• Slovensko (357)
    • Dolné Považie (41)
    • Tatry (35)
    • Podunajsko (32)
    • Liptov (29)
    • Orava (28)
    • Horné Považie (27)
    • Myjava (24)
  • Krajina (519)
    • Južná Morava (32)
    • Severná Morava (16)
    • Rakúsko (22)
    • Chorvátsko (12)
    • Poľsko (12)
    • Mestá (103)
      • Slovenské (46)
      • České (17)
      • Moravské (11)
    • Obce (114)
      • Slovenské (80)
      • Moravské (23)
  • Príroda (312)
    • Organizmy (210)
      • Živočíchy (164)
        • Ryby (98)
          • Malawi cichlidy (22)
          • Tanganika cichlidy (18)
          • Živorodky (17)
        • Vtáky (14)
        • Stromy (12)
        • Zoologické záhrady (10)
      • Rastliny (57)
    • Hory (26)
    • Ľudská príroda (22)
    • Vodné nádrže (14)
    • Skaly (13)
    • Vodopády (10)
  • Reportáže (43)
    • Bratislavské (18)
    • Považské (15)
    • Oslavy (10)
  • Dokumenty (53)
    • Stavby (102)
      • Kostoly (22)
      • Hrady (19)
      • Mlyny (15)
      • Zrúcaniny (13)
    • Slovenské (29)
    • Ľudia (29)
    • Prírodné (11)
    • V čase (22)
  • Akvaristika (192)
    • Biológia (28)
      • Výživa (10)
    • Prax (13)
    • Výstavy
    • Burzy (17)
    • Chovateľstvo (16)
  • Iné
    • TOP (89)
    • Veda (26)
    • Rodina (21)
    • Informácie (15)
    • Technika (12)
    • Zábava (2)

Skala

Fotografie, akvaristika, rodina a iné

Značka: narastanie potomstva

Skala > Skala > narastanie potomstva

Ekológia, Veda

Ekologická stabilita, ekologická rovnováha a spätná väzba

23/08/201005/01/2025 skala
Hits: 10508

Eko­lo­gic­ká sta­bi­li­ta, eko­lo­gic­ká rov­no­vá­ha a spät­ná väz­ba pred­sta­vu­jú kľú­čo­vé poj­my v oblas­ti eko­ló­gie a envi­ron­men­tál­nej vedy. Tie­to kon­cep­ty sú úzko spä­té a vzá­jom­ne ovplyv­ňu­jú fun­go­va­nie eko­sys­té­mov. Eko­lo­gic­ká sta­bi­li­ta sa vzťa­hu­je na schop­nosť eko­sys­té­mu odo­lá­vať zme­ne a udr­žia­vať svo­je štruk­tú­ry a fun­kcie napriek vnú­tor­ným ale­bo von­kaj­ším vply­vom. Sta­bil­ný eko­sys­tém je schop­ný obno­viť sa po von­kaj­ších naru­še­niach a udr­žia­vať svo­je rov­no­váž­ne pod­mien­ky. Eko­lo­gic­ká rov­no­vá­ha zdô­raz­ňu­je sta­bi­li­tu v inte­rak­ciách medzi živý­mi a neži­vý­mi čas­ťa­mi eko­sys­té­mu. Táto rov­no­vá­ha vzni­ká pro­stred­níc­tvom kom­plex­ných vzťa­hov, kde orga­niz­my ovplyv­ňu­jú svo­je pro­stre­die a súčas­ne sú ovplyv­ňo­va­né tým­to pro­stre­dím. Spät­ná väz­ba je pro­ces, pri kto­rom výsle­dok ale­bo stav súvi­sí s pred­chá­dza­jú­cim sta­vom. V eko­ló­gii sa čas­to pou­ží­va na opis inte­rak­cií v rám­ci eko­sys­té­mov. Spät­ná väz­ba môže byť pozi­tív­na (zosil­ňu­jú­ca) ale­bo nega­tív­na (vyva­žu­jú­ca). Naprí­klad, ak rast­li­ny ras­tú­ce v eko­sys­té­me absor­bu­je viac CO2, môže to viesť k pozi­tív­nej spät­nej väz­be v zni­žo­va­ní cel­ko­vé­ho množ­stva skle­ní­ko­vých ply­nov v atmo­sfé­re. Úva­ha o tých­to kon­cep­toch má kľú­čo­vý význam v súvis­los­ti s glo­bál­ny­mi envi­ron­men­tál­ny­mi výzva­mi. Súčas­ný stav našej pla­né­ty jas­ne uka­zu­je, že nevy­vá­že­né ľud­ské akti­vi­ty môžu naru­šiť eko­lo­gic­kú sta­bi­li­tu a rov­no­vá­hu. Dôle­ži­té je uve­do­miť si, že eko­sys­té­my sú vzá­jom­ne pre­po­je­né a zme­na v jed­nej oblas­ti môže mať význam­né dôsled­ky v iných čas­tiach eko­sys­té­mu. Z toh­to dôvo­du je potreb­né konať s ohľa­dom na zacho­va­nie a obno­vu eko­lo­gic­kej sta­bi­li­ty, aby sme zabez­pe­či­li udr­ža­teľ­nú budúc­nosť pre našu planétu.


Eco­lo­gi­cal sta­bi­li­ty, eco­lo­gi­cal balan­ce, and feed­back are key con­cepts in the field of eco­lo­gy and envi­ron­men­tal scien­ce. The­se con­cepts are clo­se­ly inter­con­nec­ted and mutu­al­ly influ­en­ce the func­ti­oning of eco­sys­tems. Eco­lo­gi­cal sta­bi­li­ty refers to the abi­li­ty of an eco­sys­tem to resist chan­ge and main­tain its struc­tu­res and func­ti­ons des­pi­te inter­nal or exter­nal influ­en­ces. A stab­le eco­sys­tem can reco­ver from exter­nal dis­tur­ban­ces and main­tain its equ­ilib­rium con­di­ti­ons. Eco­lo­gi­cal balan­ce emp­ha­si­zes sta­bi­li­ty in inte­rac­ti­ons bet­we­en living and non-​living parts of the eco­sys­tem. This balan­ce ari­ses through com­plex rela­ti­ons­hips whe­re orga­nisms influ­en­ce the­ir envi­ron­ment, and, at the same time, are influ­en­ced by it. Feed­back is a pro­cess whe­re the out­co­me or sta­te is rela­ted to the pre­vi­ous sta­te. In eco­lo­gy, it is often used to desc­ri­be inte­rac­ti­ons wit­hin eco­sys­tems. Feed­back can be posi­ti­ve (ampli­fy­ing) or nega­ti­ve (balan­cing). For exam­ple, if plants in an eco­sys­tem absorb more CO2, it can lead to posi­ti­ve feed­back in redu­cing the ove­rall amount of gre­en­hou­se gases in the atmo­sp­he­re. Ref­lec­ti­on on the­se con­cepts is cru­cial in the con­text of glo­bal envi­ron­men­tal chal­len­ges. The cur­rent sta­te of our pla­net cle­ar­ly sho­ws that unba­lan­ced human acti­vi­ties can dis­rupt eco­lo­gi­cal sta­bi­li­ty and balan­ce. It’s impor­tant to rea­li­ze that eco­sys­tems are inter­con­nec­ted, and a chan­ge in one area can have sig­ni­fi­cant con­se­qu­en­ces in other parts of the eco­sys­tem. The­re­fo­re, acti­on is needed to pre­ser­ve and res­to­re eco­lo­gi­cal sta­bi­li­ty to ensu­re a sus­tai­nab­le futu­re for our planet.


