­se gro­wth, the­re is a lack of CO2, lea­ding to an inc­re­a­se in pH – the­se chan­ges are more obser­vab­le in nature.

pH is mea­su­red eit­her elect­ro­ni­cal­ly or through a reac­ti­on on a color sca­le, which is obvi­ous­ly much che­a­per but less accu­ra­te – tit­ra­ti­on. The con­tent of CO2 – car­bon dioxi­de – depends main­ly on the con­tent of Ca and Mg – water hard­ness and water pH, on car­bo­nic acid, and thus also on the buf­fe­ring capa­ci­ty of water. In sum­ma­ry, it depends on the bio­che­mi­cal pro­per­ties of water. The con­tent of CO2 is par­ti­cu­lar­ly impor­tant for plant gro­wth. Under nor­mal cir­cum­stan­ces, the level of car­bon dioxi­de is not so high as to thre­a­ten the life of fish. Excep­ti­ons may occur when using water from mine­ral springs, unve­ri­fied wells, mine­ral water, or app­ly­ing CO2. The level of CO2 rises with the amount of bicar­bo­na­tes – with water alka­li­ni­ty – and dec­re­a­ses with water tem­pe­ra­tu­re. In natu­re – whe­re water is not che­mi­cal­ly pure – in deep lakes and stag­nant waters with weak flow, the­re is a phe­no­me­non whe­re, from a cer­tain depth, the water has a lar­ge defi­cit of free oxy­gen (O2) – this is the dead zone for fish and hig­her plants. If I limit myself to the oxy­gen con­tent in pure water, its con­cen­tra­ti­on depends on pre­ssu­re and tem­pe­ra­tu­re. Sin­ce I assu­me that pre­ssu­re does not chan­ge much in aqu­arium prac­ti­ce, only tem­pe­ra­tu­re remains inte­res­ting for us.

Depen­ding on the tem­pe­ra­tu­re, the con­cen­tra­ti­on of oxy­gen in water is inver­se­ly pro­por­ti­onal. The war­mer the water, the less free oxy­gen it con­tains. You may have noti­ced that fish in smal­ler tanks tend to rise hig­her and bre­at­he fas­ter during hot sum­mer days. Howe­ver, this can­not be sim­pli­fied becau­se if the­re is a real oxy­gen defi­cit in the aqu­arium, the cau­se is not neces­sa­ri­ly or often just the inc­re­a­sed tem­pe­ra­tu­re – the cau­se must be sought else­whe­re, per­haps in inc­re­a­sed meta­bo­lism. The­re is a hig­her oxy­gen con­sump­ti­on due to decom­po­si­ti­on pro­ces­ses but also due to weak or inef­fi­cient fil­tra­ti­on. Pure water at 0°C con­tains 14.16 mg of oxy­gen, whi­le at a tem­pe­ra­tu­re of 30°C, it con­tains almost half – 7.53 mg.

From the per­spec­ti­ve of meta­bo­lism, espe­cial­ly for plants, iron – Fe, is essen­tial. Its con­tent depends on the oxi­da­ti­ve capa­ci­ty, the redox poten­tial. Iron can quick­ly oxi­di­ze to a form inac­ces­sib­le to plants. The form of iron in the aqu­arium depends on whet­her and whe­re it is bound. The­re are tests for Fe con­tent for the aqu­arium ent­hu­siast based on a simi­lar prin­cip­le to pH tests.