Abs­trakt:

Ten­to člá­nok sa zaobe­rá eko­lo­gic­kou sta­bi­li­tou ako takou, a mož­nos­ťa­mi jej zis­ťo­va­nia. Popi­su­jem základ­né poznat­ky o eko­lo­gic­kej sta­bi­li­te. Už v úvo­de uvá­dzam vzá­jom­ne pozi­tív­ny vzťah eko­lo­gic­kej sta­bi­li­ty a ener­gie. Ana­ly­zu­jem mož­nos­ti jej zis­ťo­va­nia ces­tou pro­dukč­nej eko­ló­gie. Sna­žím sa popí­sať prob­lé­my s tým spo­je­né. Prav­de­po­dob­ne naj­zau­jí­ma­vej­ším názo­rom celé­ho člán­ku je hypo­té­za, že závis­losť eko­lo­gic­kej sta­bi­li­ty a ener­gie nut­nej na udr­žo­va­nie momen­tál­ne­ho sta­vu je kon­štant­ná ! Oso­bit­ne sa venu­jem spät­nej väz­be. Mys­lím, že spät­ná väz­ba má veľ­ký vplyv na eko­lo­gic­kú rov­no­vá­hu. Schvál­ne som pou­žil slo­vo rov­no­vá­hu, pre­to­že tak ako z člán­ku vyplý­va, mám veľ­ké pochyb­nos­ti o jej vply­ve na eko­lo­gic­kú stabilitu.


Abs­tract:

This artic­le is dea­ling with eco­lo­gi­cal sta­bi­li­ty as the scien­ce, and possi­bi­li­ties of its detec­ti­on. I desc­ri­be the basic kno­wled­ge about eco­lo­gi­cal sta­bi­li­ty. I have men­ti­oned other posi­ti­ve rela­ti­ons­hip bet­we­en the eco­lo­gi­cal sta­bi­li­ty and the ener­gy in intro­duc­ti­on. I ana­ly­se the possi­bi­li­ties of its detec­ti­on through pro­duc­ti­ve (ener­gy) eco­lo­gy. I tried to desc­ri­be troub­les joined to it. I think the most inte­res­ting opi­ni­on of the who­le artic­le is a hypot­he­sis that the depen­den­ce of eco­lo­gi­cal sta­bi­li­ty and ener­gy which is neces­sa­ry for sus­tai­ning of momen­ta­ry sta­te is cons­tant ! I pecu­liar­ly devo­te to feed­back. I think that feed­back has a gre­at influ­en­ce on eco­lo­gi­cal balan­ce. The artic­le indi­ca­te that the­re is my deep doubt about the influ­en­ce of feed­back on eco­lo­gi­cal sta­bi­li­ty that is why I have just used the word balance.


Mot­to: Naj­ne­po­cho­pi­teľ­nej­šou vecou na sve­te je fakt, že je to pocho­pi­teľ­né (Albert Einstein)


Mot­to: The most incom­pre­hen­sib­le thing in the world is that it is unders­tan­dab­le. (Albert Einstein)


MÍCHAL ET VOLOŠČUK (1991) defi­nu­jú eko­lo­gic­kú sta­bi­li­tu ako schop­nosť eko­sys­té­mu vrá­tiť sa pôso­be­ním vlast­ných vnú­tor­ných mecha­niz­mov k dyna­mic­kej rov­no­vá­he ale­bo ku svoj­mu ​“nor­mál­ne­mu” vývo­jo­vé­mu sme­ru. Čím rých­lej­šie sa eko­sys­tém vra­cia a tým men­šie odchýl­ky vyka­zu­je, tým je sta­bil­nej­ší. Rád by som zdô­raz­nil, že eko­lo­gic­ká sta­bi­li­ta je pre­vrá­te­nou hod­no­tou vstu­pov, či už vo for­me látok ale­bo ener­gie, kto­ré je nut­né do eko­sys­té­mu vkla­dať na to, aby sme ho udr­ža­li v momen­tál­nom sta­ve. Táto situ­ácia nemá envi­ron­men­tál­ny aspekt. Neexis­tu­je pre­po­je­nie na pri­ro­dze­nosť eko­sys­té­mu. Napr. lán pše­ni­ce vyža­du­je kaž­do­roč­né mecha­nic­ké naru­šo­va­nie, hno­je­nie a kose­nie, orga­nic­ký mate­riál (sla­ma) musí byť odstra­ňo­va­ný, ale­bo aspoň eli­mi­no­va­ný – inak by úro­da v najb­liž­ších šty­roch – pia­tich rokoch nebo­la tak­mer žiad­na. Tok ener­gie je prerušovaný.