Was­ser – H2O ist neben der Son­ne wohl die wich­tigs­te Voraus­set­zung für das Leben. Es ist eine Ver­bin­dung von Was­sers­toff und Sau­ers­toff. Wenn wir in der Che­mie von Lösun­gen ohne wei­te­re Quali­fi­ka­ti­on spre­chen, ist klar, dass es sich um eine Lösung in Was­ser han­delt. Was­ser befin­det sich in leben­den Sys­te­men, in den Gewe­ben von Tie­ren, in Pflan­zen­ge­we­ben, in pro­ka­ry­o­tis­chen Orga­nis­men, in Bak­te­rien, in Zel­lor­ga­nel­len. In Was­ser ents­tand auch das Leben, Was­ser bie­tet Raum für Ents­te­hung. Zwis­chen Was­sers­toff und Sau­ers­toff bes­teht eine spe­zi­fis­che Bin­dung, die soge­nann­te Was­sers­toffb­rüc­ke, da Was­ser unter nor­ma­len phy­si­ka­lis­chen Bedin­gun­gen bei Raum­tem­pe­ra­tur sonst ein Gas wäre. Darüber hinaus hat Was­ser die Eigen­schaft, dass es bei einer Tem­pe­ra­tur von 4°C am dich­tes­ten” ist. Dadurch frie­ren Flüs­se, Seen und Bäche im Win­ter nicht vom Boden aus, was fata­le Fol­gen haben könn­te. Die Was­sers­toffb­rüc­ke verur­sacht auch eine wei­te­re Ano­ma­lie – der fes­te Zus­tand des Was­sers ist weni­ger dicht als im flüs­si­gen Zus­tand. Dies führt zum Rei­ßen von Flas­chen, zum Stören von Bin­dun­gen in Zel­len orga­nis­cher Mate­ria­lien bei Tem­pe­ra­tu­ren unter dem Gef­rier­punkt. Was­ser in der Natur ist jedoch nie rein. Es ent­hält immer etwas in sich. In ihr lösen sich vie­le Sub­stan­zen auf, wie ich bere­its oben ange­de­utet habe. Das Meer gef­riert bei nied­ri­ge­ren Tem­pe­ra­tu­ren als Süßwas­ser, weil es einen rela­tiv höhe­ren Ante­il an Verun­re­i­ni­gun­gen ent­hält, ins­be­son­de­re Sal­ze. Durch­schnitt­lich 3,5%. Der Gef­rier­punkt des Meer­was­sers liegt bei etwa ‑1,7°C. Che­misch rei­nes Was­ser ist ste­ril. Die Zus­tän­de des Was­sers kann auch jeder benen­nen – Eis, Was­ser, Wasserdampf.

Was­ser zeich­net sich durch sei­ne Puf­fer­ka­pa­zi­tät in Abhän­gig­ke­it von den darin gelös­ten Sub­stan­zen aus. Das bede­utet, dass es vers­chie­de­ne Ein­flüs­se rela­tiv effek­tiv dämp­fen kann. Für Aqu­aria­ner ist die­se Eigen­schaft fast immer von Vor­te­il. Was­ser hat eine höhe­re Puf­fer­ka­pa­zi­tät, wenn es reich an Mine­ra­lien ist. Sub­stan­zen in der Natur lie­gen fast immer in Form von Ionen vor – sie sind also dis­so­zi­iert. Ins­be­son­de­re im Was­ser. In wel­cher Form das ges­chieht, hängt von einer Viel­zahl von Fak­to­ren ab. Was­ser ist ein­fach ein Schatz. Wir als Aqu­aria­ner ver­wen­den in der Regel Trink­was­ser aus dem Lei­tung­swas­ser. Die­ses Was­ser ist für die Aqu­aris­tik gee­ig­net, aber bei wei­tem nicht ide­al. Die wäh­rend ihres Tran­s­ports zu uns vor­ge­nom­me­nen Ände­run­gen sind für uns Men­schen unbe­denk­lich, da sie als Quel­le für die Grundf­lüs­sig­ke­it zum Trin­ken die­nen, jedoch nicht für das Leben im Aqu­arium. Heut­zu­ta­ge wird in Klä­ran­la­gen bere­its in viel gerin­ge­rem Maße Chlor zur Desin­fek­ti­on ver­wen­det, aber fris­ches Was­ser ent­hält den­noch vie­le Gase, die für unse­re Fis­che uner­wün­scht sind. Wir haben zwei Mög­lich­ke­i­ten, damit umzu­ge­hen – ent­we­der mit spe­ziel­len, im Han­del erhält­li­chen Pro­duk­ten oder durch Abset­zen las­sen. Chlor ver­duns­tet inner­halb von 2 Stun­den – abhän­gig von der Größe der Was­se­ro­berf­lä­che und ob ihr fre­ier Durch­gang ermög­licht ist. Ande­re Gase ver­duns­ten inner­halb von 2 bis 4 Tagen. Eini­ge Arten sind emp­find­li­cher, ande­re weni­ger oder prak­tisch gar nicht.