Meto­di­ky určo­va­nia koefi­cien­tu eko­lo­gic­kej sta­bi­li­ty v tvor­be ÚSES – Územ­né­ho sys­té­mu eko­lo­gic­kej sta­bi­li­ty sú do istej mie­ry intu­itív­ne. Je veľ­kým prob­lé­mom zis­tiť mie­ru eko­lo­gic­kej sta­bi­li­ty pres­nej­šie. Meto­di­ka je zalo­že­ná na zna­koch, kto­ré sa vyzna­ču­jú veľ­kým inter­va­lom a veľ­kú úlo­hu zohrá­va sub­jek­ti­vi­ta ľud­ské­ho fak­to­ra. Pro­jek­ty ÚSES vypra­cú­va­jú rôz­ni ľudia a s rôz­nym pro­fe­sij­ným zame­ra­ním – od sta­veb­ných inži­nie­rov, urba­nis­tov, archi­tek­tov cez kra­jin­ných plá­no­va­čov, bio­ló­gov, eko­ló­gov až po envi­ron­men­ta­lis­tov. V tvor­be ÚSES nie je otáz­ka pres­nej deter­mi­ná­cie eko­lo­gic­kej sta­bi­li­ty taká dôle­ži­tá, okrem iné­ho aj z dôvo­du využí­va­nia prin­cí­pu rela­tív­nos­ti v tvor­be ÚSES. Pri­rov­nal by som to k situ­ácii leká­ra, kto­rý sa sna­ží pomôcť pacien­to­vi trpia­ce­mu nevy­lie­či­teľ­nou for­mou leuké­mie. Napriek tomu, že vie, že pacien­to­vi veľa času neos­tá­va, hľa­dá opo­ru – ​“kos­tru”, naj­hod­not­nej­šie čas­ti, kto­ré pacien­ta udr­žia v sta­ve naj­vyš­šej mož­nej rov­no­vá­hy, prí­pad­ne poci­tu spo­koj­nos­ti. Toto pri­rov­na­nie tro­chu krí­va, totiž prí­ro­da nikdy nebu­de v sta­ve pacien­ta, avšak na pocho­pe­nie rela­tív­nos­ti využi­tia pozna­nia eko­lo­gic­kej sta­bi­li­ty pre úče­lo­vú prá­cu akou ÚSES je vhodný.


MÍCHAL ET VOLOŠČUK (1991) defi­nes eco­lo­gi­cal sta­bi­li­ty as the abi­li­ty of an eco­sys­tem to return, through its inter­nal mecha­nisms, to dyna­mic equ­ilib­rium or its ​“nor­mal” deve­lop­men­tal direc­ti­on. The fas­ter an eco­sys­tem returns and the smal­ler the devia­ti­ons it exhi­bits, the more stab­le it is. I would like to emp­ha­si­ze that eco­lo­gi­cal sta­bi­li­ty is the inver­ted value of inputs, whet­her in the form of sub­stan­ces or ener­gy, that need to be inves­ted in the eco­sys­tem to main­tain it in its cur­rent sta­te. This situ­ati­on does not have an envi­ron­men­tal aspect. The­re is no con­nec­ti­on to the natu­ral­ness of the eco­sys­tem. For exam­ple, a whe­at field requ­ires annu­al mecha­ni­cal dis­rup­ti­on, fer­ti­li­za­ti­on, and mowing; orga­nic mate­rial (straw) must be remo­ved or at least eli­mi­na­ted — other­wi­se, the crop in the next four to five years would be almost none­xis­tent. The flow of ener­gy is disrupted.

The met­ho­do­lo­gies for deter­mi­ning the coef­fi­cient of eco­lo­gi­cal sta­bi­li­ty in the cre­a­ti­on of ÚSES – Územ­ný sys­tém eko­lo­gic­kej sta­bi­li­ty are, to some extent, intu­iti­ve. It is a sig­ni­fi­cant chal­len­ge to ascer­tain the degree of eco­lo­gi­cal sta­bi­li­ty more pre­ci­se­ly. The met­ho­do­lo­gy is based on fea­tu­res cha­rac­te­ri­zed by a wide ran­ge, and sub­jec­ti­vi­ty pla­ys a sig­ni­fi­cant role. ÚSES pro­jects are car­ried out by vari­ous indi­vi­du­als with dif­fe­rent pro­fes­si­onal backg­rounds – from civil engi­ne­ers, urban plan­ners, and archi­tects to lands­ca­pe plan­ners, bio­lo­gists, eco­lo­gists, and envi­ron­men­ta­lists. In the cre­a­ti­on of ÚSES, the exact deter­mi­na­ti­on of eco­lo­gi­cal sta­bi­li­ty is not as cru­cial, part­ly due to the use of the prin­cip­le of rela­ti­vi­ty in its for­ma­ti­on. I would liken it to the situ­ati­on of a doc­tor try­ing to help a patient suf­fe­ring from an incu­rab­le form of leuke­mia. Des­pi­te kno­wing that the patient has limi­ted time, the doc­tor seeks sup­port, a ​“fra­me­work,” the most valu­ab­le parts that will keep the patient in the hig­hest possib­le sta­te of equ­ilib­rium or a sen­se of satis­fac­ti­on. This ana­lo­gy is some­what ske­wed becau­se natu­re will never be in a patien­t’s sta­te, but it helps unders­tand the rela­ti­vi­ty of using kno­wled­ge of eco­lo­gi­cal sta­bi­li­ty for the pur­po­se­ful work that ÚSES represents.


Čo je to eko­lo­gic­ká sta­bi­li­ta a aké sú mož­nos­ti jej zis­ťo­va­nia a aké­ho­si ​“oce­ne­nia” pre lai­kov ? To je zlo­ži­tá otáz­ka, na kto­rú sa sna­žím dať neja­ké pod­ne­ty. Môžem pou­žiť dokon­ca medi­cí­nu, či eko­nó­miu na to, aby som doká­zal pozi­tív­ny vzťah eko­lo­gic­kej sta­bi­li­ty k cie­ľom uve­de­ných odbo­rov. Ak poviem eko­nó­mo­vi, že toto úze­mie má takú a takú cenu z hľa­dis­ka eko­lo­gic­kej sta­bi­li­ty, a že na tom svo­jou správ­ne orien­to­va­nou akti­vi­tou (napr. pase­ním na lúke v Strá­žov­ských vrchoch) ušet­rí roč­ne istú sumu peňa­zí, je vhod­né, aby sme vede­li určiť eko­lo­gic­kú sta­bi­li­tu. Je vše­obec­ne zná­my pozi­tív­ny vzťah rov­no­vá­hy v prí­ro­de k zdra­viu oby­va­te­ľov. Meto­di­ky zis­ťo­va­nia koefi­cien­tu eko­lo­gic­kej sta­bi­li­ty s kto­rý­mi som sa naj­čas­tej­šie stre­tol sú zalo­že­né na zís­ka­va­ní poznat­kov o aktu­ál­nom sta­ve vege­tá­cie na jed­not­li­vých plo­chách. Vege­tá­cia je repre­zen­ta­tív­nym uka­zo­va­te­ľom, kto­rý dosta­toč­ne pres­ne odrá­ža stav eko­sys­té­mu nie­len v momen­tál­nom čase, ale je reak­ci­ou na pod­mien­ky oko­lia počas pomer­ne dlhé­ho časo­vé­ho obdo­bia. Tie­to meto­di­ky majú jeden veľ­mi exakt­ný aspekt – je ním pôvod­nosť. Napr. drvi­vá väč­ši­na lúk ako tak­mer nepô­vod­ný prvok v našich pod­mien­kach nedo­sa­hu­jú naj­vyš­ší význam pre eko­lo­gic­kú sta­bi­li­tu – hod­no­tu 5, ako tak­mer všet­ky ostat­né typy eko­sys­té­mov . To je dané nevy­hnut­nos­ťou vstu­pov ener­gie pre eko­sys­tém lúk, kto­ré musia mať zabez­pe­če­ný manaž­ment na to aby pre­trva­li vo svo­jej for­me. Keď som uva­žo­val o pres­nej­šom postu­pe pre zis­ťo­va­nie stup­ňa eko­lo­gic­kej sta­bi­li­ty usú­dil som, že prav­de­po­dob­ne naje­xakt­nej­šia metó­da mera­nia stup­ňa eko­lo­gic­kej sta­bi­li­ty je ces­ta využí­va­jú­ca metó­dy pro­dukč­nej eko­ló­gie. Len­že to má dva hlav­né okru­hy problémov.