Das Ver­hal­ten der Fis­che gibt uns oft Hin­we­i­se. Tei­lwe­i­se hilft das Ein­fül­len des Was­sers mit einem lang­sa­men Strom in einem lan­gen Sch­lauch. Das hängt sch­lie­ßlich auch mit der Erhöhung der Tem­pe­ra­tur des ein­ge­füll­ten Was­sers zusam­men. Küh­le­res Was­ser ist bes­ser gee­ig­net als war­mes, wenn wir kein Was­ser haben, das durch einen Boiler erwärmt wird. Was­ser aus der Lei­tung wird ein­de­utig am häu­figs­ten ver­wen­det. Da die­ses Was­ser als Trink­was­ser ver­wen­det wird, könn­ten wir anneh­men, dass sei­ne Para­me­ter den Anfor­de­run­gen der Aqu­aris­tik ents­pre­chen soll­ten. Sch­lie­ßlich erfüllt Trink­was­ser Stan­dards, hygie­nis­che Anfor­de­run­gen. Das ist jedoch nicht ganz rich­tig, was uns passt, ist nicht immer ide­al für Fis­che. Lei­tung­swas­ser ent­hält in der Regel die­se uner­wün­sch­ten Bestandteile:

  • Chlor (gewöhn­lich 0,10,2 mg/​l) – tötet (desin­fi­ziert) Mik­ro­or­ga­nis­men ab, die einen wich­ti­gen Teil der Geme­in­schaft im Aqu­arium ausmachen,
  • Nit­ra­te – der Stan­dard erlaubt einen sehr hohen Gehalt für die Zucht eini­ger Fis­char­ten wie z.B. Trop­he­us, Apis­to­gram­ma, Ster­bai Panzerwelse,
  • Phosp­ha­te – verur­sa­chen z.B. das Wachs­tum von Algen,
  • Sch­wer­me­tal­le – haupt­säch­lich aus Roh­ren, in der Meer­was­se­ra­qu­aris­tik ist die­ses Prob­lem sehr akut,
  • Flu­ori­de,
  • Insek­ti­zi­de, Schäd­lings­be­kämp­fungs­mit­tel usw. Die­se Bes­tand­te­i­le kön­nen z.B. durch selek­ti­ve Ione­naus­taus­cher, mit­tels Umkeh­ros­mo­se eli­mi­niert werden.

Das Lei­tung­swas­ser hat in der Regel einen pH-​Wert über 7,5. Dies liegt daran, dass es kei­ne Roh­re auf­lösen oder angre­i­fen soll. Es hat unters­chied­li­che Här­teg­ra­de. Die genau­en Wer­te teilt Ihnen das ents­pre­chen­de Was­ser­werk mit (durch Roh­re und den Tran­s­port zu Ihnen nach Hau­se soll­te sich die Quali­tät nicht zu stark ändern), oder Sie kön­nen sie selbst mes­sen. In Zoohand­lun­gen gibt es vers­chie­de­ne Pro­duk­te für die­sen Zweck zu kau­fen. Fis­che aus vers­chie­de­nen Regi­onen sind an unters­chied­li­che Här­teg­ra­de ange­passt. Sie kön­nen auch in ande­ren Gewäs­sern exis­tie­ren, aber wir soll­ten ver­su­chen, uns ihnen anzu­pas­sen. Zum Beis­piel zeigt das Amazonas-​Gebiet eine sehr gerin­ge Här­te, wäh­rend das Gebiet Mexi­kos im Gegen­satz dazu rela­tiv har­tes Was­ser aufwe­ist. Indien und Sumat­ra lie­fern in der Regel wei­ches bis mit­tel­har­tes Was­ser, wäh­rend das afri­ka­nis­che Tan­gan­ji­ka har­tes Was­ser bie­tet. Dies steht im Zusam­men­hang mit den Mee­ren. Auch in ihnen gibt es eine Viel­falt an Salz­ge­hal­ten. Die Ost­see ent­hält eine ande­re Men­ge als der Atlan­tik und eine voll­kom­men ande­re als das Tote Meer. Das Was­ser in Gebir­gs­ge­bie­ten ist in der Regel weich – Gra­ni­tun­ter­grund der Kern­ge­bir­ge, wäh­rend es in Tie­fe­be­nen im Gegen­te­il här­ter ist – höhe­rer Gehalt an Kalks­te­in in den nahe­ge­le­ge­nen Ges­te­i­nen und Böden – Gips, Tra­ver­tin. Dies hängt eng mit dem geolo­gis­chen Unter­grund und den pedo­lo­gis­chen Bedin­gun­gen zusam­men. Die Här­te in der Slo­wa­kei liegt in der Regel zwis­chen 5°dH und 35°dH.

Jemand hat jedoch mög­li­cher­we­i­se einen eige­nen Brun­nen. Die­ses Was­ser kann sehr gut sein, aber las­sen Sie lie­ber eine Ana­ly­se durch­füh­ren. Wenn es nicht trink­bar ist, ist es wahrs­che­in­lich auch nicht für die Aqu­aris­tik gee­ig­net. Ide­a­les Was­ser kommt aus arte­sis­chen Brun­nen – es gibt nur sehr weni­ge davon und sie lie­fern wei­ches Was­ser von hoher Quali­tät. Ich muss nicht beto­nen, dass Brun­nen­was­ser unbe­han­del­tes Was­ser ist, daher ist es nicht not­wen­dig, es abzus­te­hen, außer viel­le­icht bei einem höhe­ren CO2-​Gehalt. Wenn Sie kei­ne Angst haben zu expe­ri­men­tie­ren, wür­de ich eher Was­ser aus Quel­len ver­wen­den, bzw. aus den obe­ren Bere­i­chen der Berg­ge­bie­te, aber auf jeden Fall in der Nähe der Quel­le und dort, wo noch kei­ne Fis­che leben. Die­ses Was­ser ist im All­ge­me­i­nen sehr gee­ig­net, beson­ders in Gebie­ten, wo Torf­mo­ore vor­han­den sind.

Regen­was­ser ist the­ore­tisch die bes­te Was­se­rqu­el­le. Aber heut­zu­ta­ge wür­de ich in Mit­te­le­uro­pa nicht emp­feh­len, Regen­was­ser zu ver­wen­den. Die Versch­mut­zung ist so groß, dass das, was auf uns fällt, oft eher nach Zit­ro­ne als nach Was­ser sch­mec­kt. In der Atmo­sp­hä­re sam­melt sich Was­ser an und ent­hält vie­le uner­wün­sch­te bis gif­ti­ge Verun­re­i­ni­gun­gen. Ver­ges­sen Sie nicht, dass die Natur kei­ne Gren­zen kennt. Auf kei­nen Fall wür­de ich, wenn Sie kei­ne Arten aus Tei­chen oder kal­ten Gewäs­sern hal­ten, emp­feh­len, Was­ser aus Tei­chen, Bächen oder Flüs­sen zu verwenden.