Prvý prob­lém je v tom, že jed­not­li­vé eko­sys­té­my majú rôz­nu výš­ku pro­duk­cie, a rôz­nu výš­ku potreb­ných vstu­pov. Dru­hý prob­lém spo­čí­va v nasle­du­jú­com. Téza hovo­rí: eko­lo­gic­ká sta­bi­li­ta je nepria­mo úmer­ná ener­gii nut­nej na udr­žo­va­nie momen­tál­ne­ho sta­vu (MÍCHAL ET VOLOŠČUK, 1991). Ako sa dá zis­tiť koľ­ko nevy­hnut­nej ener­gie tre­ba. Je mož­né pomer­ne pres­ne vyčís­liť ener­giu, kto­rá je do eko­sys­té­mu vkla­da­ná člo­ve­kom, ale ako mož­no odhad­núť aké množ­stvo je nut­né na udr­ža­nie rov­na­ké­ho sta­vu? Okrem toho eko­sys­tém sa kaž­do­roč­ne mení, nie­kto­ré dru­hy gra­du­jú, kaž­dý rok je iný prí­sun zrá­žok, napriek tomu sa sta­bi­li­ta nemu­sí zme­niť. Na eko­lo­gic­ky nesta­bil­ných plo­chách by tie­to prob­lé­my narastali.

Je zná­me, že exis­tu­je závis­losť medzi eko­lo­gic­kou sta­bi­li­tou, ener­gi­ou nut­nou na udr­žo­va­nie momen­tál­ne­ho sta­vu a ener­gi­ou dodá­va­nou do eko­sys­té­mu pri­ro­dze­ne. Mys­lím si dokon­ca, že táto závis­losť je kon­štant­ná pre všet­ky typy eko­sys­té­mov. V akom vzťa­hu je ener­gia dodá­va­ná do eko­sys­té­mu ume­lo ku ener­gii dodá­va­nej pri­ro­dze­ne vzhľa­dom na jeho sta­bi­li­tu ? Dnes vie­me len tom, že v nepria­mo úmer­nom. Veď napo­kon je to logic­ké, však ? Akým spô­so­bom je mož­né zis­tiť ten­to vzťah ? Ja sa naz­dá­vam, že ces­ta je schod­ná prá­ve pro­stred­níc­tvom pro­dukč­nej eko­ló­gie. Veľ­kým prob­lé­mom však je prav­de­po­dob­ne zis­tiť pres­né množ­stvo ener­gie, kto­ré je nut­né pre pri­ro­dze­ný vývoj naj­mä v nepri­ro­dze­ných eko­sys­té­moch. Ak by sa zis­ti­li ener­gie a vypo­čí­tal by sa ich vzá­jom­ný podiel, mohol by sa porov­nať s meto­di­kou zis­ťo­va­nia eko­lo­gic­kej sta­bi­li­ty pou­ží­va­nou v tvor­be ÚSES a potom už by nemal byť väč­ší prob­lém mate­ma­tic­kým apa­rá­tom s veľ­kou pres­nos­ťou odhad­núť vzťah eko­lo­gic­kej sta­bi­li­ty a energie.


What is eco­lo­gi­cal sta­bi­li­ty and what are the possi­bi­li­ties of deter­mi­ning it and some kind of ​“reward” for lay­pe­op­le? This is a com­plex ques­ti­on that I am try­ing to pro­vi­de some insights into. I can even use medi­ci­ne or eco­no­mics to demon­stra­te a posi­ti­ve rela­ti­ons­hip bet­we­en eco­lo­gi­cal sta­bi­li­ty and the goals of the­se fields. If I tell an eco­no­mist that this area has a cer­tain value in terms of eco­lo­gi­cal sta­bi­li­ty and that, through pro­per­ly orien­ted acti­vi­ties (such as gra­zing in the mea­do­ws of the Strá­žov­ské vrchy moun­tains), a cer­tain amount of money can be saved annu­al­ly, it is app­rop­ria­te to be able to deter­mi­ne eco­lo­gi­cal sta­bi­li­ty. The gene­ral­ly kno­wn posi­ti­ve rela­ti­ons­hip bet­we­en balan­ce in natu­re and the health of the popu­la­ti­on sup­ports this idea. Met­hods for deter­mi­ning the coef­fi­cient of eco­lo­gi­cal sta­bi­li­ty that I have encoun­te­red most fre­qu­en­tly are based on acqu­iring kno­wled­ge about the cur­rent sta­te of vege­ta­ti­on on indi­vi­du­al are­as. Vege­ta­ti­on is a repre­sen­ta­ti­ve indi­ca­tor that accu­ra­te­ly ref­lects the sta­te of the eco­sys­tem not only at the pre­sent time but is a res­pon­se to envi­ron­men­tal con­di­ti­ons over a rela­ti­ve­ly long peri­od. The­se met­hods have a very pre­ci­se aspect — ori­gi­na­li­ty. For exam­ple, the vast majo­ri­ty of mea­do­ws, as an almost non-​original ele­ment in our con­di­ti­ons, do not achie­ve the hig­hest impor­tan­ce for eco­lo­gi­cal sta­bi­li­ty — a value of 5, like almost all other types of eco­sys­tems. This is due to the neces­si­ty of ener­gy inputs for mea­dow eco­sys­tems, which must have mana­ge­ment in pla­ce to sur­vi­ve in the­ir form. When I con­si­de­red a more pre­ci­se app­ro­ach to deter­mi­ne the degree of eco­lo­gi­cal sta­bi­li­ty, I conc­lu­ded that pro­bab­ly the most accu­ra­te met­hod for mea­su­ring the degree of eco­lo­gi­cal sta­bi­li­ty is a path uti­li­zing met­hods of pro­duc­ti­on eco­lo­gy. Howe­ver, this has two main circ­les of problems.