Einer der grund­le­gen­den und wich­ti­gen Para­me­ter für Aqu­aria­ner ist die Was­ser­här­te. Sie bes­timmt die Mög­lich­ke­i­ten, die uns bei erfolg­re­i­cher Fisch- und Pflan­zen­zucht zur Ver­fügung ste­hen. Die Här­te bes­timmt den Gehalt an Calcium- und Mag­ne­sium­sal­zen (Ca + Mg). Die Defi­ni­ti­on der per­ma­nen­ten Här­te wird haupt­säch­lich durch Sul­fa­te – SO42‑, Chlo­ri­de – Cl– und Nit­ra­te – NO32- bes­timmt. Die Car­bo­nat­här­te (manch­mal auch als tem­po­rä­re bez­e­ich­net) wird durch den Gehalt an Car­bo­na­ten – CO32- und Hyd­ro­gen­car­bo­na­ten – HCO3– bes­timmt. Die­se kön­nen jedoch auch an ande­re Kati­onen als Cal­cium oder Mag­ne­sium gebun­den sein – am häu­figs­ten an Natrium – Na. Die Gesamt­här­te ist die Sum­me aus Car­bo­nat­här­te und per­ma­nen­ter Här­te. In der Pra­xis mes­sen Mes­sun­gen in der Regel die Gesamt­här­te und die Car­bo­nat­här­te. Da Hyd­ro­gen­car­bo­na­te auch in einer ande­ren Ver­bin­dung als mit Ca, Mg vor­lie­gen kön­nen, wie ich im vor­he­ri­gen Absatz erwähnt habe, ergibt die Sum­me aus Car­bo­nat­här­te und per­ma­nen­ter Här­te nicht immer den gle­i­chen Wert wie die Gesamt­här­te. Aus die­sem Grund wird oft nur die Car­bo­nat­här­te ange­ge­ben oder die Leit­fä­hig­ke­it des Was­sers als Para­me­ter ver­wen­det. Die Ein­he­it der Här­te ist mg/​l – was jedoch fast immer direkt in dKH und dGH oder in deuts­che Här­teg­ra­de – °N umge­rech­net wird. Aqu­aria­ner mes­sen die Här­te in der Regel mit kom­mer­ziell erhält­li­chen Pro­duk­ten, die auf Tit­ra­ti­on basie­ren. Dabei kommt es zu einer Far­bän­de­rung der Lösung durch orga­nis­che Farb­stof­fe wie Met­hy­lo­ran­ge oder Met­hyl­rot. Gemes­sen wird in Trop­fen – die z.B. 1 °N reprä­sen­tie­ren. Ins­be­son­de­re Car­bo­nat­här­te und Gesamt­här­te. Berech­nung der Härte:

  • dKH – Carbonathärte
  • dNKH – per­ma­nen­te Härte
  • dGH – Gesamt­här­te; 1°dGH = 10 mg/​l CaO oder 14 mg MgO = 7.143 mg/​l Ca = 17.8575 mg/​l CaCO3 = 0.179 mol/​l CaCO3, ansons­ten 1 mmol/​l = 56.08 mg CaO/​l

Ioni­sie­rung – Leit­fä­hig­ke­it – Mineralisierung

Um die viel­fäl­ti­ge­re Quali­tät der ein­zel­nen Ele­men­te anzus­pre­chen, möch­te ich in die­sem Abschnitt anknüp­fen. Die Här­te drüc­kt nur das aus, was ihre Defi­ni­ti­on bie­tet. Die Rea­li­tät ist jedoch nicht so schwarz-​weiß. Was­ser in der Natur und auch in Ihrem Aqu­arium ent­hält auch ande­re Ele­men­te, die es wert sind, beach­tet zu wer­den. Es geht nicht nur um Ca und Mg. Es gibt auch P, Na, K, Fe, S, orga­nis­che Che­la­te, Humin­sä­u­ren, usw. Eini­ge von ihnen kön­nen durch die Leit­fä­hig­ke­it gemes­sen und spe­zi­fi­ziert wer­den. Dies ist eine kom­ple­xe­re Dars­tel­lung der Rea­li­tät als beim Mes­sen der Här­te. Ein anschau­li­ches Beis­piel für den Unters­chied zwis­chen Här­te und Leit­fä­hig­ke­it ist das Was­ser des Ama­zo­nas. Die­ses ent­hält nur Spu­ren von Ca und Mg, ent­hält jedoch rela­tiv vie­le Ionen. Auch wenn es sich um Was­ser mit prak­tisch null Här­te han­delt, han­delt es sich bei wei­tem nicht um demi­ne­ra­li­sier­tes Was­ser. Es ist daher ein Feh­ler, wenn wir für eine bes­timm­te Art Was­ser mit null Här­te vor­be­re­i­ten, das kei­ne Ionen ent­hält – zum Beis­piel durch Des­til­la­ti­on. Ein sol­ches Was­ser ist prak­tisch ste­ril. Auch die Ioni­sie­rung kön­nen wir bee­in­flus­sen. Unse­re Fis­che sind manch­mal einem Schock aus­ge­setzt, der auch durch eine Ände­rung der Leit­fä­hig­ke­it besch­rie­ben wer­den könn­te. Wenn wir zum Beis­piel eine größe­re Men­ge Was­ser aus­taus­chen – kann es unter bes­timm­ten Umstän­den zu einem deut­li­chen Rück­gang oder Ans­tieg der Kon­zen­tra­ti­on von Stof­fen in Form von Ionen kom­men. Oder wenn wir zum Beis­piel NaCl anwen­den – kann dies zu einer Bes­chä­di­gung der Haut der Fis­che füh­ren – zur Störung des sch­le­i­mi­gen Schut­züber­zugs der Fis­che. Manch­mal ist dies erwün­scht, z. B. basie­rend auf dem Hei­lungs­pro­zess eines soge­nann­ten Salzbades.

Die Leit­fä­hig­ke­it wird in µS – Mik­ro­sie­mens ange­ge­ben und kann mit einem Leit­fä­hig­ke­its­mess­ge­rät gemes­sen wer­den. Das Wort Leit­fä­hig­ke­it sagt uns, dass es sich um eine Dars­tel­lung des Ionen­ge­halts han­delt. Ein Syno­nym in die­sem Zusam­men­hang ist das Wort Mine­ra­li­sie­rung, obwohl die­se drei Beg­rif­fe unters­chied­li­che Din­ge ausd­rüc­ken. Was­ser zeigt von Natur aus eine Dis­so­zia­ti­on in Ionen – H3O+ und OH- – dies wird durch die Dis­so­zia­ti­on­skons­tan­te besch­rie­ben – der Vor­gang wird als Was­ser­pro­to­ly­se bez­e­ich­net – durch die che­misch rei­ne Was­ser ein elek­tris­cher Lei­ter wird. Aber Was­ser in der Natur ent­hält vie­le Ionen, was sei­ne elek­tris­chen Eigen­schaf­ten erheb­lich verän­dert. Ins­be­son­de­re Orga­nis­men, die im Was­ser leben, ein­sch­lie­ßlich Fis­che, rea­gie­ren darauf sehr emp­find­lich. Der Unters­chied zwis­chen dem Gehalt an Mine­ra­lien und Ionen kann durch die elek­tris­chen Eigen­schaf­ten der Kom­po­nen­ten erk­lärt wer­den. Mine­ra­lien sind auch in neut­ra­ler Form im Was­ser gelöst, wenn auch in gerin­ge­rer Men­ge. Die meis­ten Bes­tand­te­i­le leben­der Sys­te­me sind volls­tän­dig oder oft in natür­li­chen Sub­stra­ten in Ionen dis­so­zi­iert. Der pH-​Wert – der pon­dus hyd­ro­ge­nii – ist ein Para­me­ter, der als nega­ti­ver deka­dis­cher Loga­rith­mus der Kon­zen­tra­ti­on von Was­sers­toff H3O+ defi­niert ist. Er bewegt sich im Bere­ich von 0 bis 14. Sei­ne Dars­tel­lung ist loga­rith­misch, was berück­sich­tigt wer­den muss – Was­ser mit einem pH-​Wert von 6 und einem pH-​Wert von 8 ist sehr unters­chied­lich. Die Kon­zen­tra­ti­on der basis­chen Grup­pe OH- ist im loga­rith­mis­chen Ausd­ruck eine Ergän­zung zur Zahl 14, dh wenn das Was­ser einen pH-​Wert von 6 hat, bet­rägt die Kon­zen­tra­ti­on von H3O+ 10 – 6 mol.dm‑3 und die von OH- bet­rägt 10 – 8 mol.m‑3. Wenn das Was­ser einen pH-​Wert von 7 hat, sagen wir, dass es neut­ra­les Was­ser ist, ein pH-​Wert unter 7 ist sau­res Was­ser, über 7 ist alka­lis­ches Was­ser (alka­lisch). Ein pH-​Wert von 8 bede­utet beis­piel­swe­i­se, dass Was­ser bei 25 °C eine H3O+-Konzentration von 10 – 8 mol.dm‑3 und eine OH – Kon­zen­tra­ti­on von 10 – 6 mol.m‑3 hat.