The first prob­lem is that indi­vi­du­al eco­sys­tems have vary­ing levels of pro­duc­ti­on and dif­fe­rent levels of requ­ired inputs. The second prob­lem is as fol­lo­ws. The the­sis sta­tes: eco­lo­gi­cal sta­bi­li­ty is indi­rect­ly pro­por­ti­onal to the ener­gy neces­sa­ry to main­tain the cur­rent sta­te (MÍCHAL ET VOLOŠČUK, 1991). How can one deter­mi­ne how much neces­sa­ry ener­gy is requ­ired? It is possib­le to fair­ly accu­ra­te­ly quan­ti­fy the ener­gy being input into the eco­sys­tem by humans, but how can one esti­ma­te the amount needed to main­tain the same sta­te? Addi­ti­onal­ly, the eco­sys­tem chan­ges eve­ry year, some spe­cies gra­du­ate, the­re is a dif­fe­rent annu­al pre­ci­pi­ta­ti­on influx, yet sta­bi­li­ty may not chan­ge. On eco­lo­gi­cal­ly uns­tab­le are­as, the­se prob­lems would escalate.

It is kno­wn that the­re is a depen­den­ce bet­we­en eco­lo­gi­cal sta­bi­li­ty, the ener­gy needed to main­tain the cur­rent sta­te, and the ener­gy natu­ral­ly supp­lied to the eco­sys­tem. I even belie­ve that this depen­den­ce is cons­tant for all types of eco­sys­tems. In what rela­ti­ons­hip is the ener­gy arti­fi­cial­ly supp­lied to the eco­sys­tem to the natu­ral­ly supp­lied ener­gy con­cer­ning its sta­bi­li­ty? Today, we only know that it is inver­se­ly pro­por­ti­onal. After all, it is logi­cal, isn’t it? How can we deter­mi­ne this rela­ti­ons­hip? I think the way is through pro­duc­ti­on eco­lo­gy. Howe­ver, a sig­ni­fi­cant prob­lem is pro­bab­ly deter­mi­ning the exact amount of ener­gy needed for natu­ral deve­lop­ment, espe­cial­ly in unna­tu­ral eco­sys­tems. If the ener­gies were deter­mi­ned, and the­ir mutu­al ratio cal­cu­la­ted, it could be com­pa­red with the met­ho­do­lo­gy used to deter­mi­ne eco­lo­gi­cal sta­bi­li­ty in the cre­a­ti­on of ÚSES. Then, the­re should be no major prob­lem to esti­ma­te the rela­ti­ons­hip bet­we­en eco­lo­gi­cal sta­bi­li­ty and ener­gy with gre­at pre­ci­si­on using mat­he­ma­ti­cal tools.


Spät­ná väz­ba veľ­mi výraz­ným spô­so­bom vplý­va na eko­lo­gic­kú sta­bi­li­tu. Je to vzá­jom­né, nená­hod­né pôso­be­nie medzi prv­ka­mi (prí­pad­ne sub­sys­té­ma­mi) toho isté­ho sys­té­mu, pri kto­rom dochá­dza k zosil­ňu­jú­ce­mu – pozi­tív­ne­mu, ale­bo zosla­bu­jú­ce­mu – nega­tív­ne­mu pôso­be­niu veli­či­ny B, kto­rá bola pria­mo, ale­bo nepria­mo zme­ne­ná veli­či­nou A, na túto veli­či­nu A. Spät­ná väz­ba je naj­dô­le­ži­tej­ším auto­re­gu­lač­ným mecha­niz­mom všet­kých sys­té­mov bez výnim­ky (MÍCHAL ET VOLOŠČUK, 1991, p. 28), a pre­to ma vzťah k eko­lo­gic­kej sta­bi­li­te. Dôkaz takej­to spät­nej väz­by pri­ná­ša uži­toč­né infor­má­cie o cho­va­ní sys­té­mu (okrem iné­ho o jeho sta­bi­li­te) i v prí­pa­de, že mecha­niz­mus toh­to pôso­be­nia pre nás ostá­va nezná­my (MÍCHAL ET VOLOŠČUK, 1991, p. 28). Pri pozi­tív­nej spät­nej väz­be pôso­bí kaž­dý z dvoch pre­men­ných prv­kov v inte­rak­cii zhod­ným sme­rom, tak­že sa navzá­jom zosil­ňu­jú v pozi­tív­nom, či nega­tív­nom zmys­le. Napr., čím viac čle­nov popu­lá­cie A je v plod­nom veku, tým viac potom­stva B sa môže naro­diť. Potom, čím viac potom­stva B doras­tá do plod­né­ho veku, tým rých­lej­šie naras­tá popu­lá­cia. Dochá­dza teda k posil­ňo­va­niu obi­dvoch pre­men­ných prv­kov inte­rak­cia v čase a výsled­kom je zná­ma expo­nen­ciál­na ras­to­vá kriv­ka tva­ru ​“J” (MÍCHAL ET VOLOŠČUK, 1991, p. 28 – 29). Pozi­tív­na spät­ná väz­ba posil­ňu­je odchýl­ky a nerov­no­váž­ne sta­vy a spra­vid­la slú­ži dyna­mic­ké­mu ras­tu sys­té­mu. Ten však časom nará­ža na urči­tú hra­ni­cu – limi­ty svoj­ho von­kaj­šie­ho pro­stre­dia. Kva­li­ta­tív­ne zme­ny vlast­nos­tí prv­kov inte­rak­cie sa potom môžu pre­ja­viť prin­ci­piál­ne dvo­ma spô­sob­mi (MÍCHAL ET VOLOŠČUK, 1991, p. 28 – 29):

  • pre­me­nia dote­raj­šiu pozi­tív­nu spät­nú väz­bu na nega­tív­nu a expo­nen­ciál­ny úsek ras­to­vej kriv­ky sa tak sploš­tí a nado­bud­ne tvar ​“S” a prej­de do sta­vu dyna­mic­kej rov­no­vá­hy s náhod­ným kolí­sa­ním – fluk­tu­áci­ou hod­nôt. Nega­tív­na spät­ná väz­ba je hlav­ným sta­bi­li­zač­ným prin­cí­pom, spo­loč­ným pre živé i neži­vé sub­sys­té­my (Míchal a Vološ­čuk, 1991).
  • pri zacho­va­ní pozi­tív­nej spät­nej väz­by sa ​“pre­pó­lu­je” a jej nosi­te­lia ​“zme­nia zna­mien­ko” na závis­losť typu ​“čím menej A – tým menej B” (MÍCHAL ET VOLOŠČUK, 1991).