Die meis­ten Fis­che benöti­gen sau­res Was­ser, der pH-​Wert liegt im Bere­ich von 6,2 bis 6,8. Es gibt jedoch Arten, die sich bei einem pH-​Wert von 5 oder sogar über 8 nor­mal ver­meh­ren kön­nen. Der pH-​Wert ist eng mit der Ammo­niak­kon­zen­tra­ti­on und dem Sticks­toffk­re­is­lauf ver­bun­den. Bei hohem pH-​Wert ist Ammo­niak im Was­ser in einer viel gefähr­li­che­ren Form als in sau­rer Umge­bung. Der pH-​Wert ste­igt nachts aufg­rund der Atmung der Pflan­zen. Der pH-​Wert sch­wankt haupt­säch­lich in wei­chen Gewäs­sern, wo die Puf­fer­ka­pa­zi­tät des Was­sers gerin­ger ist. Der pH-​Wert steht auch im Zusam­men­hang mit der Pho­to­synt­he­se und der Atmung von Was­serpf­lan­zen. Dies wird durch die Sch­wan­kung des CO2-​Gehalts im Was­ser verur­sacht – Pflan­zen bin­den CO2, und die­se Verän­de­run­gen füh­ren zu pH-​Schwankungen im Lau­fe des Tages bzw. zu Sch­wan­kun­gen abhän­gig vom ver­füg­ba­ren Licht, da wir die Bedin­gun­gen im Aqu­arium und nicht in der Natur meinen.

Koh­len­di­oxid wir­kt sich auf den pH-​Wert aus – bei der Reak­ti­on mit H2O ents­teht sch­wa­che Koh­len­sä­u­re – H2CO3, oder umge­ke­hrt dis­so­zi­iert die Säu­re in einer basis­chen Umge­bung. Der Koh­len­sä­u­re­zyk­lus ist in der Bio­lo­gie sehr bekannt und gehört zu den grund­le­gen­den Lebens­pro­zes­sen. Es ist ein Beis­piel für die Puf­fer­ka­pa­zi­tät. Die­se Sch­wan­kung zeich­net sich durch eine ziem­lich gro­ße Ampli­tu­de aus, und die Ände­rung hängt von der Puf­fer­ka­pa­zi­tät des Was­sers ab – prak­tisch, je mehr Mine­ra­le und Stof­fe in der Lage sind, CO2 zu bin­den, des­to gerin­ger ist die Sch­wan­kung. Der CO2-​Gehalt ist tag­süber (bei aus­re­i­chen­dem Licht) nied­ri­ger als nachts (bei Licht­man­gel) – der pH-​Wert ist tag­süber höher (alka­lis­che Pha­se) als nachts (säu­re­re Pha­se). Ähn­li­che Zyk­len tre­ten auch wäh­rend der Jah­res­ze­i­ten auf – im Som­mer kommt es bei inten­si­vem Wachs­tum zu einem CO2-​Mangel und damit zu einem Ans­tieg des pH-​Werts – die­se Ände­run­gen sind jedoch eher in der Natur zu beobachten.