Pato­lo­gic­ké javy vyvo­la­né stre­som sú v spät­no­väz­bo­vej sché­me fak­to­rom ​“naviac” k sché­me pozi­tív­nej väz­by. S ras­tú­cim počtom plod­nej čas­ti popu­lá­cie naras­ta­jú nie­len počty potom­stva, ale prog­re­sív­ne ras­tie nedos­ta­tok potra­vy a pries­to­ru a ďal­ších zdro­jov nevy­hnut­ných pre exis­ten­ciu ďal­ších čle­nov popu­lá­cie, prí­pad­ne ras­tie zne­čis­ťo­va­nie pro­stre­dia samot­nou popu­lá­ci­ou. Tie­to ras­tú­ce nega­tív­ne vply­vy v pro­stre­dí popu­lá­cie pri­ná­ša­jú jej jedin­com takú záťaž, že sa to pre­ja­ví pato­lo­gic­ký­mi zme­na­mi cho­va­nia, kto­ré môžu viesť i v prí­rod­ných pod­mien­kach k prud­kým pokle­som popu­lač­nej hus­to­ty sme­rom k mini­mu (MÍCHAL a VOLOŠČUK, 1991). Z toho vyplý­va, že pozi­tív­na spät­ná väz­ba, naj­mä vo vrcho­lo­vých čas­tiach kriv­ky spô­so­bu­je zní­že­nie stup­ňa eko­lo­gic­kej sta­bi­li­ty. Pýtam sa, či môže mať spät­ná väz­ba ako prí­rod­ný a pri­ro­dze­ný pro­ces auto­re­gu­lá­cie eko­sys­té­mov nega­tív­ny vplyv na eko­lo­gic­kú sta­bi­li­tu ako schop­nosť eko­sys­té­mu ? Napr. v takom eko­sys­té­me ako je taj­ga je regis­tro­va­né pra­vi­del­né výraz­né kolí­sa­nie počet­nos­ti vtá­kov a sta­vov­cov. Napriek tomu sta­bi­li­ta toh­to eko­sys­té­mu je vyso­ká, jeho schop­nosť vyspo­ria­dať sa s vnú­tor­ný­mi i von­kaj­ší­mi fak­tor­mi pro­stre­dia je obdi­vu­hod­ná. Cha­rak­te­ris­ti­ka pome­rov v taj­ge môže viesť k názo­ru, že daný eko­sys­tém je nevy­vá­že­ný, roz­ko­lí­sa­ný, jed­no­du­cho že nie je v sta­ve eko­lo­gic­kej rov­no­vá­hy. Avšak ten­to eko­sys­tém pokiaľ nie pria­mo ohro­zo­va­ný člo­ve­kom sa vyzna­ču­je vyso­kým stup­ňom eko­lo­gic­kej sta­bi­li­ty. Mecha­niz­mus pre­tr­vá­va­jú­ce­ho zabez­pe­čo­va­nia rov­no­vá­hy je prav­de­po­dob­ne spät­ná väz­ba. MÍCHAL ET VOLOŠČUK (1991) hovo­ria o tom, že ak fluk­tu­ácia zlo­žiek eko­sys­té­mu neve­die k dlho­do­bej deštruk­cii jeho štruk­túr, môže byť kolí­sa­nie počet­nos­ti urči­tej popu­lá­cie výra­zom ochran­ných akti­vít ria­de­ných spät­ný­mi väz­ba­mi. Spät­ná väz­ba je pros­tried­kom regu­lá­cie, môže spô­so­biť eko­lo­gic­kú rov­no­vá­hu, ale pochy­bu­jem o tom, že nega­tív­ne vplý­va na eko­lo­gic­kú stabilitu.


Feed­back sig­ni­fi­can­tly affects eco­lo­gi­cal sta­bi­li­ty. It is a mutu­al, non-​random inte­rac­ti­on bet­we­en ele­ments (or sub­sys­tems) of the same sys­tem in which the­re is an ampli­fy­ing – posi­ti­ve, or atte­nu­ating – nega­ti­ve influ­en­ce of variab­le B, which was direct­ly or indi­rect­ly chan­ged by variab­le A, on this variab­le A. Feed­back is the most impor­tant self-​regulating mecha­nism of all sys­tems wit­hout excep­ti­on (MÍCHAL ET VOLOŠČUK, 1991, p. 28), and the­re­fo­re, it is rela­ted to eco­lo­gi­cal sta­bi­li­ty. Evi­den­ce of such feed­back pro­vi­des use­ful infor­ma­ti­on about the beha­vi­or of the sys­tem (inc­lu­ding its sta­bi­li­ty) even if the mecha­nism of this acti­on remains unkno­wn to us (MÍCHAL ET VOLOŠČUK, 1991, p. 28). In posi­ti­ve feed­back, each of the two variab­le ele­ments in the inte­rac­ti­on acts in the same direc­ti­on, so they mutu­al­ly rein­for­ce each other posi­ti­ve­ly or nega­ti­ve­ly. For exam­ple, the more mem­bers of popu­la­ti­on A are in the fer­ti­le age, the more offs­pring B can be born. Then, the more offs­pring B gro­ws into the fer­ti­le age, the fas­ter the popu­la­ti­on gro­ws. Thus, both variab­le ele­ments rein­for­ce each other in time, resul­ting in the well-​known expo­nen­tial gro­wth cur­ve in the sha­pe of ​“J” (MÍCHAL ET VOLOŠČUK, 1991, p. 28 – 29). Posi­ti­ve feed­back strengt­hens devia­ti­ons and unba­lan­ced sta­tes and gene­ral­ly ser­ves the dyna­mic gro­wth of the sys­tem. Howe­ver, over time, it encoun­ters a cer­tain limit – the limits of its exter­nal envi­ron­ment. Quali­ta­ti­ve chan­ges in the pro­per­ties of inte­rac­ti­on ele­ments can then mani­fest them­sel­ves in two fun­da­men­tal­ly dif­fe­rent ways (MÍCHAL ET VOLOŠČUK, 1991, p. 28 – 29):

  • It trans­forms the pre­vi­ous posi­ti­ve feed­back into nega­ti­ve, and the expo­nen­tial gro­wth pha­se of the gro­wth cur­ve flat­tens out, taking the sha­pe of an ​“S,” trans­i­ti­oning into a sta­te of dyna­mic equ­ilib­rium with ran­dom fluc­tu­ati­ons – the fluc­tu­ati­on of valu­es. Nega­ti­ve feed­back is the main sta­bi­li­zing prin­cip­le, com­mon to both living and non-​living sub­sys­tems (Míchal and Vološ­čuk, 1991).
  • Whi­le main­tai­ning posi­ti­ve feed­back, it ​“rever­ses,” and its car­riers ​“chan­ge signs” to a depen­den­ce of the type ​“the less A, the less B” (MÍCHAL ET VOLOŠČUK, 1991).