Der pH-​Wert wird ent­we­der elek­tro­nisch gemes­sen oder durch eine Reak­ti­on in einer Farb­ska­la bes­timmt, was natür­lich ein viel bil­li­ge­res, aber unge­nau­e­res Werk­ze­ug ist – die Tit­ra­ti­on. Der Gehalt an Koh­len­di­oxid – Koh­len­di­oxid – hängt haupt­säch­lich vom Gehalt an Ca und Mg ab – von der Was­ser­här­te und vom pH-​Wert des Was­sers, von der Koh­len­sä­u­re und damit auch von der Puf­fer­ka­pa­zi­tät des Was­sers. Zusam­men­fas­send kann gesagt wer­den, dass es von den bio­che­mis­chen Eigen­schaf­ten des Was­sers abhängt. Der CO2-​Gehalt ist beson­ders wich­tig für das Pflan­zen­wachs­tum. Unter nor­ma­len Umstän­den ist der Gehalt an Koh­len­di­oxid nicht so hoch, dass er das Leben der Fis­che gefä­hr­det. Eine Aus­nah­me kann die Ver­wen­dung von Was­ser aus Mine­ra­lqu­el­len oder nicht über­prüf­ten Brun­nen, Mine­ra­lwas­ser oder die Anwen­dung von CO2 sein. Der CO2-​Gehalt ste­igt mit der Men­ge an Car­bo­na­ten – mit der Alka­li­tät des Was­sers – und sinkt mit der Was­ser­tem­pe­ra­tur. In der Natur – wo das Was­ser natür­lich nicht che­misch rein ist – kommt es ins­be­son­de­re in tie­fen Seen und ste­hen­den Gewäs­sern mit sch­wa­cher Strömung zu einem Phä­no­men, bei dem ab einer bes­timm­ten Tie­fe Sau­ers­toff (O2) im Was­ser in gro­ßen Men­gen fehlt – dies ist eine tote Zone für Fis­che und höhe­re Pflan­zen. Wenn wir uns auf den Sau­ers­toff­ge­halt in rei­nem Was­ser besch­rän­ken, hängt sei­ne Kon­zen­tra­ti­on vom Druck und von der Tem­pe­ra­tur ab. Da ich anneh­me, dass sich der Druck in der Aqu­aris­tikp­ra­xis kaum ändert, ble­ibt die Tem­pe­ra­tur für uns interessant.

Die Sau­ers­toff­kon­zen­tra­ti­on in Was­ser nimmt indi­rekt mit der Tem­pe­ra­tur ab. Je wär­mer das Was­ser ist, des­to weni­ger fre­ier Sau­ers­toff ist ent­hal­ten. Mög­li­cher­we­i­se haben Sie bere­its bemer­kt, dass Fis­che wäh­rend hei­ßer Som­mer­ta­ge, ins­be­son­de­re in kle­i­ne­ren Tanks, bei erhöh­ten Tem­pe­ra­tu­ren höher an die Oberf­lä­che ste­i­gen und schnel­ler atmen. Es ist jedoch nicht mög­lich, dies zu vere­in­fa­chen, da ein Sau­ers­toff­man­gel im Aqu­arium nicht nur auf eine erhöh­te Tem­pe­ra­tur zurück­zu­füh­ren ist – die Ursa­che muss ander­swo gesucht wer­den. Eher im erhöh­ten Stof­fwech­sel. Es kommt zu einem höhe­ren Sau­ers­toff­verb­rauch durch Zer­set­zungs­pro­zes­se. Aber auch aufg­rund einer sch­wa­chen oder inef­fi­zien­ten Fil­tra­ti­on. Rei­nes Was­ser bei 0°C ent­hält 14,16 mg Sau­ers­toff, bei 30°C nur etwa die Hälf­te – 7,53 mg.

In Bez­ug auf den Stof­fwech­sel, ins­be­son­de­re von Pflan­zen, ist Eisen – Fe sehr wich­tig. Sein Gehalt hängt von der Oxi­da­ti­ons­fä­hig­ke­it und dem Redo­xpo­ten­zial ab. Eisen kann sehr schnell in eine für Pflan­zen unzu­gän­gli­che Form oxi­diert wer­den. Es gilt, was ich zu Beginn erwähnt habe. Eisen ist im Aqu­arium, aber in wel­cher Form es vor­liegt, hängt davon ab, ob und wo es gebun­den ist. Es gibt auch Tests für den Eisen­ge­halt, die auf einem ähn­li­chen Prin­zip wie pH-​Tests basie­ren, die für die Bedürf­nis­se von Aqu­aria­nern ent­wic­kelt wurden.

Use Facebook to Comment on this Post

2006-2010, 2009, 2010, 2011, 2011-2015, 2012, 2013, 2014, 2015, Časová línia, Krajina, TOP

Krajina – najkrajšie fotografie krajiny

Hits: 42676

Repre­zen­tač­né sním­ky kra­ji­ny. Z rôz­nych oblas­tí sve­ta, mno­hé z nich sú zo Slo­ven­ska.


Repre­sen­ta­ti­ve Lands­ca­pe Ima­ges. From vari­ous regi­ons of the world, many of them are from Slovakia.


Use Facebook to Comment on this Post