Pato­lo­gi­cal phe­no­me­na indu­ced by stress are an addi­ti­onal fac­tor in the posi­ti­ve feed­back loop. With the inc­re­a­sing num­ber of the fer­ti­le part of the popu­la­ti­on, not only the num­bers of offs­pring inc­re­a­se, but the­re is a prog­res­si­ve­ly gro­wing shor­ta­ge of food, spa­ce, and other resour­ces neces­sa­ry for the exis­ten­ce of other mem­bers of the popu­la­ti­on, or pol­lu­ti­on of the envi­ron­ment inc­re­a­ses due to the popu­la­ti­on itself. The­se gro­wing nega­ti­ve impacts in the popu­la­ti­on’s envi­ron­ment impo­se such a bur­den on its indi­vi­du­als that it mani­fests as pat­ho­lo­gi­cal chan­ges in beha­vi­or, which can lead, even in natu­ral con­di­ti­ons, to sharp dec­li­nes in popu­la­ti­on den­si­ty towards the mini­mum (MÍCHAL and VOLOŠČUK, 1991). The­re­fo­re, posi­ti­ve feed­back, espe­cial­ly in the upper parts of the cur­ve, cau­ses a reduc­ti­on in the degree of eco­lo­gi­cal sta­bi­li­ty. I won­der if feed­back as a natu­ral and inhe­rent pro­cess of eco­sys­tem self-​regulation can have a nega­ti­ve impact on the abi­li­ty of the eco­sys­tem, such as the tai­ga, to main­tain sta­bi­li­ty? For exam­ple, in the tai­ga, the­re is regu­lar­ly sig­ni­fi­cant fluc­tu­ati­ons in the abun­dan­ce of birds and mam­mals. Des­pi­te this, the sta­bi­li­ty of this eco­sys­tem is high, and its abi­li­ty to cope with inter­nal and exter­nal envi­ron­men­tal fac­tors is admi­rab­le. The cha­rac­te­ris­tics of rela­ti­ons­hips in the tai­ga may lead to the opi­ni­on that the eco­sys­tem is unba­lan­ced, fluc­tu­ating, sim­ply not in a sta­te of eco­lo­gi­cal balan­ce. Howe­ver, as long as it is not direct­ly thre­a­te­ned by humans, this eco­sys­tem exhi­bits a high degree of eco­lo­gi­cal sta­bi­li­ty. The mecha­nism of main­tai­ning balan­ce is pro­bab­ly feed­back. MÍCHAL and VOLOŠČUK (1991) sta­te that if the fluc­tu­ati­on of eco­sys­tem com­po­nents does not lead to the long-​term des­truc­ti­on of its struc­tu­res, the fluc­tu­ati­on in the abun­dan­ce of a par­ti­cu­lar popu­la­ti­on may be an expres­si­on of pro­tec­ti­ve acti­vi­ties regu­la­ted by feed­back. Feed­back is a means of regu­la­ti­on; it can cau­se eco­lo­gi­cal balan­ce, but I doubt that it nega­ti­ve­ly affects eco­lo­gi­cal stability.


Lite­ra­tú­ra

MÍCHAL, I., ET VOLOŠČUK, I., 1991: Roz­ho­vo­ry o eko­ló­gii a ochra­ne prí­ro­dy, ENVIRO, Martin.

Use Facebook to Comment on this Post

Obsah

983 člán­kov
276 kategórií
28,042 kľú­čo­vých slov
1,674,891 slov
1,219 autorov
1,872 zdrojov
55 prispievateľov
Na pre­čí­ta­nie tre­ba – 22 minutes

Kategórie

Hľadaj

Novinky

  • Jazierka v Piešťanoch
  • Panorámy
  • Senec
  • Hainburg an der Donau
  • Dreviny
  • Základné informácie o www​.sozo​.sk a o mne
  • Modrová horáreň
  • Siluety
  • Kežmarský štít
  • Gerlachovský štít
  • Piešťany na jeseň
  • Jablonové
  • Bratislavské Staré Mesto
  • Arborétum Mlyňany
  • Otvorenie letnej kúpeľnej sezóny v Piešťanoch
  • Flora Bratislava
  • Zlatý vrch
  • Botanická záhrada v Bratislave
  • Telč – moravské Benátky
  • Slavkov u Brna

Najčítanejšie za 90 dní

  • Dreviny (18095)
  • Jazierka v Piešťanoch (12033)
  • Otvorenie letnej kúpeľnej sezóny v Piešťanoch (10222)
  • Hainburg an der Donau (5303)
  • Senec (3635)
  • Bratislavské Staré Mesto (3592)
  • Panorámy (3580)
  • Základné informácie o www.sozo.sk a o mne (3253)
  • Modrová horáreň (3233)
  • Piešťany na jeseň (2219)
  • Flora Bratislava (1922)
  • Zlatý vrch (652)
  • Arborétum Mlyňany (105)
  • Jablonové (76)
  • Kežmarský štít (73)
  • Gerlachovský štít (71)
  • Siluety (64)

Najčítanejšie za rok

  • Dreviny (18095)
  • Devínske jazero (13210)
  • Lednice - súčasť svetového kultúrneho dedičstva (13101)
  • Jazierka v Piešťanoch (12033)
  • Mačky (11122)
  • Otvorenie letnej kúpeľnej sezóny v Piešťanoch (10222)
  • Sandberg - svedok minulosti, klenot súčasnosti (8606)
  • Štrbské Pleso (7112)
  • Rapsódia bocianov v Marcheggu (6965)
  • Devínska Kobyla - unikátna lokalita celosvetového významu (6245)

Najčítanejšie články

  • Chované ryby a vodné rastliny (85039)
  • Malý atlas rýb (70990)
  • Choroby rýb a ich liečenie (67087)
  • Piešťany - pokojné kúpeľné mesto na Považí (65874)
  • Ja a fotografovanie (64986)
  • Založenie akvária (58103)
  • Najbežnejší prísavník Ancistrus cf. cirrhosus (54434)
  • Vodné rastliny (52297)
  • Výživa rýb (50395)
  • Superstar na Slovensku a v Česku (50229)
  • Rozmnožovanie rýb a vodných rastlín (49068)
  • Čunovský vodácky areál (46965)
  • Plazy (46826)
  • Cicavce (45447)
  • Živorodky - ryby mnohých akvaristov v minulosti aj v súčasnosti (44430)
  • Krajina - najkrajšie fotografie krajiny (42968)
  • Živá potrava z prírody - blchy: cyklop, dafnia, vírnik, prach (41298)
  • Tropikárium Budapešť (40923)
  • Parametre vody (40286)
  • Malý atlas vodných rastlín (37027)

Jazyk /​Language

Podľa kreditu

01 - najlepšie 02 - skvelé 03 - výborné 04 - veľmi dobré 05 - dobré 06 - priemerné 07 - slabšie 08 - slabé 09 - veľmi slabé 10 - najslabšie

Kľúčové slová

biotopy (84) Bratislava (180) cesty (151) cichlidy (85) dokumenty (96) Dolné Považie (105) história (80) hrady (118) kostoly (184) krajina (459) lesy (98) línie (89) Malé Karpaty (83) Martin (80) mestá (119) Morava (78) obce (135) odrazy (101) Piešťany (124) Podunajsko (96) pohyb (73) polia (88) príroda (465) prírodné rastliny (98) Rakúsko (101) rastliny (127) reportáže (90) rieky (90) ryby (193) skaly (150) Slovensko (553) Spiš (69) stavby (106) stromy (194) svetlo (71) Tatry (76) voda (78) vtáky (84) Vysoké Tatry (105) výstavy (72) zima (78) Česko (118) čas (74) ľad (72) živočíchy (248)

Tags

African cichlids (49) agriculture (37) animals (174) aquaristics (52) aquarium (35) aquarium fish (42) art (36) Austria (32) biodiversity (33) biotopes (83) birds (26) Bratislava (54) buildings (94) castles (38) cichlids (58) cities (88) cultural events (29) cultural heritage (30) Czechia (27) Danube region (35) exhibitions (35) families (27) fish (118) fish breeding (30) High Tatras (45) hiking (43) hills (26) history (26) Liptov (35) livebearers (29) Lower Považie (41) Moravia (28) Myjava (28) national cultural monument (26) nature (322) Orava (31) Piešťany (53) plants (69) Považie (37) Slovakia (420) Small Carpathians (26) Spiš (27) Tatras (37) tourism (43) Upper Považie (27)

Autori

Alexandra Podolinská (4) Branislav Cigánik (7) Dano Kurek (4) Dušan Jurčacko (4) Elena Halická (11) Irena Šimuneková (9) Ivana Kaclíková (4) Ivan Bohuš (4) Ivan Čillík (4) Jaroslav Hrabě (4) Jozef Javurek (9) Jozef Terem (9) Julka Rončová (6) Ján Serbák (14) Ján Urda (17) Karol Srnec (5) Kornel Duffek (6) Marc Elie­son (18) Margaréta Halická (25) Markéta Rejlková (7) Martina Haratíková (6) Martin Haláč (8) Martin Kiňo (10) Martin Černý (3) Michael K. Oliver (5) Michal Toufar (4) Michal Uriča (4) Michal Šimkovic (4) Miroslav Lisinovič (11) Monika Nosková (5) Oskár Mažgút (4) Otakar Brandos (9) Oľga Magalová (5) Petr Novák (4) Renáta Jaloviarová (5) Roman Slaboch (7) Róbert Toman (5) Sam Bors­tein (4) Tomáš Hudcovič (8) Tomáš Šereda (6) Vilém Křečan (11) Václav Sulek (6) Zuzana Minarovičová (4) Ľubomír Motyčka (9) Ľuboš Vodička (5)

Zdroje

aktuality.sk (18) akvarista.cz (34) akvarko.cz (10) apsida.sk (29) blogspot.com (13) blogspot.sk (15) ceskesvycarsko.cz (10) cestovatel.eu (11) cichlid-forum.com (30) cs.wikipedia.org (81) de.wikipedia.org (12) dennikn.sk (10) dobrodruh.sk (13) en.wikipedia.org (90) enviroportal.sk (10) ephoto.sk (24) facebook.com (131) fishbase.org (65) fishprofiles.com (10) gcca.net (11) google.com (10) hiking.sk (18) idnes.cz (15) infoglobe.sk (11) instagram.com (11) kudyznudy.cz (25) mistopisy.cz (9) muzeum.sk (13) panorama.sk (10) piestanskydennik.sk (12) piestany.sk (10) planetslovakia.sk (12) pnky.sk (9) pravda.sk (44) rybicky.net (21) seriouslyfish.com (14) sk.wikipedia.org (266) slovakia.travel (18) sme.sk (108) treking.cz (13) vysoke-tatry.info (14) wikitravel.org (15) wordpress.com (11) youtube.com (17) zoznam.sk (11)

Prispievatelia

Adam Lewicki Adam Pernica Branislav Cigánik Dušan Beláň Elena Halická Eva Kaclíková František Debre František Kaclík Heliodor Macko Ivana Kaclíková Ivan Vyslúžil Jakub Dadák Jaroslav Hrabě Julka Rončová Juraj Ležovič Ján Iskra Júlia Rončová Kornel Duffek Marián Stieranka Marián Válek Markéta Rejlková Martin Dratva Martin Fodor Martin Haláč Matej Follrich Matej Follrich Milan Kánya Milan Sabo Milo Pešek Miloš Chmelko Miloš Gnida Miroslav Konôpka Nora Lukačovičová Norbert Sabat Oľga Magalová Oľga Magalová Patrik Bíro Pavol Kaclík Pavol Papson Peter Greguš Peter Kolár Romana Kaclíková Roman Slaboch Róbert Toman Tomáš Hudcovič Viktor Blaho Vilém Křečan Vladimír Hebert Vladimír Pazdera Yveta Kaclíková

Počasie

Copyright © 2025 Skala. All rights reserved.
Photo Perfect Pro by WEN Themes